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Lyapunov Exponents

A Tool to Explore Complex Dynamics

Lyapunov exponents lie at the heart of chaos theory and are widely used in studies of

complex dynamics. Utilising a pragmatic, physical approach, this self-contained book

provides a comprehensive description of the concept. Beginning with the basic properties

and numerical methods, it then guides readers through to the most recent advances in

applications to complex systems. Practical algorithms are thoroughly reviewed and their

performance is discussed, while a broad set of examples illustrates the wide range of

potential applications. The description of various numerical and analytical techniques

for the computation of Lyapunov exponents offers an extensive array of tools for the

characterisation of phenomena, such as synchronisation, weak and global chaos in low-

and high-dimensional setups, and localisation. This text equips readers with all of the

investigative expertise needed to fully explore the dynamical properties of complex

systems, making it ideal for both graduate students and experienced researchers.
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Preface

With the advent of electronic computers, numerical simulations of dynamical models have

become an increasingly appreciated way to study complex and nonlinear systems. This has

been accompanied by an evolution of theoretical tools and concepts: some of them, more

suitable for a pure mathematical analysis, happened to be less practical for applications;

other techniques proved instead very powerful in numerical studies, and their popularity

exploded. Lyapunov exponents is a perfect example of a tool that has flourished in the

modern computer era, despite having been introduced at the end of the nineteenth century.

The rigorous proof of the existence of well-defined Lyapunov exponents requires subtle

assumptions that are often impossible to verify in realistic contexts (analogously to other

properties, e.g., ergodicity). On the other hand, the numerical evaluation of the Lyapunov

exponents happens to be a relatively simple task; therefore they are widely used in many

setups. Moreover, on the basis of the Lyapunov exponent analysis, one can develop novel

approaches to explore concepts such as hyperbolicity that previously appeared to be of

purely mathematical nature.

In this book we attempt to give a panoramic view of the world of Lyapunov exponents,

from their very definition and numerical methods to the details of applications to various

complex systems and phenomena. We adopt a pragmatic, physical point of view, avoiding

the fine mathematical details. Readers interested in more formal mathematical aspects are

encouraged to consult publications such as the recent books by Barreira and Pesin (2007)

and Viana (2014).

An important goal for us was to assess the reliability of numerical estimates and to enable

a proper interpretation of the results. In particular, it is not advisable to underestimate the

numerical difficulties and thereby use the various subroutines as black boxes; it is important

to be aware of the existing limits, especially in the application to complex systems.

Although there are very few cases where the Lyapunov exponents can be exactly

determined, methods to derive analytic approximate expressions are always welcome, as

they help to predict the degree of stability, without the need of actually performing possibly

long simulations. That is why, throughout the book, we discuss analytic approaches

as well as heuristic methods based more on direct numerical evidence, rather than on

rigorous theoretical arguments. We hope that these methods will be used not only for a

better understanding of specific dynamical problems, but also as a starting point for the

development of more rigorous arguments.

The various techniques and results described in the book started accumulating in the

scientific literature during the 1980s. Here we have made an effort to present the main

(according to our taste) achievements in a coherent and systematic way, so as to make

the understanding by potentially unskilled readers easier. An example is the perturbative

xi

www.cambridge.org/9781107030428
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03042-8 — Lyapunov Exponents
Arkady Pikovsky , Antonio Politi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Preface

approach of the weak-disorder limit that has already been discussed in other reviews; here

we present the case of ellyptic, hyperbolic and marginal matrices in a systematic manner.

Although this is a book and, as such, mostly devoted to a coherent presentation of known

results, we have also included novel elements, wherever we felt that some gaps had to be

filled. This is for instance, the case of the finite-size effects in the Kuramoto model or the

extension of the techniques developed by Sompolinsky et al. to a wider class of random

processes.

As a result, we are confident that the book can be read at various levels, depending on the

needs of the reader. Those interested in the bare application to some simple cases will find

the key elements in the first three chapters; the following chapters contain various degrees

of in-depth analysis. Cross references among the common points addressed in the various

sections should help the reader to navigate across specific items.

The most important acknowledgement goes to the von Humboldt Foundation, which,

supporting the visit of Antonio Politi to Potsdam with a generous fellowship, has allowed

us to start and eventually complete this project. Otherwise, writing the book would have

been simply impossible.

We happened to discuss with, ask and receive suggestions from various colleagues. We

specifically wish to acknowledge V. N. Biktashev, M. Cencini, H. Chaté, A. Crisanti, F.

Ginelli, H. Kantz, R. Livi, Ya. Pesin, G. Puccioni, K. A. Takeuchi, R. Tonjes and H.-L.

Yang.

Antonio Politi wishes also to acknowledge A. Torcini and S. Lepri as long-term collab-

orators who contributed to the development of some of the results herein summarised.

Special thanks go to P. Grassberger, who, more than 10 years after the publication of

a joint paper with G. D’Alessandro, S. Isola and Antonio Politi on the Hénon map, was

able to dig out some data to determine the still most accurate estimate of the topological

entropy of such a map. As laziness has prevented a dissemination of those results, we made

an effort to include them in this book.

We also wish to thank E. Lyapunova, the grand-niece of A. M. Lyapunov, who provided

a high-quality photograph of the scientist who originated all of the story.

We finally warmly thank S. Capelin of Cambridge University Press, who has been

patient enough to wait for us to complete the work. We hope that the delay has been worthy

of a much better product. Although surely far from perfect, at some point we had to stop.
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