Lyapunov Exponents

A Tool to Explore Complex Dynamics

Lyapunov exponents lie at the heart of chaos theory and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrates the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterisation of phenomena, such as synchronisation, weak and global chaos in low-and high-dimensional setups, and localisation. This text equips readers with all of the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers.

Arkady Pikovsky is Professor of Theoretical Physics at the University of Potsdam. He is a member of the editorial board for *Physica D* and a Chaotic and Complex Systems Editor for *J. Physics A: Mathematical and Theoretical*. He is a Fellow of the American Physical Society and co-author of *Synchronization: A Universal Concept in Nonlinear Sciences*. His current research focusses on nonlinear physics of complex systems.

Antonio Politi is the 6th Century Chair in Physics of Life Sciences at the University of Aberdeen. He is Associate Editor of *Physical Review E*, a Fellow of the Institute of Physics and of the American Physical Society, and was awarded the Gutzwiller Prize by the Max-Planck Institute for Complex Systems in Dresden and the Humboldt Prize. He is co-author of *Complexity: Hierarchical Structures and Scaling in Physics*.

Lyapunov Exponents

A Tool to Explore Complex Dynamics

ARKADY PIKOVSKY

University of Potsdam

ANTONIO POLITI

University of Aberdeen

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107030428

© Arkady Pikovsky and Antonio Politi 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Pikovsky, Arkady, 1956– Lyapunov exponents : a tool to explore complex dynamics / Arkady Pikovsky, University of Potsdam, Antonio Politi, University of Aberdeen.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03042-8 (Hardback : alk. paper)

1. Lyapunov exponents. 2. Differential equations. I. Politi, II. Title.

QA372.P655 2016 515'.352–dc23 2015032525

ISBN 978-1-107-03042-8 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Prefac			<i>page</i> xi
1 Intr	duction		1
1.1	Historical conside	rations	1
	1.1.1 Early result	lts	1
	1.1.2 Biography	of Aleksandr Lyapunov	3
	1.1.3 Lyapunov	's contribution	4
	1.1.4 The recent	past	5
1.2	Outline of the boo	k	6
1.3	Notations		8
2 The	basics		10
2.1	The mathematical	setup	10
2.2	One-dimensional	maps	11
2.3	Oseledets theorem		12
	2.3.1 Remarks		13
	2.3.2 Oseledets	splitting	15
	2.3.3 "Typical p	erturbations" and time inversion	16
2.4	Simple examples		17
	2.4.1 Stability o	f fixed points and periodic orbits	17
	2.4.2 Stability o	f independent and driven systems	18
2.5	General properties	5	18
	2.5.1 Determinis	stic vs. stochastic systems	18
	2.5.2 Relationsh	ip with instabilities and chaos	19
	2.5.3 Invariance		20
	2.5.4 Volume co	ontraction	21
	2.5.5 Time para	metrisation	22
	2.5.6 Symmetrie	es and zero Lyapunov exponents	24
	2.5.7 Symplectic		26
3 Nun	erical methods		28
3.1	The largest Lyapu	nov exponent	28
3.2	Full spectrum: QR	decomposition	29
	* *	midt orthogonalisation	31
	3.2.2 Household	ler reflections	31

v

CAMBRIDGE

vi	Contents		
	2.2		22
	3.3		33
		Ensemble averages	35
	3.5		36
		3.5.1 Orthogonalisation	37
		3.5.2 Statistical error	38
	26	3.5.3 Near degeneracies Systems with discontinuities	40 43
	3.6		43
		3.6.1 Pulse-coupled oscillators3.6.2 Colliding pendula	40
	3.7	Lyapunov exponents from time series	49 50
	4 Lyap	ounov vectors	54
	4.1	Forward and backward Oseledets vectors	55
	4.2	Covariant Lyapunov vectors and the dynamical algorithm	57
	4.3		59
	4.4		61
		4.4.1 Wolfe-Samelson algorithm	62
		4.4.2 Kuptsov-Parlitz algorithm	62
	4.5	Vector orientation	63
	4.6	Numerical examples	64
	4.7	Further vectors	65
		4.7.1 Bred vectors	66
		4.7.2 Dual Lyapunov vectors	67
		tuations, finite-time and generalised exponents	70
	5.1		70
		Generalised exponents	73
	5.3		77
	5.4		78
		5.4.1 Quick tools	78
		5.4.2 Weighted dynamics	79
	5.5	•	80
	5.6		84
	5.7	1	89
		5.7.1 Deviation from hyperbolicity	89
		5.7.2 Weak chaos	90
		5.7.3 Hénon map5.7.4 Mixed dynamics	94 96
	6 Dim	ensions and dynamical entropies	100
	6.1	Lyapunov exponents and fractal dimensions	100
	6.2	* * *	103
	6.3		105
		-	

