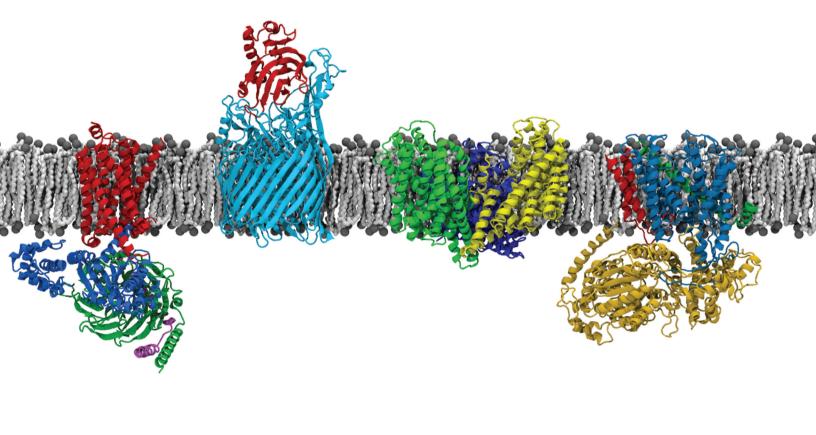


MEMBRANE STRUCTURAL BIOLOGY WITH BIOCHEMICAL AND BIOPHYSICAL FOUNDATIONS

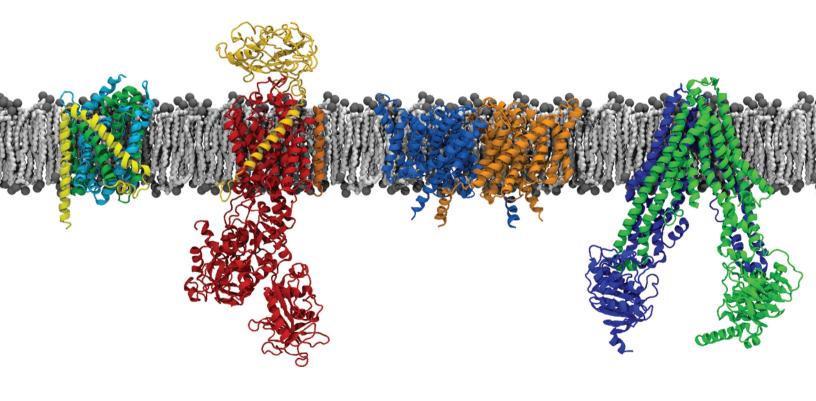
Second Edition


This textbook provides a strong foundation and a clear overview for students of membrane biology and an invaluable synthesis of cutting-edge research for working scientists. The text retains its clear and engaging style, providing a solid background in membrane biochemistry, while also incorporating the approaches of biophysics, genetics, and cell biology to investigations of membrane structure, function, and biogenesis to provide a unique overview of this fast-moving field.

A wealth of new high-resolution structures of membrane proteins are presented, including the Na^+-K^+ pump and a receptor G protein complex, offering exciting insights into how they function. All key tools of current membrane research are described, including detergents and model systems, bioinformatics, protein-folding methodology, crystallography and diffraction, EPR and NMR spectroscopy, and molecular modeling.

This comprehensive and up-to-date text, emphasizing the correlations between membrane research and human health, provides a solid foundation for all those working in this field.

Mary Luckey is Professor Emerita in the Department of Chemistry and Biochemistry at San Francisco State University. She earned her Ph.D. in Biochemistry at the University of California Berkeley with the first identification of an iron transport protein in the bacterial outer membrane. Her postdoctoral work demonstrated the specificity of the *E. coli* maltoporin in proteoliposomes. While continuing research on maltoporin structure and function, she has taught biochemistry for over 25 years, including the graduate-level membrane biochemistry course that provided the impetus for this book.


