

Cambridge University Press 978-1-107-02994-1 - Thermodynamic Foundations of the Earth System Axel Kleidon Index More information

Index

activity, dissipative, 8 Carnot, Sadi, 9 adiabatic condition, 30, 80 Chapman reactions, 233 adiabatic lapse rate, 201 chemical disequilibrium aerodynamic conductance, 165, 200 and life, 241, 257 affinity, 35, 228 by interior processes, 237 albedo, 134 by radiation, 232 clouds, 214 estimates, 256 surface, 124 generation, 220 Anthropocene, 291, 321 chemical potential, 33 Archimedes principle, 156 of water vapor, 195 arrow of time, 4, 52 chemical reaction, 225 atmospheric electric circuit, 217 activity, 226 available potential energy, 156, 161 affinity, 35, 228 convective, 161 endothermic, 225, 238 generation, 162 equilibrium constant, 227 exothermic, 225 barometric formula, 30 biosphere, 241, 245 extent of the reaction, 35, 229 biotic activity, 222, 240 hydration, 231 evolution by natural selection, 340 oxidation, 231 biotic productivity, 223, 244, 247, 279 reaction velocity, 227 blackbody, 125 chemical weathering, 221, 235, 236 boiling temperature, 197 Clapeyron equation, 196 Boltzmann, Ludwig, 8 Clausius-Clapeyron equation, 196 boundary layer, 111 climate change, 314 Bowen ratio, 265 clouds Budyko classification, 277 albedo, 214 buoyancy, 154, 236 cloud condensation nuclei, 198, 253 and moist convection, 202 optimum cloud cover, 214 condensation, 195 capillary binding energy and nucleation, 198 and evaporation, 198 cloud condensation nuclei, 198 Carnot cycle, 78 microscopic, 193 Carnot efficiency, 75, 83 conjugate variables, 24 Carnot limit, 9, 73-75, 327 and temporal variations, 261 conservation laws, 22 angular momentum, 174 dissipative heat engine, 73 of a cold heat engine, 267 energy, 144 of a dissipative heat engine, 84 momentum, 175

375

376

Cambridge University Press 978-1-107-02994-1 - Thermodynamic Foundations of the Earth System Axel Kleidon Index More information

> convection energy conversion atmospheric, 167 overview of planetary estimates, 328 energy return on investment, 305, 318 dry, 167, 261 moist, 167, 190 enthalpy, 30, 62 sensitivity to warming, 212 entropy, 3, 19, 36 convective boundary layer, 261, 271, 279 and disorder, 36 convective cooling, 87, 144, 146, 149 and mass conversions, 55 as energy dispersal, 3, 36 convector effect, 285 Coriolis force, 157 definition by Clausius, 26 maximum, 3, 38 Curzon-Ahlborn limit, 96 molar, 37, 42 cycling ratio, 249 radiative, 37, 41, 127 degassing, 238 scaling to macroscopic scale, 20 degrees of freedom, 14, 109 thermal, 26, 37, 43 dehydration, 239 entropy exchange, 4, 54 desalination, 221, 235 entropy of an ideal gas, 29 desert greening, 305 entropy production, 54 dew point temperature, 197, 201 by a chemical reaction, 230 dimensionless numbers, 119 by absorption, 136 disequilibrium, 61 by evaporation, 199 dissipative activity, 8 by frictional dissipation, 172, 203 dissipative heat engine, 73 by heat conduction, 59 dissipative structures, 7, 101, 110 by scattering, 132 dissipative system, 8 maximum, 94 drag coefficient, 165, 200, 208 minimum, 96 dryness index, 277 environment (thermodynamic), 21 dynamics, 61, 63, 99 equilibrium and saturation, 189 ecological economics, 294 chemical, 220 ecosystem, 247 global, 161 eddy transport, 172 hydrostatic, 68 efficiency, 75 local, 161 at maximum power, 88 radiative, 125, 170 Carnot, 75 soil hydraulic, 273 dissipative heat engine, 85 thermodynamic, 40, 52 of the large-scale circulation, 170 evaporation, 195, 199 Einstein, Albert, 3 and temperature, 275 energy, 19 bulk formula, 200 binding energy, 33 contribution by plants, 273 chemical energy, 34 energy limitation, 278 gravitational energy, 30 equilibrium rate, 265 internal energy, 48, 62 evaporative fraction, 278 kinetic energy, 32, 154, 164 evaporative index, 277 osmotic energy, 33, 221 microscopic, 193 potential energy, 30, 154 potential rate, 265 radiative energy, 24, 126 relative sensitivity, 210 surface energy, 33 simple model, 192 thermal energy, 26 water limitation, 278 total energy, 48 evaporative cooling, 275 total potential energy, 31 evolutionary dynamics, 14, 99, 106 turbulent kinetic energy, 165 exergy, 61 uncompensated heat, 28 energy balance feedback, 101 atmospheric, 144 convective feedback to a chemical reaction, 251 kinetic, 164 feedback factor, 105 planetary, 138 gradient-depletion, 101, 105 surface, 138, 264 power-enhancing, 101, 104 surface energy balance and diurnal variations, 266 food webs, 223

