Index

acceleration and braking, 291
accelerometers, 291
accident period, 61
actual versus forecast (AvF), 68
by calendar period, 72
heat map, 72
agglomerative nesting (AGNES), 165–166, 173
AIB. See Automobile Insurers Bureau of Massachusetts (AIB)
allocated loss adjustment expense (ALAE), 233
ankle contusions, 239
area under the ROC curve (AUC), 192, 298, 299, 303, 304, 306
auto insurance, usage-based (UBI), 290–308
classification trees, 301–305
applied to DDVs from iterative stepwise approach, 304–305
applied to larger sets of DDVs, 302–303
Poisson regression applied to DDVs by, 303–304
data collectible by telematics, 291–292
data preparation, 292–294
future research, 306–307
machine learning for, 301
models
implementation with traditional rating plan, 305–306
objectives, 292–294
Poisson model, 294–301
predictive modeling, 290–308
overview, 290–291
Poisson model for, 294–301
data and model form, 294–295
holdout driving period, 297–301
loss ratio charts, 299–301
ROC curves, 298–299
validation, 297
variable selection, 295–296
predictive modeling for, 290–308

Automobile Insurers Bureau of Massachusetts (AIB), 182–184, 201–202
bagging (bootstrap aggregation), 194
Bailey-Simon approach, 100
balanced iterative reducing and clustering using hierarchies (BIRTH), 165–166
Bayesian MCMC model, 208–209
bike age, motor collision insurance, 44
billing data, 269–271
BIRTH (balanced iterative reducing and clustering using hierarchies), 165–166
boosting (data mining), 193
bootstrap aggregation, 194
bumps, 291
Burr-gamma distribution, 224
calibration, 66
capital management, 216–223
CAR. See Commonwealth Automobile Reinsurers (CAR)
CART. See classification and regression trees (CART)
CAS Loss Reserve Database, 210
CCL. See correlated chain ladder (CCL)
chain ladder defined, 61
disadvantages of, 73
claim adjuster notes, 267–269
claim escalation, 261–289
factor selection, 271–274
loss development models, 262–271
modeling method, 274–276
data format, 274, 275
logistic regression, 275
practical considerations, 275–276
penalized regression, 280–289
elastic net, 285–288
extension to GLMs, 288
claim escalation (cont.)
fitting the elastic net in R, 288–289
lasso, 284–285
ridge regression, 281–284
research opportunities in, 277–280
elastic net, 279–280
individual claims to ultimate, 278
text mining, 278–279
stages of modeling, 262
medical and billing data, 269–271
research opportunities, 279
text mining claim adjuster notes, 267–269

claims
analytics, 261
count, 5
frequency, 74–75, 103t, 304r, 306r
frequency modeling, 40
questionable, 185, 187
severity, 74–75
severity modeling, 40–41
advantages of, 43
conventional triangular, 76
triangle, 61
classification and regression trees (CART), 193
applied to DDVs from iterative stepwise approach,
304–305
applied to larger sets of DDVs, 302–303
machine learning and, 301
Poisson regression applied to DDVs by, 303–304
Clayton copula, 118
CLIQUE method, 168
clustering, 159–170
datasets, 161–163
dendrogram, 176f
density-based methods, 167
density-based clustering (DENCLUE), 167
density-based clustering of application with noise
(DBSCAN), 167
ordering points to identify the clustering structure
(OPTICS), 167
exposure-adjusted hybrid (EAH), 159, 168–171,
173–177
grid-based methods, 167–168
hierarchical methods, 165–166
agglomerative nesting (AGNES), 165–166, 173
balanced iterative reducing and clustering using
hierarchies (BIRTH), 165–166
CHAMELEON, 166
clustering using representatives (CURE), 166
divisia analysis (DIANA), 165–166
kernel-based, 168
methods, 163–171
overview, 159
partitioning methods, 163–165

