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Preliminaries

This chapter establishes some notational conventions and fundamental con-

structions. It is not comprehensive, nor is all of it even necessary (the

unnecessary bits are meant to supply context), and we assume the reader is

familiar with most of it already. Some of the material presented in this chapter

is redundant in the sense that it will be revisited later. For instance, the cone,

wedge, and suspension of a space will be discussed later in terms of colimits,

a perspective more in line with the philosophy of this book. The essential top-

ics presented here which are utilized elsewhere are topologies on spaces and

spaces of maps, homotopy equivalences, weak equivalences, and a few proper-

ties of the class of CW complexes whose extra structure we will need from time

to time. Some familiarity with homotopy groups (mostly their definition) will

also be useful, and to a much lesser extent some exposure to homology. Many

proofs are omitted, and references are given instead. We will clarify which is

which along the way.

Most references given in this chapter are from Hatcher’s Algebraic topology

[Hat02]. There are a few other modern references which the authors have found

useful, and which contain most, if not all, of these preliminary results as well,

such as [AGP02, Gra75, May99, tD08] (we especially like [AGP02] since it

seems to be the most elementary text which follows this book’s philosophy;

[Gra75] is neither modern nor in print, but still a unique and valuable resource).

We owe all of these sources a debt, in this chapter and elsewhere.

1.1 Spaces and maps

A topological space is a pair (X, τ), where τ is a collection of subsets of X, the

members of which are called open sets, which contains both the empty set and

X, and which is closed under finite intersections and arbitrary unions. However,
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4 Preliminaries

it is customary to suppress the topology from the notation, so we simply write

X in place of (X, τ), and typically denote generic topological spaces using cap-

ital Roman letters. A subbase for a topology τ on X is a subset of τ for which

every element of τ is a union of finite intersections of elements in the subset; it

is a sort of generating set for τ.

The complement of an open set U ¢ X is called closed, and to spec-

ify a topology on X we may equivalently describe a system of closed sets

which contains both the empty set and X, and which is closed under arbi-

trary intersections and finite unions. If A ¢ X, we write Å for its interior;

Å is the union of all open sets in X which are contained in A, and as such

is an open set. We will write A for the closure of A; by definition it is the

intersection of all the closed subsets of X which contain A, and is evidently

closed.

By a subspace A ¢ X, we mean the topology on A whose open sets are of

the form A+U where U is open in X. A collection of subspaces of a space X is

called a cover of X if their union is X. For a nested sequence X1 ¢ X2 ¢ · · · of

topological spaces, we endow the union X =
�>

i=1 Xi with the weak topology: a

subset C ¢ X is closed if C+Xi is closed in Xi for each i. For a topological space

X with an equivalence relation >, we let X/> denote the set of equivalence

classes of X under >, and endow this space with the quotient topology: a set

of equivalence classes is called open if the union of those equivalence classes

forms an open set in X. For x in X, we denote by [x] the corresponding point

in X/>. For the quotient of X by a subspace A, we write X/A for this space and

mean the quotient of X by the equivalence relation > on X generated by x > y

if x, y * A.

We will write X × Y for the product, X � Y for the disjoint union, and when

X and Y are subspaces of some larger space, X * Y for the union along the

intersection (which may be empty). Open sets of the product are generated by

products of open sets, and open sets in the disjoint union are disjoint unions of

open sets.

Several spaces are worthy of mention.

Definition 1.1.1

ï The empty set ', that is, the space with no points.
ï The one-point space 7.
ï The real numbers R, topologized using the metric d(x, y) = |x 2 y|.
ï The unit interval I = {t * R : 0 f t f 1}, topologized as a subspace of R.
ï Euclidean n-space Rn, topologized using the usual metric | 2 |. By definition

R
0
= {0}.
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1.1 Spaces and maps 5

ï The n-dimensional cube In
= {(t1, . . . , tn) * Rn : 0 f ti f 1 for all i},

topologized as a subspace of Rn.
ï The unit n-disk Dn

= {x * Rn : |x| f 1} for n g 0, topologized as a subset of

R
n. We define D21

= '.
ï The unit (n 2 1)-sphere S n21

= ∂Dn
= {x * Rn : |x| = 1} for n g 0,

topologized as a subspace of Rn. Note that S 21
= '; we define S 22

= '.
ï The n-simplex ∆n

= {(t1, . . . , tn) : 0 f t1 f · · · f tn f 1}. Alternatively,

∆
n
= {(x0, . . . , xn) * Rn+1 : 0 f xi f 1 for all i and

�
i xi = 1} (it is a

standard exercise to prove the two descriptions are equivalent; when we have

need of coordinates in the simplex we will utilize the latter description). A

simplex is topologized as a subspace of the Euclidean space of which it is a

subset. For 0 f k f n, let ∂k∆
n ¢ ∆n denote the subset of ∆n consisting of

those tuples (x0, . . . , xn) for which xk = 0. This is called a face of ∆n, and it

is itself a simplex of dimension n 2 1.

