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Introduction

The use of statistical data analysis in physics means different things to different
people. The reason for this is that most problems are different, and so some-
one concentrating on areas where the experimental data collected are relatively
straightforward to analyse will naturally tend to use techniques that are simpler
than those required for a more complicated problem or for a sparse data sam-
ple. Ultimately we all need to use statistical methods in order to translate data
into some measure of a physical observable. This book will discuss a number
of different concepts and techniques in order of increasing complexity. Before
embarking on a discussion of statistics the remainder of this chapter introduces
three common experimental problems encountered by students studying physics:
(i) using a pendulum to measure acceleration due to gravity (Section 1.1),
(ii) testing the validity of Ohm’s law for a conductor (Section 1.2), and (iii) mea-
suring the half-life of a radioactive isotope (Section 1.3). These examples rely on
material covered in Chapters 4 through 7 and Chapter 9. Readers who appreciate the
context of material in the remainder of this book may wish to skip forward to the next
chapter.

1.1 Measuring g, the coefficient of acceleration due to gravity

The value of acceleration due to gravity (g typically reported in units of m/s2)
changes slightly depending on where one makes the measurement. Precise maps of
g are used in geological surveys as small local deviations in g may be indicative of
mineral reserves, such as oil or gas. There are a number of ways of measuring this
quantity and the one discussed here is the use of a swinging pendulum. This can
be described as a simple harmonic oscillator with mass m, suspended on a string
of length L. The period of oscillation T is given by 2π/ω, where ω is the angular
frequency and is given by

√
g/L. Hence the corresponding period of oscillation
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2 Introduction

for the pendulum is given by

T = 2π

√
L

g
. (1.1)

This is valid for small oscillations, as the small angle approximation of sin θ � θ is
used in deriving the relationship between T and g. By using Eq. (1.1) it is possible
to estimate the acceleration due to the Earth’s gravity from measurements of (i) the
length L and (ii) the period of oscillation T of the pendulum. There is no dependence
on the amplitude of oscillation (as long as the small-angle approximation remains
valid) or the mass of the bob at the end of the pendulum. Equation (1.1) can be
re-arranged as follows

g = 4π2L

T 2
, (1.2)

so that one can directly obtain g from a single measurement or data point. Propa-
gation of errors is discussed in Chapter 6 where in particular Eq. (6.11) can be used
in order to determine the uncertainty on g, denoted by σg, given measurements and
uncertainties on both T and L, where

σ 2
g =

(
8π2L

T 3

)2

σ 2
T +

(
4π2

T 2

)2

σ 2
L. (1.3)

Although this is a common experiment performed in many schools and undergrad-
uate laboratories, many aspects of data analysis are required to fully appreciate
issues that may arise with the measurement of g.

The most straightforward way to approach this problem is to measure the time it
takes for a single complete oscillation to occur. From some maximum displacement
one can release the pendulum bob and measure the time taken for the bob to reach
back to where it started from. This measurement neglects any small effect arising
from air resistance that may reduce the amplitude of oscillation slightly. There
are several factors that one should consider when performing a measurement of g

using this method.

� If a stopwatch is used to measure the period of oscillation, then there will be a
significant uncertainty associated with starting and stopping the watch, relative
to the period of time. For example if the oscillation period is of the order of a
second, then the reaction time of the person starting and stopping the watch in
quick succession will play an important role in the accuracy and precision of the
time period measurement. One needs to ensure firstly that the measurement is
accurate (i.e. that there is no systematic mistake made in timing), and that it is
sufficiently precise. If the method of measuring the time period has an uncertainty
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1.1 Measuring g, the coefficient of acceleration due to gravity 3

of a second, then it would not be possible to make a useful measurement of time
periods less than one second.