Index
expectation maximization, 165
k-means method, 164, 171–173, 174f
k-medoids method, 164
purpose in insurance, 160–161
spectral, 168
clustering using representatives (CURE), 166
co-insurance, 139
Commonwealth Automobile Reinsurers (CAR), 102
compound symmetry-correlation metric form, 143
conditional distribution, 120
contusion injuries, 239
copulas, 116, 118
corporate governance, 291
correlated chain ladder (CCL), 208, 212–213
correlation analysis, 244–246
Cost and Claim Counts model, 107
Cost Only model, 107
cost-sharing agreement, 137–139. See also group health
insurance
co-insurance, 139
limit on amount, 137–138
limit on number, 138
types of, 137–139
coverage per policy, 131
CPT (Current Procedural Terminology) codes, 270–271
cross-classified form, 62
cross-validation for frequency, 22–23
CURE (clustering using representatives), 166
data mining, 192
data visualization
Kohonen neural networks, 204–205
multidimensional scaling, 202–204
Random Forest, 202–204
DBSCAN (density-based clustering of application with
noise), 167
DDVs. See driving data variables (DDVs)
decision trees, 192–194
advantages of, 193
applied to DDVs from iterative stepwise approach,
304–305
applied to larger sets of DDVs, 302–303
machine learning and, 301
Poisson regression applied to DDVs by, 303–304
degree of service, 135
dENCLUE (density-based clustering). See also
generalized linear models (GLM)
density-based methods, 167
density-based clustering (DENCLUE), 167
density-based clustering of application with noise
(DBSCAN), 167
ordering points to identify the clustering structure
(OPTICS), 167
dependence ratio, 115
Index

311
development period, 61
development year, 61
deviance residual, 65
DFA. See dynamic financial analysis (DFA)
DGLM. See double generalized linear model (DGLM)
DIANA (divisia analysis), 165–166
dissimilarity, 195
deviation analysis, 234–239
divisia analysis (DIANA), 165–166
double generalized linear model (DGLM), 230–231. See also generalized linear models (GLM)
actuarial applications, 255–257
defined, 42
parameter estimation, 249r
projected large claim counts versus actual observations, 252r
projected means of selected segmentations by, 251r
residual statistics by injury codes, 253r
Tweedie, 42–43
workers’ compensation, 249–254
driver characteristic variables, 4
driving data variables (DDVs), 293, 294, 297, 300, 305–306
Poison regression applied by tree, 303–304
tree applied to large set of, 302–303
dynamic financial analysis (DFA), 225, 229
EAH clustering. See exposure-adjusted hybrid (EAH) clustering
EDF (exponential dispersion family), 64–65
Egyptian Financial Supervisory Authority (EFSA), 130
Egyptian insurance market, 129–130
elastic net, 279–280, 285–288
fitting in R, 288–289
ensemble model, 193
enterprise risk management (ERM), 225
Euclidean clustering
application to suspicious data claims, 196–199
ranking, 200r
excess of loss (XOL) reinsurance, 230
expectation maximization, 165
explanatory variables, 103r, 245r, 263
exploratory data analysis, 101r
for frequency, 6–11
exponential dispersion family (EDF), 64–65
exposure, 5r
exposure-adjusted hybrid (EAH) clustering, 159, 168–171, 173–177
false positive rate (FPR), 298
fat-tailed distributions, 227–230
feature space, 168
finite mixture model (FMM), 231–232
actuarial applications, 255–257
projected large claim counts versus actual observations, 252r
projected means of selected segmentations by, 251r
workers’ compensation, 249–254
first notice of loss (FNOL), 232–233, 274, 276
FMM. See finite mixture model (FMM)
forecast error, 67
FPR (false positive rate), 298
Frank copula, 116, 118
fraud, 182–184
frequency, 5r
cross-validation for, 22–23
exploratory data analysis, 6–11
modeling, 12–23
multivariate, 115–117
multiway frequency models, 18–22
one-way frequency models, 13–17
frequency modeling, 40
advantages of, 43
motor collision insurance, 47–51
versus pure premium model, 54–55
splitting offset in, 45–46
frequency-severity model, 107–113
gamma distribution, 39–40, 41, 51–52, 111, 234–239
gamma error structure, 101
generalized additive model (GAM), 79
generalized linear models (GLM), 273
actuarial applications, 255–257
double, 42–43, 230–231
elastic net, 279–280
extension to, 288
insurance data, 39–59
motor collision insurance, 39–59
as predictive claim models, 57–59
projected means of selected segmentations by, 251r
property and casualty (P&C) insurance, 64–68
in pure premium modeling, 39–40
ratemaking and, 101
regression analysis, 226
Tweedie distribution, 105–106
workers’ compensation, 246–248, 249–254
Gini index, 35–36, 37r, 50, 53–54, 57–59
GLM. See generalized linear models (GLM)
Global Positioning system (GPS), 293
graph Laplacian matrices, 168
grid-based clustering, 167–168
group health insurance
data, 130–141
Egyptian market, 129–130
key variables, 133–141
benefit package/coverage, 134–135
cost-sharing agreement, 137–139
degree of service, 135–136
Index