We assume our topological spaces to be compactly generated Hausdorff. To

be Hausdorff means that any two distinct points are contained in disjoint open

neighborhoods.

Definition 1.1.2 A space X is said to be compactly generated if it has the

property that a subset C of X is closed if and only if the intersection C+K with

each compact subset K of X is also closed in X.

All of the spaces described in Definition 1.1.1 are compactly generated Haus-

dorff. We will denote by Top the category of compactly generated spaces. The

definition of a category can be found in Definition 7.1.1 (and we will not use

the language of categories in a serious way before Chapter 7). Any Hausdorff

space X can be made into a compactly generated space kX (same point set,

different topology: we take the smallest compactly generated topology which

contains the given one). The identity function kX ³ X is continuous and a

homeomorphism if and only if X is compactly generated. Moreover, kX and

X have the same compact subsets and the same homotopy groups (defined

below). The product of two compactly generated spaces is given the topol-

ogy of k(X × Y). Locally compact Hausdorff spaces, manifolds, metric spaces,

and CW complexes (see below) are all compactly generated spaces. One ben-

efit of working with compactly generated spaces is that this makes the duality

between the notions of cofibration and fibration cleaner to state by eliminating

the hypothesis of local compactness.

Maps between spaces will typically be denoted by a lower-case Latin letter

such as f or g; thus f : X ³ Y denotes a map between the topological spaces
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6 Preliminaries

X and Y . In this case we say X is the domain of f and Y the codomain. The

term “map” means continuous map.

Several maps are worthy of mention.

Definition 1.1.3

ï The identity map from a space X to itself will be denoted by 1X , defined by

1X(x) = x for all x.
ï The map from X to Y which has constant value y * Y will be denoted

cy : X ³ Y , and is referred to as a constant map.
ï For a subspace A ¢ X, we usually write ι : A ³ X for the inclusion map;

occasionally we may use i for this map. The subspace A is a retract of X if

there exists a map r : X ³ A, called a retraction, such that r ç ι = 1A.
ï Given a map f : X ³ Y , we say a map g : Y ³ X is a section of f if the

composite f ç g = 1Y . Thus the inclusion map for a subspace which is a

retract is a section of the retraction.
ï For a space X with equivalence relation >, there is a quotient map q : X ³

X/> which sends each point to its equivalence class.
ï For a space X, we write ∆ : X ³ X × X for the diagonal map, defined by

∆(x) = (x, x).
ï For a space X, we write ' : X

"
X ³ X for the fold map, defined to be the

identity 1X on each summand.
ï Given a map f : X ³ Y and a subspace A ¢ X, we let f |A : A ³ Y denote

the restriction of f to A.
ï A map f : X ³ Y is called a homeomorphism if there exists a continuous

inverse g : Y ³ X for f ; i.e. we have g ç f = 1X and f ç g = 1Y . Spaces X

and Y are then homeomorphic and we write X � Y . This is the most basic

equivalence relation on the class of spaces we will consider.

Here is a useful result we will need later.

Lemma 1.1.4 If X is a Hausdorff space and A is a retract of X, then A is

closed in X.

Proof Let r : X ³ A be the retraction and consider the map X ³ X×X given

by x û³ (x, r(x)). The preimage of the diagonal in X × X is the set of fixed

points of r, which is A. But since X is Hausdorff, the diagonal is closed, and

hence A is closed. û

Returning again to a nested sequence X1 ¢ X2 ¢ · · · of topological spaces,

we note that the weak topology on X =
�>

i=1 Xi has the property that, given a
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1.1 Spaces and maps 7

collection of maps fi : Xi ³ Y such that fi|Xi21
= fi21 for all i, there is a unique

map f : X ³ Y whose restriction to Xi is equal to fi for all i.

Often we consider diagrams of spaces, which simply means families of

spaces and maps between them. The language is chosen to suggest we are

thinking of a sort of picture of these spaces and maps. We will usually deal with

commutative diagrams, which means that all ways of getting from one space

to another by following maps are the same. The two we will most frequently

encounter are

where commutativity means g ç f = h and

where commutativity means g ç f � = f ç g�. We typically omit drawing the

composed map W ³ Z in squares such as the above. We will later use the lan-

guage of categories and functors to talk about diagrams (see Remark 7.1.16).