For example one can use the standard deviation on the ability of the exper-
imenter to stop a stopwatch at a given count as a measure of the uncertainty
of timing a particular event. As one has to both start and stop the stopwatch,
twice this uncertainty can be ascribed as the uncertainty on time measurement.
Using a trial of ten attempts to count to ten seconds on a stopwatch, the RMS
deviation from that number was found to be 0.1 s. This was taken as the uncer-
tainty on starting or stopping the watch. As both of these events have the same
source of uncertainty they are taken to be correlated, hence twice that is used
as the uncertainty on timing for an individual measurement of the oscillation
i.e. ±0.2 s.

� The relative uncertainty on L should also be small. For example, a measurement
made with L = 5.0 ± 0.5 cm would introduce a 10% uncertainty in Eq. (1.3),
whereas this can be reduced to the percent level by increasing L to 50 cm. That
in turn will increase T hence the relative precision on T using a given timing
device as T ∝ √

L. So the experiment should be designed in such a way that
L is sufficiently large so that it is not a dominant factor in the total uncertainty
obtained for g, and mitigates contributions from timing.

� The relationship given in Eq. (1.1) is valid only for small amplitudes of oscilla-
tion, hence any measurement that deviates from a small amplitude of oscillation
will result in a biased determination of g. The experimenter needs to understand
this assumption and how the underlying approximation restricts the maximum
displacement of the pendulum from the vertical position. For example, a length
of L = 50 cm with an amplitude of oscillation of 10 cm results in a bias of
−0.7% on the angle θ , which in turn introduces a small bias on g. As the effect
is non-linear, an amplitude of oscillation of 20 cm results in a bias of −2.7%
on the angle used in the approximation and so on. Therefore when starting to
swing the pendulum, one should take care that the amplitude of oscillation is
sufficiently small that the small angle approximation remains valid. A longer
string length will help minimise this source of bias.

Having determined that the uncertainty on measurement timing is 0.2 s using
a stopwatch, then a period of oscillation lasting 2 s will be determined to 10%
(0.2 s /2.0 s). This in turn will limit the precision with which g can be determined as
can be seen from the first term in Eq. (1.3). Table 1.1 shows several measurements of
g made by using a stopwatch for timing and L = 64.6 ± 0.5 cm. The measurement
obtained using a single oscillation is g = (9.7 ± 2.4) m/s2. The relative precision
of this measurement is quite poor, only having determined g to 25%; however,
it is possible to reduce the uncertainty on the measurement in several different
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4 Introduction

Table 1.1 Measurements of g using the
methodology described in the text.

Number of Number of
measurements oscillations g (m/s2)

1 1 9.7 ± 2.4
10 1 10.2 ± 0.5

1 10 9.7 ± 0.3
10 10 9.7 ± 0.1

ways using the same experimental apparatus, but varying the experimental method
slightly.

� One can make several measurements, and take the average of the ensemble as
an estimate of the mean value of the period of oscillation, with the standard
deviation corresponding to a measure of the spread in the data as the uncertainty
on a measurement. The uncertainty on the mean value of the period from N

individual measurements will scale by a factor 1/
√

N . This means that one
can quickly make improvements on a single measurement, by making several
subsequent measurements, but soon the increase in precision obtained by making
an additional single measurement will become small. This assumes that each trial
measurement is made under identical conditions, and neglects any systematic
mistakes in measuring L or T .

� Another way to improve the precision would be to measure the time taken for
several periods of oscillation. The uncertainty on a single period of oscillation
derived from a measurement of ten oscillations is σT = σ10T /10, i.e. the uncer-
tainty on the measurement is spread equally across each oscillation that occurred
within the measurement, and one can effectively reduce the statistical uncertainty
on T by a factor of ten.

� The period of oscillation achievable for a given setup depends on the length L.
Given that g is a constant for a given laboratory, the longer the pendulum, the
longer the period of oscillation. So one can increase L for a given measurement
method in order to reduce the relative precision on the measured value of g,
within practical limitations of the experimental apparatus.