312

group health insurance (cont.)
industrial classification, 139–140
type of service, 136–137
model building strategy, 141–142
models
comparing, 142–143
multiple-level models fitted to dataset, 151–157
single-level models fitted to dataset, 148–150
multilevel modeling for, 128–129
policies, 127–128
experience rating, 128
multidimensional nonstandardized benefit packages, 128
multilevel data, 127–128
panel/longitudinal aspects, 128
unbalanced records, 128
ratemaking, 127
Gumbel copula, 118, 120, 121
hard fraud, 182
hierarchical insurance claims model, 118–120
hierarchical methods, 165–166
agglomerative nesting (AGNES), 165–166
balanced iterative reducing and clustering using hierarchies (BIRTH), 165–166
CHAMELEON, 166
clustering using representatives (CURE), 166
divisia analysis (DIANA), 165–166
High-level SNA/ISIC aggregation, 140
holdout driving period, 297–301, 304r, 306r
ICD (International Classification of Diseases) codes, 269–270
incurred losses, motor collision insurance, 44
industrial classification, 139–140
inflation, 82–86
injury codes, 232–233
correlation analysis, 244–246
generalized linear models (GLM), 246–248
loss statistics, 240r, 241r
univariate analysis, 239–244
injury severity modeling, 75–76
in-sample, 143, 144
Insurance Fraud Bureau of Massachusetts, 183, 201
insurance products, pricing of, 1–2
International Classification of Diseases (ICD) codes, 269–270
International Standard Industrial Classification of All Economic Activities (ISIC), 140
inverse Gaussian distribution, 41, 52, 111, 234–239
iterative stepwise approach, 304–305
kernel-based clustering, 168
k-fold cross-validation, 6
k-means method, 164, 171–173, 174r
k-medoids method, 164
Kohonen neural networks, 204–205
lagging indicators, 261
large loss distribution, 224–225
lasso, 284–285
leading indicators, 261
limit of insurance (LOI), 225
linear predictor, 65
link function, 65
logistic regression, 49, 275
lognormal distribution, 234–239
Lorenz curve, 35–36, 37f
loss ratio charts, 299–301
loss reserve, 60
CAS Loss Reserve Database, 210
correlated chain ladder (CCL), 212–213
implications for capital management, 216–223
loss development patterns, 211f
predictive distribution of estimates, 213–216
loss reserving
defined, 60
forecasting, 62–63
modeling, 62–63
notation, 61–62
lower back contusions, 239
machine learning, 301
Mack model, 62, 212
manufacturer suggested retail price, motor collision insurance, 44
Markov chain Monte Carlo (MCMC) models, 208–209
Markov chain of transitions, 75
Markov transition matrix, 278
MDSplot function, 202
mean absolute error (MAE), 145
medical and billing data, 269–271
International Classification of Diseases (ICD) codes, 269–270
prescription drugs, 271
merging points, 173
model building strategy, 141–142
motor collision insurance, 39–59
dataset, 44–47
parameter estimates, 46
splitting offset in frequency/severity approach, 45–46
frequency models, 47–51
frequency/severity versus pure premium, 54–55
generalized linear models, 39–59
pure premium models, 52–54
severity models, 51–52
multidimensional scaling, 202–204
multilevel modeling, 141
multinomial logit model, 121
multivariate frequency, 115–117
multivariate ratemaking, 113–120
Hierarchical insurance claims model, 118–120
model comparisons, 122–123
multivariate frequency, 115–117
multivariate severity, 117–118, 119
two-part model, 114–118
multivariate severity, 117–118, 119
multiway frequency models, 18–22
multiway severity models, 29–30