If a diagram is not necessarily commutative, we will be explicit about this.

One notable generally non-commutative diagram we will encounter first in

Chapter 7 is

where f � g.

The spaces in a diagram will often be parametrized by subsets of some finite

set, and so we shall encounter spaces such as XU to denote which member of

the family of spaces labeled “X” we mean. In the case that U is a subset of a

finite set, say U = {1, 2} ¢ {1, 2, 3}, we will usually write X12 in place of X{1,2}

for cleaner presentation.

We will also often consider pairs of spaces (X, A). where X is a space and

A ¢ X is a subspace. A map of pairs f : (X, A) ³ (Y, B) is a map f : X ³ Y

such that f (A) ¢ B. When A = {x0} is a single point, then X will be called based

or pointed, x0 will be called the basepoint, and we will typically write (X, x0) in

place of (X, {x0}). A map f : X ³ Y of based spaces X and Y with basepoints

x0 and y0 respectively is based if it is a map of pairs (X, x0) and (Y, y0). We
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8 Preliminaries

let Top7 denote the category of based spaces (meaning the objects of interest

are based spaces and the maps of interest are based maps). A map of pairs

f : (X, A) ³ (Y, B) is called a homeomorphism of pairs if it has a continuous

inverse g : (Y, B) ³ (X, A). We can also consider based pairs (X, A, x0), where

x0 * A is the basepoint, and consider based maps (X, A, x0) ³ (Y, B, y0) of

pairs, whose definition should be apparent.

The basepoint will often be suppressed from notation, but the reader should

be warned that many constructions which require a choice of basepoint are not

independent of that choice, such as the fundamental group. This should not

cause confusion, as we will be clear about choosing basepoints when we are

forced to do so.

Definition 1.1.5 A based space (X, x0) is called well-pointed if X × {0} *

{x0} × I is a retract of X × I. If (X, x0) is well-pointed, we call the basepoint x0

non-degenerate. We assume all spaces to be well-pointed.

Remark 1.1.6 We prefer the equivalent definition that the inclusion of the

basepoint {x0} ³ X is a cofibration, but we do not have this language available

yet. We will revisit this definition in Remark 2.3.20 once we have established

the notion of a cofibration. The reason we assume our spaces to be well-pointed

is to preserve homotopy invariance of various standard constructions, such as

the suspension. û

CW complexes, mentioned above, play an important role at various points in

this text and so it is worth recalling at least the idea of their construction.

For instance, in Chapter 8 we will frequently deal with the realization of a

simplicial complex, and it is easy to see how these can be considered as CW

complexes. We refer the reader to [Hat02, Chapter 0, Appendix A] for more

details on CW complexes. An n-cell en is simply the n-disk Dn, and ∂en
= ∂Dn

is its boundary, the (n21)-sphere. A CW complex X is a space built inductively

starting with the empty set X21
= ', with Xn built from Xn21 by attaching

cells en
α to Xn21 via maps aα : ∂en ³ Xn21. Here α ranges through a (possibly

empty) indexing set An. Thus X0 is a discrete set of points, and in general Xn

is a quotient space of Xn21�α*An
en
α. The space X is then defined as *ng0Xn and

is given the weak topology: A subset C ¢ X is closed if C + Xn is closed in Xn

for all n. We call Xn the n-skeleton of X. A subcomplex of a CW complex X is

a subset A which is a union of cells of X such that the closure of each cell is

contained in A.

A relative CW complex is a pair (X, A) where A is a topological space and

X a space which has been built from A by attaching cells as above. That is,

we use the same definition as above only with X21
= A. The case where
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1.1 Spaces and maps 9

A = ' specializes to an ordinary CW complex, so we may assume all CW

complexes are relative CW complexes for the purposes of any statements

about such spaces. The space A need not have a cell structure itself. A rel-

ative CW complex (X, A) has dimension n if X = Xn and X � Xn21. We

say it is finite if the number of its cells is finite; that is, each indexing set

An above is finite and there exists N such that An = ' for n g N. Theorem 1.3.7

below says that any space can be approximated by a CW complex in a suitable

sense.

The notion of CW complex furnishes an enormous number of examples of

topological spaces built from disks. We now review some others basic con-

structions: the cone, suspension, join, wedge, and smash product of spaces. We

will encounter all of these again in Chapters 2 and 3 as examples of homotopy

(co)fibers and homotopy (co)limits, and will derive many results combining

and comparing them there.

Definition 1.1.7 For a topological space X, define X+ to be X with a disjoint

basepoint.