The precision obtained for the measured value of g can be improved further
by averaging a number of measurements made of multiple oscillations at a time,
for the longest pendulum length L allowable by the the apparatus, i.e. by taking
into account the three previous considerations. Table 1.1 summarises the results
of several sets of measurements of g and in particular illustrates the potential
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1.2 Verification of Ohm’s law 5

for improvements obtained by making multiple measurements, and by measuring
several periods of oscillation. One can see from the results shown in the table that
while making several measurements of a given number of oscillations and averaging
those results gives an improvement in precision over a single measurement of g,
the most effective way to improve the precision using this apparatus is to increase
the number of oscillations counted in order to estimate T . By applying a basic
understanding of statistical data analysis to this problem it has been possible to
refine the experimental method in order to determine the value of g with a relative
precision of 1%, compared with the 25% relative precision obtained initially. For
a measurement with a 1% statistical precision, a systematic bias of −0.7% from
the use of the small angle approximation would be a concern. The underlying
techniques used here are discussed in Chapters 4 and 6 and the reader may wish to
re-read this example once they have reached the end of Chapter 6.

1.2 Verification of Ohm’s law

This example builds on some of the techniques discussed above. We are surrounded
by electronic devices in the modern world. One of the fundamental laws related
to electronics is that of Ohm’s law: the voltage V across an Ohmic conductor is
proportional to the electric current I passing through it. The constant of propor-
tionality is called the resistance of the conductor, and components called resistors
that are made out of Ohmic conductors pervade our lives in numerous ways. The
electronic circuits in your mobile phone, television, and computer have hundreds
of resistors in them, and without the simple resistor those devices would cease to
function. The underlying principle of Ohm’s law underpinning the concept of the
resistor is

V = IR. (1.4)

Given the form of this relationship it is possible to take a single measurement of V

and I and subsequently compute an estimate of R. This gives the resistance of the
conductor for a given data point, but does not allow the experimenter to verify if
the conductor is Ohmic.

The measurement of a single data point depends on the precision with which the
voltage and current were measured. As an example we can consider measurements
made on a 12 000 � resistor using a hand-held digital multi-meter (DMM) to
determine the voltage across the resistor, and a precision DMM to determine
the current passing through the resistor. In this case the limiting factor is the
voltage measurement, which was made with a precision of 0.09% and an additional
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6 Introduction
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Figure 1.1 The distribution of current (I ) passing through a 12 000 � resistor
versus the voltage (V ) across it.

uncertainty of two in the last digit read off the DMM.1 The current was measured
with a more precise device, so it is sufficient to assume that the uncertainty on
a single measurement of R discussed here is dominated by the contribution from
the voltage measurement. The resistance measured, with a current of 0.8349 mA
passing through it and a voltage of 10.0 V across it, is 11 977 ± 35 �.

If one assumes that the conductor was known to be Ohmic, which is reasonable
for a resistor, then one could simply average the values of resistance obtained for a
number of different measurements. As with the example of measuring g above, the
mean and standard deviation of the data could be used to determine an estimate of
the resistance and uncertainty of the component under study (see Chapter 4). The
mean resistance computed for a 12 000 � resistor as obtained from the ten data
points shown in Figure 1.1 is 11 996 �, with a standard deviation of 30 �. This is in
good agreement with the estimate of the central value from a single measurement.
However, in general the precision from ten measurements should be

√
10 times

better (smaller) than that of a single measurement. As this is not the case with these
data one might worry that there could be systematic effect (such as linearity of
a measuring device, or temperature of the laboratory) that is not being taken into

1 DMMs need to be regularly calibrated in order to ensure that measurements made are accurate, and that the
precisions of measurements as quoted in their instruction manuals are valid. There may also be systematic
effects that one has to consider, such as temperature dependences on a reported reading. The accuracy and
limitations of a measuring device used needs to be understood in order to ensure that the experimenter can
correctly interpret the data recorded.
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1.3 Measuring the half-life of an isotope 7

account. More generally if it is not known if the component is an Ohmic conductor
one could plot I against V and determine if Eq. (1.4) was valid or not. Figure 1.1
shows data recorded for a 12 000 � resistor over a voltage range of 1−10 V. The
linear relationship between I and V is evident by eye.