MEMBRANE STRUCTURAL BIOLOGY

MARY LUCKEY

San Francisco State University

WITH BIOCHEMICAL AND BIOPHYSICAL FOUNDATIONS

SECOND EDITION

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107030633

© Mary Luckey 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008 Reprinted 2011 (twice) Second Edition 2014

Printed in the United States by Sheridan Inc.

Library of Congress Cataloging in Publication data Luckey, Mary, 1948-Membrane structural biology: with biochemical and biophysical

foundations / Mary Luckey. - Second edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03063-3 (hardback)

1. Membranes (Biology) 2. Membrane lipids. 3. Membrane proteins. I. Title.

OH601.L75 2014

571.6'4-dc23 2013028009

ISBN 978-1-107-03063-3 Hardback

Additional resources for this publication at www.cambridge.org/Luckey2 Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cover image:

The title page shows high-resolution structures of membrane proteins incorporated into a simulated lipid bilayer. The proteins are, from left to right, β 2A in complex with an agonist and a trimeric G-protein, the heme receptor HasR in complex with the heme-binding protein HasA, the trimeric aspartate transporter GltPh that is a homolog for neurotransmitter transporters, the SecYEG translocon in complex with the energizing subunit SecA, the amino acid transporter LeuT that is another homolog for neurotransmitter transporters, the Na⁺, K⁺ ATPase, the dimeric chloride transporter ClC, and P-glycoprotein, a dimeric transporter that extrudes drugs.

Kindly provided by J. C. Gumbart, Georgia Institute of Technology, and E. Tajkhorshid, University of Illinois.

In memory of Amy L. Davidson, 1958–2013, insightful scientist, meticulous experimentalist, gracious colleague, and good friend.

CONTENTS IN BRIEF

	Contents	İX
	Preface	xiv
1	Introduction	1
2	The Diversity of Membrane Lipids	14
3	Tools for Studying Membrane Components: Detergents and Model Systems	42
4	Proteins in or at the Bilayer	69
5	Bundles and Barrels	105
6	Functions and Families	130
7	Protein Folding and Biogenesis	168
8	Diffraction and Simulation	203
9	Membrane Enzymes	226
10	Membrane Receptors	257
11	Transporters	284
12	Channels	328
13	Electron Transport and Energy Transduction	358
14	In Pursuit of Complexity	385
	Appendix I: Abbreviations	393
	Appendix II: Single-Letter Codes for Amino Acids	397
	Index	399

CONTENTS

List of boxes		Membrane solubilization	49 51
Preface		Lipid removal	
		Model membranes	51
1 INTRODUCTION	1	Monolayers	52
		Planar bilayers	54
General features of membranes		Patch clamps	57
Paradigm 1: the amphiphilic molecules in		Supported bilayers	57
membranes assemble spontaneously due		Liposomes from SUVs to GUVs	60
to the hydrophobic effect	4	Multilamellar vesicles	60
Paradigm 2: the Fluid Mosaic Model		Small unilamellar vesicles	
describes the membrane structure	5	Large unilamellar vesicles	61
A shift in the paradigm: biomembranes have		Short-chain/long-chain unilamellar	
lateral domains that form "rafts"	9	vesicles	
A view for the future: dynamic protein		Giant unilamellar vesicles	62
complexes crowd the membrane		Mixed micelles and bicelles	63
interior and extend its borders	9	Blebs and blisters	64
For further reading	13	Nanodiscs	66
8		Conclusion	67
2 THE DIVERSITY OF MEMBRANE		For further reading	67
LIPIDS	14		
		4 PROTEINS IN OR AT THE BILAYER	69
The acyl chains	14		
Complex lipids	17	Classes of proteins that interact with	
Phospholipids	19	the membrane	69
Sphingolipids	20	Proteins at the bilayer surface	70
Sterols and linear isoprenoids	21	Extrinsic/peripheral membrane proteins	70
The lipid bilayer matrix	22	Amphitropic proteins	74
Structure of bilayer lipids	22	Lipid-anchored proteins	74
Diffusion of bilayer lipids		Reversible interactions of peripheral	
Lipid asymmetry and membrane thickness	24 27	proteins with the lipid bilayer	77
Lipid polymorphism	28	Effects of peripheral protein binding on	
Lamellar phase	28	membrane lipids	77
Hexagonal phase and the amphiphile		Interactions between peripheral proteins	
shape hypothesis	29	and lipids	78
Cubic phase	30	Domains involved in binding	
Miscibility of bilayer lipids	31	the membrane	81
Lateral domains and lipid rafts	34	Curvature	83
Detergent-resistant membranes	35	Modulation of binding	84
Diversity of lipids	37	Proteins and peptides that insert	
Conclusion	39	into the membrane	85
For further reading	41	Toxins	86
Torraner reading	• • •	Colicins	88
3 TOOLS FOR STUDYING MEMBRANE		Peptides	88
		SecA: protein acrobatics	90
COMPONENTS: DETERGENTS AND		Proteins embedded in the membrane	91
MODEL SYSTEMS		Monotopic proteins	91
-	42	Integral membrane proteins	91
Detergents	43	Protein-lipid interactions	97
Types of detergents	43	Hydrophobic mismatch	101
Mechanism of detergent action	46	For further reading	103
meenament of actorgeth action	40	TOT INTUICI TOURING	103