The space X+ is in fact the quotient of X by the empty set. This is easi-

est to see diagrammatically by consideration of universal properties, as in

Example 3.5.6.

Definition 1.1.8 For a space X, the cone CX on X is the quotient space

CX = X × I/(X × {1}).

If X = ', then CX is a point. If X is based with basepoint x0, the reduced cone

on X, by abuse also called CX, is the quotient space

X × I/(X × {1} * {x0} × I).

Any map f : X ³ Y induces a map of cones,

C f : CX ³ CY, (1.1.1)

induced from the map f × 1I : X × I ³ Y × I by taking quotient spaces of the

domain and codomain. See Example 3.6.8 for an alternative definition of the

cone.

Remark 1.1.9 The quotient map from the cone to the reduced cone is a

homotopy equivalence because (X, x0) is well-pointed by assumption. See

Remark 2.3.20 for a discussion. û
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10 Preliminaries

The cone on X is so named as it is created from the cylinder X× I by collapsing

one end. The space X is naturally a subspace of CX by the inclusion of X × {0}

in CX.

Definition 1.1.10 For a based space X with basepoint x0, the reduced

suspension ΣX of X is the quotient space

ΣX = X × I/(X × {0} * {x0} × I * X × {1}).

Its basepoint is the image of X × {0} * {x0} × I * X × {1} by the quotient map.

The unreduced suspension of a space X, based or not, is the quotient space

X × I/>

where > is the equivalence relation generated by (x1, 0) > (x2, 0) and (x1, 1) >

(x2, 1). Inductively we define ΣnX = ΣΣn21X.

The suspension is the union of two copies of the reduced cone CX glued

together by the identity map X × {0} ³ X × {0}. See Example 3.6.9 for an

alternative definition of suspension.1

Remark 1.1.11 We will also use ΣX to denote the unreduced suspension, and

we will refer to both versions simply as the suspension. It should always be

clear to the reader which version we mean, usually depending on the existence

of a basepoint, although we will try to be clear in instances where this may

cause confusion. In any case, if X is well-pointed (see Remark 1.1.6), then the

quotient map from the unreduced suspension to the reduced suspension of X is

a homotopy equivalence, so this is usually not a concern. û

Example 1.1.12 It is an easy exercise to see that there is a homeomorphism

ΣS n
� S n+1 for all n g 21. (The sphere S 21 is empty, but its suspension

is the quotient of the empty set by two points, and hence may be identified

with S 0.) û

Any map f : X ³ Y induces a map of suspensions,

Σ f : ΣX ³ ΣY, (1.1.2)

induced from the map f × 1I : X × I ³ Y × I.

1 Using the language of Section 2.4, another way to think of this is as the cofiber of the
cofibration X ³ CX.
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1.1 Spaces and maps 11

Definition 1.1.13 Let X and Y be based spaces with basepoints x0 and y0

respectively. Define the wedge or wedge sum X * Y by

X * Y = X × {y0} *(x0×y0) {x0} × Y.

Alternatively, it is the quotient of X � Y by the equivalence relation generated

by x0 > y0. See Example 3.6.6 for an alternative definition of the wedge.

Example 1.1.14

ï S 1 * S 1
� “figure-8”.

ï Σ(X * Y) " ΣX * ΣY .
ï Suppose X is an n-dimensional CW complex, whose n-cells are indexed by

the set An. Then the quotient space X/Xn21
= *An

S n. If An = ' then this

wedge sum is a single point. û

Definition 1.1.15 Let X and Y be based spaces. Define the smash product

X ' Y by

X ' Y = X × Y/X * Y.

See Example 3.6.10 for an alternative way to define the smash product.

Note that if X is a based space with basepoint x0, then we can still smash it

with an unbased space Y by adding a disjoint basepoint,

X ' Y+ = X × Y/{x0} × Y.

This is sometimes called the half-smash product.

Example 1.1.16

ï Given based spheres S n and S m, we have S n ' S m
� S n+m.

ï More generally if X is a based space, we have S n ' X � ΣnX.
ï If Y is another based space, then Σ(X ' Y) � (ΣX) ' Y � X ' (ΣY).
ï If X and Y are unbased, then X+ ' Y+ = X × Y . û

Definition 1.1.17 Let X and Y be spaces. Define the join X 7 Y by

X 7 Y = CX × Y *X×Y X ×CY.

If X and Y are based spaces with basepoints x0 and y0 respectively, we define

the reduced join of X with Y as the quotient space X 7 Y/(X 7 {y0} * {x0} 7 Y).

See Example 3.6.12 for an alternative way to define the join.
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