The value of R measured for this resistor could be determined more precisely
by fitting the data as described in Chapter 9. A χ2 fit to V/I vs V assuming Ohm’s
law yields R = 11 996 ± 10 �, in good agreement with previous determinations.
The χ2 for this fit is 8.87 for nine degrees of freedom, which corresponds to a prob-
ability of P (χ2, ν) = P (8.87, 9) = 0.45 which is quite reasonable (see Chapter 5).
If one looks at the data in Figure 1.1, one might wonder if the value of R might be
changing slightly with voltage. This can be investigated by taking data over a wide
range of V , or using the existing data and changing the model used in the fit. The
next simplest model to Ohm’s law would be to introduce a linear variation in the
resistance as a function of voltage. A χ2 fit to V/I vs V assuming a relationship
of the form of y = mx + R to allow for a possible change in resistance as a func-
tion of voltage yields R = 12 037 ± 20 � and m = −7.5 ± 3.3 with χ2 = 3.75
for eight degrees of freedom. The slope m obtained is consistent with zero within
uncertainties, and the value of R obtained is consistent with the previous determi-
nation, but has a larger uncertainty. The probability of this fit is quite reasonable,
P (χ2, ν) = P (3.75, 8) = 0.878. While the result of the second fit is more prob-
able than the first, there is insufficient motivation to support the hypothesis that
the behaviour observed deviates from Ohm’s law, as the slope coefficient obtained
from the second fit is consistent with zero. Examining the data using techniques
such as this allows one to go beyond a qualitative inspection of graphs and to
quantify the underlying physical observables. Chapter 9 discusses several different
fitting techniques that could have been applied to this problem.

Looking closely at the data it appears that the value of R computed for the
first data point is slightly higher than the rest, and as a result will be the main
contributor to the value of the χ2 obtained when testing Ohm’s law. While this
data point is reasonable one might be concerned about the integrity of the data
in general. In such a situation there are several options that one might naturally
consider: (i) taking more data points at lower values of V , (ii) repeating the full set
of measurements, and (iii) studying the specifications of the measuring devices to
ensure that the uncertainties have been correctly interpreted when making each of
the measurements.

1.3 Measuring the half-life of an isotope

A common undergraduate experiment involves the determination of the decay
constant (λ) or half-life (t1/2 = ln 2/λ) of a radioactive isotope. The number of
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Figure 1.2 The distribution of events (count rate) expected in an experiment
studying the radioactive decay of 131I.

radioactive nuclei at a given time t is

N(t) = N0e
−λt , (1.5)

where N0 is the initial number of nuclei in the sample (at time t = 0). The rate of
decay of a radioactive isotope is given by

dN

dt
= −λN(t). (1.6)

The decay constant λ introduced above can be understood as the rate of change of
the number of radioactive nuclei of a given type with respect to time elapsed. This
quantity is related to the aptly called half-life of an isotope. The half-life is the
time taken for the number of radioactive nuclei to reduce by one half with respect
to a given time. It follows from Eq. (1.5) that after one half-life

N(t)

N0
= e−λt1/2 = 1

2
, (1.7)

hence t1/2 = ln 2/λ.
It is possible to measure the decay constant of a radioactive isotope by studying

the number of counts observed in a radiation detector, for example a Geiger–Müller
tube, as a function of time. Each count corresponds to the detection of the decay
product of a radioactive nuclei disintegrating. From the expected time dependence
one can extract the decay constant and in turn convert this into a measure of the
half-life of the isotope. Figure 1.2 shows the result of a simulation of the count
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1.3 Measuring the half-life of an isotope 9

rate expected as a function of time for an 131I source, which produces β radiation
with a half-life of 8.02 days. This isotope is used in a number of medical physics
applications. The simulation neglects background, which can be measured in the
absence of the source and subtracted from data, or alternatively taken into account
at the same time as extracting λ from the data. Background from the naturally
occurring radioactivity of the experimental environment is expected to be uniform
in time. There are a number of possible sources of background including cosmic
rays and natural radioactivity from rocks or other materials in the environment, e.g.
areas rich in granite often have elevated levels of radon gas which is radioactive,
and thus a marginally higher than normal level of background radiation. While this
background varies from location to location, for a given laboratory the background
rate should be constant.