Cambridge University Press 978-1-107-02994-1 - Thermodynamic Foundations of the Earth System Axel Kleidon Index More information

force	encephalization, 297
Coriolis, 175	externalized, 292, 299
drag, 165	food acquisition, 300
pressure gradient, 161	future scenarios, 317
fossil fuel consumption, impacts, 315	impacts, 314
fractal networks, 12, 119	limits to growth, 295
free energy, 19, 61	thermodynamic view, 291
exergy, 61	within the Earth system, 320
Gibbs, 61, 63	human appropriation of net primary productivity, 300
Helmholtz, 61, 63	303, 315
minimum, 66	human evolution, 297
frictional dissipation, 110, 165	hurricanes, 208, 211
frictional heating, 68	hydration, 239
fusion energy, 307	hydrologic cycling, 16, 188
	hydrologic sensitivity, 209
Gaia hypothesis, 2, 7, 219, 325	hydrostatic balance, 31
thermodynamic interpretation, 340	hydrostatic equilibrium, 156
geochemical cycling, 16, 219	hydrothermal vents, 252
geopotential, 30	hydroxyl radical, 233
geostrophic flow, 157, 175	
geothermal heat flux, 239	ice albedo, 215
Gibbs–Duhem relationship, 196	ideal gas law, 28
Gibbs free energy, 61	industrial metabolism, 299
and soil water, 273	irreversibility, 54
and thermodynamic equilibrium, 69	isentropic expansion, 78
in geochemistry, 220	isomorph expansion, to
in phase transitions, 195	jet stream, 157, 176
global warming, 315	paradox, 177, 335
greenhouse effect, 138, 140, 149	paradox, 177, 555
grey atmosphere approximation, 138	Vlaibar's law 205
ground heat flux, 268	Kleiber's law, 295
ground heat mux, 208	1 1 1 1 2 215
h-1/4-1/14- 205 222	land cover change, impacts of, 315
habitability, 325, 332	large-scale circulation, 157, 167
and chemical disequilibrium, 250, 257	latent heat flux, 199, 264, 274
and mass exchange, 257, 332	latent heat of vaporization, 34, 196
thermodynamic signature, 336	law of mass action, 227
habitable zone, 333	Le Châtelier, Henry Louis, 230
heat, 30	Le Châtelier's principle, 230, 231
heat capacity, 26	life, 6, 222, 240, 324
heat engine, 10, 72	and chemical disequilibrium, 241
atmospheric, 10, 83, 123	chemotrophic, 222, 240
convective, 144	heterotrophic, 241
dissipative, 85	intelligence, 295
dry, 261	phototrophic, 222, 240
endoreversible, 97	transport limitation, 241, 333
moist, 202	lightning, 211, 217, 221, 234
heating	limits to growth, 347
by condensation, 190	Lorenz energy cycle, 163
by dissipation, 50	Lotka, Alfred, 11, 247
by friction, 165	Lovelock, James, 7, 325
by interior processes, 178	
by radiation, 121	magnetic field, 182
human activity, 16, 291	Magnus formula, 197
and brain size, 297	mantle convection, 178
and feedbacks, 298	mass exchange, 172, 208, 276
and land use, 303	and heat storage changes, 276
basal metabolic rate, 293	and large-scale circulation, 172
carrying capacity, 295, 300, 304	and water limitation, 277

378

Cambridge University Press 978-1-107-02994-1 - Thermodynamic Foundations of the Earth System Axel Kleidon Index More information