5 BUNDLES AND BARRELS	Proteomics of membrane proteins		163	
		Predicting β -barrels For further reading	164 165	
Helical bundles	105	1 of further reading	103	
Bacteriorhodopsin	105			
Photosynthetic reaction center	109	7 PROTEIN FOLDING AND BIOGENESIS	168	
The proteins	110		(
Lipids	112	Protein folding	169	
The cofactors	112	Folding α -helical membrane proteins	170	
Antennae	113	bR folding studies	173	
The reaction cycle	114	Folding studies of β -barrel membrane		
β-barrels	115	proteins	175	
Porins	117	Other folding studies	177	
OmpF and OmpC	118	Whole protein hydrophobicity scale	178	
VDAC, a mitochondrial porin	122	Biogenesis of membrane proteins	178	
Specific porins	123	Export from the cytoplasm	180	
PhoE, the phosphoporin	123	The translocon	187	
LamB, the maltoporin	124	The translocon structure	187	
Other β -barrel transporters	124	TM insertion	189	
Iron receptors	125	Biological hydrophobicity scale	191	
Outer membrane secretory proteins:		Topogenesis in membrane proteins	195	
not β -barrels	126	Misfolding diseases	198	
Conclusion	127 127	For further reading	201	
For further reading	121	8 DIFFRACTION AND SIMULATION	203	
6 FUNCTIONS AND FAMILIES	130	6 DIFFRACTION AND SIMULATION	203	
		Back to the bilayer	203	
Membrane enzymes	130	Liquid crystallography	204	
Diacylglycerol kinase	132	Liquid crystal theory	206	
Presenilin, an intra-membrane protease	134	Joint refinement of x-ray and neutron		
P450 cytochromes	136	diffraction data	207	
Transport proteins	137	Modeling the bilayer	209	
Transport classification system	138	Simulations of lipid bilayers	209	
Superfamilies of ATPases	139	Molecular dynamics	209	
ABC transporter superfamily	140	Monte Carlo	213	
Group translocation	140	Lipids observed in x-ray structures		
Symporters	142	of membrane proteins	215	
Antiporters	142	Crystallography of membrane proteins	219	
Ion channels	143	A multidisciplinary approach	223	
Membrane receptors	144	For further reading	225	
Nicotinic acetylcholine receptor	144			
G protein-coupled receptors	145	O BACKADDANE ENTWACE	000	
Bioinformatics tools for membrane		9 MEMBRANE ENZYMES	226	
protein families	146			
Predicting TM segments	146	Prostaglandin H ₂ synthase	227	
Hydrophobicity plots	148	OMPLA	230	
Orientation of membrane proteins	149	Membrane proteases	234	
The positive-inside rule	150	Omptins	234	
Inverted repeats	151	Intramembrane proteases	235	
Genomic analysis of membrane proteins	153	Rhomboid protease	236	
Helix-helix interactions	162	Structure of the bacterial rhomboid GlpG	237	