National Association of Insurance Commissioners (NAIC) annual, 208
National Council on Compensation Insurance (NCCI), 233
negative binomial distribution, 40, 48
negative binomial regression, 110
nodes, 301
nonlinearity, 67
nonnormal observations, 68
odds ratio, 115
one-way frequency models, 13–17
one-way severity models, 25–29
operational time, 77–82
warped, 92–97
OPTICS (ordering points to identify the clustering structure), 167
ordinary least squares (OLS) linear model, 111
penalized regression, 280–281
out-of-sample, 143, 144–146
overdispersed Poisson, 62–63
Pareto distribution, 228–229, 234–239
partitioning methods, clustering, 163–165
expectation maximization, 165
k-means method, 164, 171–173, 174
k-medoids method, 164
payments per claim incurred (PPCI), 77
Pearson correlation, 244–245
Pearson residual, 65
penalized regression, 280–289
elastic net, 285–288
extension to GLMs, 288
fitted the elastic net in R, 288–289
lasso, 284–285
ridge regression, 281–284
personal injury protection (PIP), 102, 104, 182–185

Poisson distribution frequency models and, 47–48, 109–110
in loss development models, 265
Tweedie distribution, compared with, 39–40
Poisson error structure, 101, 294
Poisson model, 13, 294–295
Poisson regression applied to DDVs by tree, 303–304
frequency modeling and, 109
pure premium ratemaking and, 101
in usage-based auto insurance, 294–295
policy year method, 131
prediction error, 67
predictive analytics, 261
predictive distribution of estimates, 213–216
predictive modeling in claim escalation, 261–289
factor selection, 271–274
loss development models, 262–271
modeling method, 274–276
data format, 274, 275
logistic regression, 275
practical considerations, 275–276
penalized regression, 280–289
elastic net, 285–288
extension to GLMs, 288
fitting the elastic net in R, 288–289
lasso, 284–285
ridge regression, 281–284
stages of modeling, 262
triage models, 267–271
medical and billing data, 269–271
research opportunities, 279
text mining claim adjuster notes, 267–269
prescription drugs, 271
PRIDIT (Principal Components of RIDITS), 185–186
computing, 187–188
overview, 180–181
processing questionable claims for, 187–188
questionable claims data processing, 187
ranking, 200
score, 189–192, 201–202
scree plot, 188
principal component analysis (PCA), 301
prior weights, 265–266
probability density function, 213
property and casualty (P&C) insurance, 60–99
claim severity modeling, 76
datasets, 73–74
claim frequency and severity, 74–75
legislative change, 86–92
operational time, 77–82
row and diagonal effects, 82–92
superimposed inflation, 82–86
warped operational time, 92–97
property and casualty (P&C) insurance (cont.)
diagnostics, 68–72
 distributional assumptions, 68–69
goodness-of-fit, 71–72
residual, 69–70
generalized linear model, 64–68
 advantages of, 66–68
 calibration, 66
 nonlinearity, 67
 prediction error, 67
generalized linear models
 emerging claims experience, 68
 nonnormality, 67–68
injury severity modeling, 75–76
loss reserving, 60–63
 data and notation, 61–62
 forecasting, 62–63
 modeling, 62–63
 notation, 63–64
Protection Class, 225–226
proximity, 195
“pruning” algorithms, 301
pure premium modeling, 41–43
 advantages of, 43–44
 dependent/outcome variable, 133
 exploratory data analysis, 6–12
 with exposures as weight, 56
 frequency modeling, 12–23
 cross-validation for frequency, 22–23
 versus frequency/severity models, 54–55
 multiway, 18–22
 one-way, 13–17
 generalized linear models in, 39–40
 model dollars of loss with exposures$^{(p-1)}$ as weight, 57
 motor collision insurance, 53–54
 proof of equivalence, 55–57
 pure premium formula, 30–34
 severity modeling, 23–30
 multiway, 29–30
 one-way, 25–29
 specifications, 41
 Tweedie distribution, 41–43
 validation, 34–36
p-values, 297
questionable claims, 185, 187
R code, 187
Random Forest
 application to suspicious data claims, 195–199
 decision tree and, 192–194
 overview, 180–181
 ranking, 200
 software, 195–199