vii	Contents			
		6.4	Generalised dimensions and entropies	107
		0	6.4.1 Generalised Kaplan-Yorke formula	107
			6.4.2 Generalised Pesin formula	109
	7	Finite	e-amplitude exponents	110
		7.1	Finite vs. infinitesimal perturbations	110
		7.2	Computational issues	112
			7.2.1 One-dimensional maps	114
		7.3	Applications	115
	8	Rand	om systems	118
		8.1	Products of random matrices	119
			8.1.1 Weak disorder	119
			8.1.2 Highly symmetric matrices	125
			8.1.3 Sparse matrices	128
			8.1.4 Polytomic noise	131
		8.2	Linear stochastic systems and stochastic stability	136
			8.2.1 First-order stochastic model	136
			8.2.2 Noise-driven oscillator	137
			8.2.3 Khasminskii theory	141
			8.2.4 High-dimensional systems	142
		8.3	Noisy nonlinear systems	146
			8.3.1 LEs as eigenvalues and supersymmetry	146
			8.3.2 Weak-noise limit	149
			8.3.3 Synchronisation by common noise and random attractors	150
	9	Coup	led systems	152
		9.1	Coupling sensitivity	152
			9.1.1 Statistical theory and qualitative arguments	153
			9.1.2 Avoided crossing of LEs and spacing statistics	157
			9.1.3 A statistical-mechanics example	159
			9.1.4 The zero exponent	160
		9.2	Synchronisation	162
			9.2.1 Complete synchronisation and transverse Lyapunov exponents	162
			9.2.2 Clusters, the evaporation and the conditional Lyapunov exponent	163
			9.2.3 Synchronisation on networks and master stability function	164
	10) High-	-dimensional systems: general	168
		10.1	Lyapunov density spectrum	168
			10.1.1 Infinite systems	171
		10.2	Chronotopic approach and entropy potential	173
			Convective exponents and propagation phenomena	178
			10.3.1 Mean-field approach	181

viii	Contents			
	10.3.2 Relationship between convective exponents and chronotopic			
	analysis	183		
	10.3.3 Damage spreading	185		
	10.4 Examples of high-dimensional systems	187		
	10.4.1 Hamiltonian systems	187		
	10.4.2 Differential-delay models	191		
	10.4.3 Long-range coupling	193		
	11 High-dimensional systems: Lyapunov vectors and finite-size effects	200		
	11.1 Lyapunov dynamics as a roughening process	200		
	11.1.1 Relationship with the KPZ equation	202		
	11.1.2 The bulk of the spectrum	207		
	11.2 Localisation of the Lyapunov vectors and coupling sensitivity	209		
	11.3 Macroscopic dynamics	213		
	11.3.1 From micro to macro	216		
	11.3.2 Hydrodynamic Lyapunov modes	218		
	11.4 Fluctuations of the Lyapunov exponents in space-time chaos	219		
	11.5 Open system approach	223		
	11.5.1 Lyapunov spectra of open systems	226		
	11.5.2 Scaling behaviour of the invariant measure	226		
	12 Applications	229		
	12.1 Anderson localisation	229		
	12.2 Billiards	231		
	12.3 Lyapunov exponents and transport coefficients	235		
	12.3.1 Escape rate	235		
	12.3.2 Molecular dynamics	236		
	12.4 Lagrangian coherent structures	237		
	12.5 Celestial mechanics	239		
	12.6 Quantum chaos	242		
	Appendix A Reference models			
	A.1 Lumped systems: discrete time	245		
	A.2 Lumped systems: continuous time	246		
	A.3 Lattice systems: discrete time	247		
	A.4 Lattice systems: continuous time	248		
	A.5 Spatially continuous systems	249		
	A.6 Differential-delay systems	250		
	A.7 Global coupling: discrete time	250		
	A.8 Global coupling: continuous time	250		
	Appendix B Pseudocodes	252		

ix	Contents		
	Appendix C Random matrices: some general formulas	256	
	C.1 Gaussian matrices: discrete time	256	
	C.2 Gaussian matrices: continuous time	257	
	Appendix D Symbolic encoding	258	
	Bibliography Index	259 277	

Preface

With the advent of electronic computers, numerical simulations of dynamical models have become an increasingly appreciated way to study complex and nonlinear systems. This has been accompanied by an evolution of theoretical tools and concepts: some of them, more suitable for a pure mathematical analysis, happened to be less practical for applications; other techniques proved instead very powerful in numerical studies, and their popularity exploded. Lyapunov exponents is a perfect example of a tool that has flourished in the modern computer era, despite having been introduced at the end of the nineteenth century.