> mass exchange (cont.) photosynthesis, 123, 133, 223, 242 of dry convection, 276 and mass exchange, 244 of moist convection, 208 fertilization effect, 283 maximum efficiency light use efficiency, 281 of converting radiative heating, 145 maximum efficiency, 282 of converting solar radiation, 143 of terrestrial vegetation, 279 of photosynthesis, 243 thermodynamic limit, 243 maximum entropy, 3, 37, 40, 56 transport limitation, 282 water use efficiency, 282 of phase transitions, 195 maximum entropy production (MEP), 12, 74, 94, 349 photovoltaics, 123, 309 and vegetation, 289 planetary boundary concept, 347 maximum power limit, 12, 87, 108 planetary evolution and diurnal variations, 266 thermodynamic baseline scenario, 341 and dry convection, 264 planetary habitability, 325, 332 and heat storage changes, 268 planetary regulation, 340 and kinetic energy conversion, 92 poleward heat transport, 171 potential and large-scale circulation, 169 and seasonal variations, 171 chemical potential, 33, 195 associated transport characteristics, 166 chemical potential of water vapor, 199 mantle convection, 181 matric potential, 273 moist convection, 206 soil water, 273 of an electric circuit, 90 osmotic potential, 33, 221 of other energy forms, 90 potential energy, 30 maximum power principle, 12 available, 156, 161 maximum power transfer theorem, 90 potential temperature, 80 mechanical work, 28 power, 49, 72 metabolic activity, 240 precipitation, 195 and fractal networks, 296 Prigogine, Ilja, 7 metabolic rate, 295, 296 primary energy consumption, 292, 306 minimum entropy production (MinEP), 12, 96 psychrometric constant, 201, 264 Morse equation, 34 radiation Navier-Stokes equation, 154 absorption, 133 net ecosystem exchange, 263, 279 diffuse, 133 net primary productivity, 247, 300 diluted, 131 nitrous oxides, 221 dilution factor, 131 direct, 133, 309 ocean tides, 308 emission, 125 OH radical, 233 photodissociation, 133 optical depth, 139 photoionization, 133 photosynthetically active, 243, 282 optimum grazing hypothesis, 249 order through fluctuations, 13 radiation pressure, 127 organizing principle reflection, 123 maximum entropy production, 12, 94, 349 solar, 41, 129 maximum gross bedform-normal transport, 116 terrestrial, 41, 137 maximum power, 120 radiative engine, 123 minimum energy expenditure, radiative temperature, 125, 138 effective, 185 minimum entropy production, 12, 96 from entropy balance, 185 origin of life, 242, 335 relative humidity, 199 osmotic pressure, 235 renewable energy, 293, 307 ozone, 220, 233 comparison of impacts, 316 direct concentrated solar, 143, 309 phase transitions, 193 Earth system overview, 307 photodissociation, 233 estimates, 312 photolysis, 233 estimation biases, 313 global estimates, 312 photon gas, 124 photons, 41, 125 impacts, 316

Cambridge University Press 978-1-107-02994-1 - Thermodynamic Foundations of the Earth System Axel Kleidon Index More information

ocean thermal energy conversion, 309	and life, 240
photovoltaics, 143	and potential energy, 156
solar updraft towers, 310	and radiation, 130
wind power, 178, 310	and solar radiation, 130
wind power from jet streams, 313	different forms of, 64
residence time, 26, 28	distance to equilibrium, 61
respiration, 247	enhanced depletion by motion, 185
river networks, 117	maintenance of, 53, 60
rotation rate, 178	thermodynamic equilibrium, 3, 40, 56
,	and geochemical cycling, 220
sand dunes, 116	and hydrologic cycling, 195
saturation of water vapor, 189, 194	and phases of water, 189
saturation of water vapor, 109, 194	and radiation, 125
numerical approximation, 197	and water vapor, 194
pressure dependence, 197	evolution towards equilibrium, 52
slope, 196	free energy minimum, 66
1 .	thermodynamic limits, 2
scattering of radiation, 131, 132	Carnot limit, 74
Schrödinger, Erwin, 6	Carnot limit, 74 Carnot limit of a dissipative heat engine,
shear stress, 165	
Snowball Earth, 215, 342	84
socioeconomic metabolism, 299	Curzon–Ahlborn limit, 96
soil water budget, 272	maximum entropy production, 94, 349
solar constant, 130	maximum power limit, 86, 90
solar luminosity, 130	thermodynamics
solar radiation, 41, 121, 130	and sustainability, 319
diurnal variations, 261	finite time, 96
maximum conversion, 143	first law, 3, 47, 48
solid angle, 127	illustration of the laws, 4
specific humidity, 200	laws of, 3, 46
state variables, 22	second law, 3, 47, 51, 66
steady state, 5	thermodynamic flows, 65
stomata, 281	thermodynamic forces, 65
structures, 112	thermodynamic potential, 62
and organization, 110	third law, 48
dissipative structures, 7	zeroth law, 46
networks, 117	thermohaline circulation, 236
sand dunes, 116	thunderstorms, 211
vegetation patterns, 116	tidal forcing, 171, 308
wave-like, 114	tipping points, 346
superorganism, Earth as a, 7	turbulence, 165
supersaturation, 194, 198	,
sustainability, 319	van't Hoff equation, 235
system	vascular networks, 118
boundary, 21	vegetation–atmosphere interactions,
	284
dissipative, 8	
thermodynamic, 21	viscous friction, 165
types of, 23	
	waste-heat flux, 72
temperature	waves, 114, 171
radiative, 125, 138, 185	Wien's law, 41
surface, 138, 265, 268	wildfires, 252
terrestrial radiation, 41, 122, 137	wind power
thermalization, 44	effects on wind speed, 312
thermodynamic cycle, 78	maximum conversion, 92, 310
thermodynamic disequilibrium, 4, 56	of jet streams, 313
and geochemical cycling, 219	wind speed
and human activity, 314	from energetics, 208
and hydrologic cycling, 216	from geostrophic balance, 176