Contents

Contents

Formate dehydrogenase	239	The vitamin B_{12} uptake system	310
P-type ATPases	243	BtuCD-BtuF, an ABC transport system	311
Ca ²⁺ ATPases	243	BtuB, an outer membrane transporter	
Na ⁺ , K ⁺ ATPase	250	energized by TonB	313
Other P-type ATPases	254	Drug efflux systems	316
Conclusion	255	Sav1866 and P-glycoprotein,	
For further reading	255	ABC exporters	316
		EmrE, an example of dual topology	318
		Tripartite drug efflux via a membrane vacuum	
10 MEMBRANE RECEPTORS	257	cleaner	320
		AcrB, a peristaltic pump	321
G protein-coupled receptors	258	Alternating site mechanism of AcrB	322
Rhodopsin, a light-sensitive GPCR	259	AcrA, a periplasmic adaptor protein	323
Ground state rhodopsin	260	TolC, the channel-tunnel	323
Activated rhodopsin	261	Partners of TolC	325
Rhodopsin as prototype	263	Conclusion	325
Adrenergic receptors	267	For further reading	326
β_2 AR structure	268		
β_1 AR structure	270	40 OHANNELC	200
Activated β_2 AR in complex with G_S	270	12 CHANNELS	328
Neurotransmitter receptors	274		
Glutamate receptors: GluA2	274	Aquaporins and glyceroaquaporins	329
Cys-loop receptors and GluCl	278	Structure of aquaporins	330
Conclusion	282	Glyceroaquaporins: GlpF	331
For further reading	282	Human aquaporins: AQP4	333
		Potassium channels	335
		KcsA structure and selectivity	336
11 TRANSPORTERS	284	Gating and activation	337
		Voltage gating	339
Secondary transporters	284	Gating in human potassium channels	341
MFS transporters	285	Chloride channels and the CLC family	343
LacY, a scrutinized symporter	285	ClC-ec1	344
GlpT, an MFS antiporter	288	CLC channels as "broken transporters"	346
EmrD, an MFS exporter in an occluded		Mechanosensitive ion channels	347
conformation	289	MscL	349
FucP, an MFS symporter in		MscS	350
co conformation	290	MS channel gating	351
A paradigm for MFS transporters	291	Gap junction channels Conclusion	354
Mitochondrial ADP/ATP carrier	291	For further reading	356
AAC structure	291	For further reading	356
Neurotransmitter transporters	294		
Glutamate transporters and GltPh	294	13 ELECTRON TRANSPORT AND	
Neurotransmitter sodium symporters			250
and LeuT	296	ENERGY TRANSDUCTION	358
LeuT structure	298		
Transport mechanism of LeuT	300	Complexes of the respiratory chain	359
The NSS family and the LeuT (APC-fold)		Complex I	359
superfamily	300	Conformational coupling mechanism	363
BetP and osmoregulated transport	303	Cytochrome bc_1	365
ABC transporters and beyond	306	The Q cycle	366
Maltose transporter	306	High-resolution structures	366

Contents

Cytochrome c oxidase	371
High-resolution structures	371
Oxygen reduction	373
Proton pathways	374
F ₁ F ₀ -ATP synthase	375
Subunit structure and function	377
F ₁ Domain	377
F_0 Domain	379
Regulation of the F ₁ F ₀ -ATPase	379
Catalytic mechanism of a rotary motor	380
Rotational catalysis	380
Conclusions	383
For further reading	383

14 IN PURSUIT OF COMPLEXITY	385
Complex formation	386
Conformational changes and	
dynamics	390
For further reading	392
Appendix I: Abbreviations	393
Appendix II: Single-Letter Codes for Amino Acids	397
Index	399