unsupervised learning with, 194–195
visualization via multidimensional scaling, 202–204
ratemaking, 100–125
Bailey-Simon approach, 100
correlation analysis, 123
defined, 100
generalized linear models, 101
group health insurance, 127
multivariate, 113–120
percentiles of claim size by type and, 103
scatterplot of predicted scores, 122–123
univariate, 104–113
frequency-severity model, 107–113
Tweedie model, 105–107
Receiver Operating Characteristics (ROC) curve, 192
regression analysis
 with fat-tailed distributions, 227–230
 on severity, 225–226
 workers’ compensation, 246–257
double generalized linear model (DGLM), 249–254
 with fat-tailed distributions, 227–230
 finite mixture model (FMM), 249–254
generalized linear models (GLM), 246–248
 on severity, 225–226
regularization term, 280
residual diagnostics, 69–70
restricted maximum likelihood (REML), 142
ridge regression, 281–284
RIDIT, 185–186
ROC curves, 298–299
SAS Enterprise Miner, 302
saturated model, 65
scree plot, 188
self-organizing feature maps, 204–205
 service
degree of, 135–136
type of, 136–137, 138
severity, 5
tables
 models, 23–30, 40–41
 multivariate, 117–118
 regression analysis on, 225–226
severity, exploratory data analysis, 11–12
shrinkage, 280
similarity matrix, 168
similarity measure, 160
SIU (special investigation unit), 185
soft fraud, 182
Solvency II, 209–210
special investigation unit (SIU), 185
spectral clustering, 168
sprain injuries, 239
spread plot, 70
STING method, 168
Index

315

superimposed inflation, 82–86
suspicious claims, 195–199
tail forecasting, 267
telematics, 291–292, 306
territory loss cost, motor collision insurance, 44
text kernels, 168
text mining, 267–269, 278–279
third party liability, 102
traditional rating plans, 305–306
trees, 193
applied to DDVs from iterative stepwise approach, 304–305
applied to larger sets of DDVs, 302–303
machine learning and, 301
Poisson regression applied to DDVs by, 303–304
true positive rate (TPR), 298
Tweedie distribution defined, 39–40
estimation, 108
generalized linear model, 105–106
in loss development models, 265
pure premium models and, 41–42, 52–53
univariate ratemaking and, 105–107
Tweedie double GLM, 53
underwriting year method, 131
univariate ratemaking, 104–113
frequency, 109–111, 112r
frequency-severity model, 107–113
severity, 111–113, 113r
Tweedie model, 105–107
unsupervised learning, 181–182
with Random Forest, 194–195
usage-based auto insurance (UBI), 290–308
classification trees, 301–305
applied to DDVs from iterative stepwise approach, 304–305
applied to larger sets of DDVs, 302–303
Poisson regression applied to DDVs by, 303–304
data collectible by telematics, 291–292
complexity, 292
depth, 292
dimensionality, 292
overlap, 292
data preparation, 292–294
future research, 306–307
machine learning for, 301
models
implementation with traditional rating plan, 305–306
objectives, 292–294
Poisson model, 294–301
predictive modeling, 290–308
overview, 290–291
“pay as you drive”, 307
Poisson model for, 294–301
data and model form, 294–295
holdout driving period, 297–301
loss ratio charts, 299–301
ROC curves, 298–299
validation, 297
variable selection, 295–296
predictive modeling for, 290–308
vehicle characteristic variables, 4
visualization, data, 202–204
Kohonen neural networks, 204–205
multidimensional scaling, 202–204
Random Forest, 202–204
warped operational time, 92–97
WaveCluster method, 168
Weibull distribution, 234–239
winter temperature, motor collision insurance, 44
workers’ compensation, 224–225
actuarial applications, 254–257
correlation analysis, 244–246
data, 232–234
double generalized linear model (DGLM), 230–231
finite mixture model (FMM), 231–232
large loss distribution analysis, 224–225
regression analysis, 246–257
double generalized linear model (DGLM), 249–254
with fat-tailed distributions, 227–230
finite mixture model (FMM), 249–254
generalized linear models (GLM), 246–248
on severity, 225–226
traditional distribution analysis, 234–239
univariate analysis, 239–243
World Health Organization (WHO), 129
XOL (excess of loss) insurance, 230
zero-inflated negative binomial model (ZINB), 110
zero-inflated Poisson model (ZIP), 110
z-score, 297