The rigorous proof of the existence of well-defined Lyapunov exponents requires subtle assumptions that are often impossible to verify in realistic contexts (analogously to other properties, e.g., ergodicity). On the other hand, the numerical evaluation of the Lyapunov exponents happens to be a relatively simple task; therefore they are widely used in many setups. Moreover, on the basis of the Lyapunov exponent analysis, one can develop novel approaches to explore concepts such as hyperbolicity that previously appeared to be of purely mathematical nature.

In this book we attempt to give a panoramic view of the world of Lyapunov exponents, from their very definition and numerical methods to the details of applications to various complex systems and phenomena. We adopt a pragmatic, physical point of view, avoiding the fine mathematical details. Readers interested in more formal mathematical aspects are encouraged to consult publications such as the recent books by Barreira and Pesin (2007) and Viana (2014).

An important goal for us was to assess the reliability of numerical estimates and to enable a proper interpretation of the results. In particular, it is not advisable to underestimate the numerical difficulties and thereby use the various subroutines as black boxes; it is important to be aware of the existing limits, especially in the application to complex systems.

Although there are very few cases where the Lyapunov exponents can be exactly determined, methods to derive analytic approximate expressions are always welcome, as they help to predict the degree of stability, without the need of actually performing possibly long simulations. That is why, throughout the book, we discuss analytic approaches as well as heuristic methods based more on direct numerical evidence, rather than on rigorous theoretical arguments. We hope that these methods will be used not only for a better understanding of specific dynamical problems, but also as a starting point for the development of more rigorous arguments.

The various techniques and results described in the book started accumulating in the scientific literature during the 1980s. Here we have made an effort to present the main (according to our taste) achievements in a coherent and systematic way, so as to make the understanding by potentially unskilled readers easier. An example is the perturbative

xi

© in this web service Cambridge University Press & Assessment

Xİİ

Preface

approach of the weak-disorder limit that has already been discussed in other reviews; here we present the case of ellyptic, hyperbolic and marginal matrices in a systematic manner.

Although this is a book and, as such, mostly devoted to a coherent presentation of known results, we have also included novel elements, wherever we felt that some gaps had to be filled. This is for instance, the case of the finite-size effects in the Kuramoto model or the extension of the techniques developed by Sompolinsky et al. to a wider class of random processes.

As a result, we are confident that the book can be read at various levels, depending on the needs of the reader. Those interested in the bare application to some simple cases will find the key elements in the first three chapters; the following chapters contain various degrees of in-depth analysis. Cross references among the common points addressed in the various sections should help the reader to navigate across specific items.

The most important acknowledgement goes to the von Humboldt Foundation, which, supporting the visit of Antonio Politi to Potsdam with a generous fellowship, has allowed us to start and eventually complete this project. Otherwise, writing the book would have been simply impossible.

We happened to discuss with, ask and receive suggestions from various colleagues. We specifically wish to acknowledge V. N. Biktashev, M. Cencini, H. Chaté, A. Crisanti, F. Ginelli, H. Kantz, R. Livi, Ya. Pesin, G. Puccioni, K. A. Takeuchi, R. Tonjes and H.-L. Yang.

Antonio Politi wishes also to acknowledge A. Torcini and S. Lepri as long-term collaborators who contributed to the development of some of the results herein summarised.

Special thanks go to P. Grassberger, who, more than 10 years after the publication of a joint paper with G. D'Alessandro, S. Isola and Antonio Politi on the Hénon map, was able to dig out some data to determine the still most accurate estimate of the topological entropy of such a map. As laziness has prevented a dissemination of those results, we made an effort to include them in this book.

We also wish to thank E. Lyapunova, the grand-niece of A. M. Lyapunov, who provided a high-quality photograph of the scientist who originated all of the story.

We finally warmly thank S. Capelin of Cambridge University Press, who has been patient enough to wait for us to complete the work. We hope that the delay has been worthy of a much better product. Although surely far from perfect, at some point we had to stop.