The 131I signal shown in the figure follows the radioactive decay law of Eq. (1.5),
with an exponentially decreasing count rate. The data are displayed as a binned
histogram (see Chapter 4), with Poisson error bars2 on the content of each of the
bins (see Chapters 6 and 7). As the number of entries in a given bin (so the count
rate) decrease, so the relative size of the error on the count rate increases. The
data are fitted using an un-binned extended maximum likelihood fit as described
in Chapter 9 using a model corresponding to a signal exponentially decaying with
time (i.e. the 131I). So while the data are visually displayed in bins of counts in any
given day, the individual time of a count is used in the fit to data, and the binning is
essentially for display purposes only. The results of this fit to data will be the values
and uncertainties of the signal yield (so how many signal counts were recorded), and
the decay constant measured for the 131I sample. Given the relationship between
the decay constant and half-life, it is possible to convert the value of λ obtained
in the fit to data into a measurement of the half-life using the error propagation
formalism introduced in Chapter 6. In order to avoid having to translate the fitted
parameter into the half-life, one can re-parameterise the likelihood function to fit
for t1/2 directly.

This is just one way to analyse the data, instead of performing an un-binned
extended maximum likelihood fit to the data, we could have binned the data before
fitting. On doing this some information is lost, but if there are sufficient data to
analyse, any loss in precision would be negligible. Another alternative would be to
perform a χ2 fit to data (as was used for the example of studying Ohmic conductors
discussed above). Yet another way to analyse the data would be to perform a
linear least squares regression analysis. In order to do this it is convenient to
convert the data into a form where one has a linear relationship between the
quantities plotted on the ordinate and abscissa. Given that the measured count rate is

2 The process of detecting the products of a radioactive decay is described by a Poisson probability distribution
(see Chapter 5 for more details), and so the uncertainty ascribed to the content of a given bin is Poisson.
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10 Introduction

given by

N(t) = N0e
−λt + NbgU (t), (1.8)

where U (t) is a uniform probability density function (see Appendix B) describing
some number of background events Nbg, it follows that the background corrected
rate N ′(t) = N(t) − Nbg satisfies

ln N ′(t) = ln N0 − λt. (1.9)

Hence, one can determine the decay constant from the slope of the logarithm
ln N ′(t) vs time, and one can compute the value and uncertainty on λ without the
need for sophisticated minimisation techniques that underpin χ2 or maximum-
likelihood fitting approaches. In addition, the initial total number of radioactive
nuclei can be computed from the constant term, ln N0, should this be of interest.
All of the techniques mentioned here are described in Chapter 9. The reader may
wish to re-examine this example once they have reached the end of Chapter 9 in
order to reflect on the approach taken, and on how some of the alternate techniques
mentioned above may be applied to this problem.

A number of physical processes obey an exponential decay (or growth) law
where the data can be analysed in a similar way to that described here. For example
measurement of the lifetime of the decay of a sub-atomic particle, such as muons
found in cosmic rays, uses the same data analysis technique(s) as the decay constant
or half-life analysis discussed here. Similarly data obtained in order to determine
the attenuation of light in a transparent material, or radioactive particles passing
through different thicknesses of shielding follow an exponential attenuation law
and can be analysed using one of the approaches described here. The basis for this
type of data analysis can also be adapted in order to address more complicated
situations where the physical model involves more parameters (λ, N0 and Nbg

are physical parameters associated with this particular problem), more than one
signal or background component, or indeed more dimensions (the only dimension
considered in this example is time) containing information that can be used to
distinguish between the components. If the number of dimensions one wishes to
analyse becomes large, then it may be appropriate for the analyst to investigate
the use of a multivariate algorithm to distinguish between signal and background
samples of events. Chapter 10 introduces a number of algorithms that can be used
for such problems.

1.4 Summary

Students encountering statistical methods in an undergraduate laboratory course
often express a lack of enthusiasm for the relevance of the topic. In an attempt
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