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Graduate students and researchers alike will benefit from this treatment of various

classical and modern topics in the homotopy theory of topological spaces, with an

emphasis on cubical diagrams. The book contains more than 300 examples and provides

detailed explanations of many fundamental results.

Part I focuses on foundational material on homotopy theory, viewed through the lens

of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and

the Blakers–Massey Theorems. Part II includes a brief example-driven introduction

to categories, limits, and colimits, and an accessible account of homotopy limits and

colimits of diagrams of spaces. It also discusses cosimplicial spaces and relates this

topic to the cubical theory of Part I, and provides computational tools via spectral

sequences. The book finishes with applications to some exciting new topics that use

cubical diagrams: an overview of two versions of calculus of functors and an account

of recent developments in the study of the topology of spaces of knots.
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Preface

Purpose. Cubical diagrams have become increasingly important over the last

two decades, both as a powerful organizational tool and because of their

many applications. They provide the language necessary for the Blakers–

Massey Theorems, which unify many classical results; they lie at the heart

of calculus of functors, which has many uses in algebraic and geometric topol-

ogy; and they are intimately related to homotopy (co)limits of diagrams and

(co)simplicial spaces. The growing importance of cubical diagrams demands

an up-to-date, comprehensive introduction to this subject.

In addition, self-contained, expository accounts of homotopy (co)limits and

(co)simplicial spaces do not appear to exist in the literature. Most standard

references on these subjects adopt the language of model categories, thereby

usually sacrificing concreteness for generality. One of the goals of this book

is to provide an introductory treatment to the theory of homotopy (co)limits in

the category of topological spaces.

This book makes the case for adding the homotopy limit and colimit of a

punctured square (homotopy pullback and homotopy pushout) to the essential

toolkit for a homotopy theorist. These elementary constructions unify many

basic concepts and endow the category of topological spaces with a sophis-

ticated way to “add” (pushout) and “multiply” (pullback) spaces, and so “do

algebra”. Homotopy pullbacks and pushouts lie at the core of much of what

we do and they build a foundation for the homotopy theory of cubical dia-

grams, which in turn provides a concrete introduction to the theory of general

homotopy (co)limits and (co)simplicial spaces.

Features. We develop the homotopy theory of cubical diagrams in a gradual

way, starting with squares and working up to cubes and beyond. Along the

way, we show the reader how to develop competence with these topics with

over 300 worked examples. Fully worked proofs are provided for the most

xi
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xii Preface

part, and the reader will be able to fill in those that are not provided or have

only been sketched. Many results in this book are known, but their proofs do

not appear to exist. If we were not able to find a proof in the literature, we have

indicated that this is the case. The reader will also benefit from an abundance

of suggestions for further reading.

Cubical diagrams are an essential concept for stating and understanding

the generalized Blakers–Massey Theorems, fundamental results lying at the

intersection of stable and unstable homotopy theory. Our proofs of these

theorems are new, purely homotopy-theoretic in nature, and use only elemen-

tary methods. We show how many important results, such as the Whitehead,

Hurewicz, and Freudenthal Suspension Theorems, follow from the Blakers–

Massey Theorems. Another new feature is our brief but up-to-date discussion

of quasifibrations and of the Dold–Thom Theorem from the perspective of

homotopy pullbacks and pushouts. Lastly, most of the material on spectral

sequences of cubical diagrams also does not seem to have appeared elsewhere.

Our expositional preference is for (homotopy) limits rather than (homotopy)

colimits. This is partly due to a quirk of the authors, but also because the appli-

cations in this book use (homotopy) limits more than (homotopy) colimits. We

have, however, at least stated all the results in the dual way, but have omitted

many proofs for statements about (homotopy) colimits that are duals of those

for (homotopy) limits. If a proof involving (homotopy) colimits had something

new to offer, we have included it.

Audience. A wide variety of audiences can benefit from reading this book. A

novice algebraic topology student can learn the basics of some standard con-

structions such as (co)fibrations, homotopy pullbacks and pushouts, and the

classical Blakers–Massey Theorem. A person who would like to begin to study

the calculus of functors or its recent applications can read about cubical dia-

grams, the generalized Blakers–Massey Theorem, and briefly about calculus

of functors itself. An advanced reader who does not want to adopt the cubi-

cal point of view can delve deeper into general homotopy (co)limits (while

staying rooted in topological spaces and not going through the model-theoretic

machinery that other literature adopts), cosimplicial spaces, or Bousfield–Kan

spectral sequences. In addition, geometrically-minded topologists will appreci-

ate some of main examples involving configuration spaces, applications to knot

and link theory (and more general embedding spaces), as well as the geometric

proof of the Blakers–Massey Theorem.

Organization. The book is naturally divided into two parts. The first two

chapters of Part I can be thought of as the necessary background and may

be skimmed or even skipped and returned to when necessary. The book

www.cambridge.org/9781107030251
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Preface xiii

really begins in Chapter 3, where we study squares, homotopy pullbacks and

pushouts, and develop their arithmetic and algebraic properties. We can deduce

many standard results in classical homotopy theory using this language, and

this also provides the foundation of the theory for higher-dimensional cubes.

The payoff at the end of this introductory material is in Chapter 4, where we

present the Blakers–Massey Theorems for squares, tools for comparing homo-

topy pushouts and pullbacks. These are central results in homotopy theory,

and we give many applications. We then move to higher-dimensional cubes in

Chapter 5, and are able to bootstrap the material on squares to give an acces-

sible account which generalizes most of the material encountered thus far.

This treatment also provides a concrete introduction to more general homo-

topy (co)limits. Again we end with the Blakers–Massey Theorems in Chapter

6, but this time for higher-dimensional cubes.

Part II of the book explores more general categories and the definitions and

main properties of homotopy (co)limits. The hope is that the reader will have

acquired enough intuition through studying Part I, which is very concrete, to be

able to transition to some of the general abstract notions of Part II. We review

some general category theory in Chapter 7 but in Chapter 8 return to the cat-

egory of topological spaces in order to preserve concreteness and continue to

supply ample and familiar examples. We then move on to cosimplicial spaces

in Chapter 9, which are closely allied both with the general theory of homo-

topy limits and with the cubical theory developed in Part I of the book. We end

in Chapter 10 with a sequence of applications representing brief forays into

current research, including introductory material of both homotopy and man-

ifold calculus of functors and some applications. All of this uses the material

developed earlier – cubical and cosimplicial machinery as well as the Blakers–

Massey Theorem – in an essential way. An appendix serves to illustrate or

give background on some topics which are used throughout the text but are not

central to its theme, such as simplicial sets, spectra, operads, and transversality.

We have included a flowchart at the end of this preface to indicate the

interdependence of the chapters.
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Flowchart. The dotted lines in the chart below indicate that a reader who has

had some exposure to category theory can skip Chapter 7, which contains fairly

standard material (there might need to be an occasional look back at this chap-

ter for notation or statements of results). The left and the right columns of the

chart are precisely Parts I and II.

Chapter 1:

Preliminaries

Chapter 2:

Homotopy (co)fibers

Chapter 7:

Categories

Chapter 3:

Homotopy pullbacks and pushouts

Chapter 4:

Blakers–Massey for squares

Chapter 8:

Homotopy (co)limits

except 9.4

Chapter 5:

Cubes

Chapter 9:

Cosimplicial spaces

10.4

Chapter 6:

Blakers–Massey for cubes

10.1, 10.2, 10.3 Chapter 10:

Applications
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