LIST OF BOXES

2.1	Fluorescence techniques	26
	Phase diagrams	33
3.1	Surfactants and surface tension	43
3.2	Electrophysiology	54
4.1	Binding of ligands to surfaces	80
4.2	NMR determination of membrane protein structures	95
4.3	Electron paramagnetic resonance	99
5.1	NMR determination of β -barrel membrane protein structure	119
6.1	Surface dilution effects	131
6.2	Bioinformatics basics	147
6.3	Making and testing hydrophobicity plots	150
6.4	Statistical methods for TM prediction	156
7.1	Energetics of folding and inserting a hydrophobic α -helix into the bilayer	172
7.2	Evidence for cleavable signal sequences involved in protein translocation	183
7.3	Crosslinking traces nascent peptides through the translocon into the bilayer	184
7.4	Import of mitochondrial proteins	193
8.1	X-ray and neutron scattering	205
8.2	Molecular dynamics calculations	210
8.3	Studying dynamics in solution	215
9.1	Mechanism of action of prostaglandin H ₂ synthase	228
10.1	Efficiency of light-induced signal transduction	260
12.1	Mechanosensitivity	349
13.1	A modified O cycle in cytochrome $b_6 f$	368

PREFACE

The first edition of Membrane Structural Biology met a need for a comprehensive presentation of the explosion of information about the structure and organization of biological membranes. It also acknowledged how new techniques and whole new methodologies had changed both how we acquired knowledge of the membrane and how we viewed it. With a foundation derived from basic physical and life sciences, advances in structural biology were depicted through the molecular details of membrane components provided by sophisticated diffraction analysis of fluid lipid bilayers and by high-resolution structures of a variety of membrane proteins. As the book moved from basic membrane biochemistry to detailed examples, it covered a wide range of material at a level appropriate for both students and scientists in the field. I am gratified with the responses from membrane scientists all over the world.

This new edition has been expanded to include over 20 additional membrane proteins visualized in atomic detail. Discovery of superfamilies based on the protein folds shows relationships among membrane proteins, while capture of multiple states begins to disclose mechanisms. Some new topics have been introduced, other topics updated, and yes, sadly, some interesting new findings had to be left out. I hope readers will jump into the literature from the key references provided to learn about the exciting new findings, to study these topics in more detail, and to tackle the larger and more complex systems at the frontiers of membrane research.

While I am responsible for the omissions and any errors, I am indebted to many people who have been generous with their time, reviewing new parts of this edition, as well as those who did so for the first edi-

tion. I was assisted when I started writing the book by my former students, Dr. Aram Krauson and Dr. Andréa Dosé. For their comments on specific topics in the first edition I thank Professors Scott Feller, Steve White, Sam Hess, Rosemary Cornell, Ehud Landau, David Hackney, Paula Booth, Bill Plachy, and Hiroshi Nikaido. For comments on new sections of the second edition I thank Poul Nissen, Maike Bublitz, Satinder Singh, Merritt Maduke, Brian Kobilke, Chuck Sanders, Jörg Standfuss, Bill Cramer, Reinhard Krämer, Christine Ziegler, Shelagh Ferguson-Miller, and Eduardo Perozo. I am especially grateful to those who reviewed the entire original manuscript: Professors Lin Randall and Stanley Parsons, and my former students Shyam Bhaskaran, Marla Melnick, and Jared Matt Greenberg. Lin Randall and my former student Chris Chin also read all the new chapters for the second edition.

With much appreciation I thank Professors J. C. Gumbart and Emad Tajkhorshid for the cover figures. In addition I want to thank the many individual scientists who shared their figures of beautiful membrane protein structures, particularly those who prepared figures for this edition: Shelagh Ferguson-Miller, Rosemary Comell, Krzyszt of Palzewski, and Tivadar Orban. For her unflagging enthusiasm and wise editorial help, I thank Dr. Katrina Halliday. Thanks as well to my colleagues and friends who supported my progress writing the book. Finally, I deeply appreciate the affection and encouragement I received from my family, Ariel, SAM, Ryan, donna, Kesa, Amanda, and Dana, with profound gratitude for steadfast love, patience, and support from my husband Paul.

Mary Luckey

