

APPLICATIONS OF GROUP THEORY TO ATOMS, MOLECULES, AND SOLIDS

The majority of all knowledge concerning atoms, molecules, and solids has been derived from applications of group theory. Taking a unique, applications-oriented approach, this book gives readers the tools needed to analyze any atomic, molecular, or crystalline solid system.

Using a clearly defined, eight-step program, this book helps readers to understand the power of group theory, what information can be obtained from it, and how to obtain it. The book takes in modern topics, such as graphene, carbon nanotubes, and isotopic frequencies of molecules, as well as more traditional subjects: the vibrational and electronic states of molecules and solids, crystal-field and ligand-field theory, transition-metal complexes, space groups, time-reversal symmetry, and magnetic groups.

With over a hundred end-of-chapter exercises, this book is invaluable for graduate students and researchers in physics, chemistry, electrical engineering, and materials science.

THOMAS WOLFRAM is a former Chairman and Professor of the Department of Physics and Astronomy, University of Missouri-Columbia. He has founded a science and technology laboratory for a major company and started a company that manufactured diode-pumped, fiber-optic transmitters and amplifiers.

ŞİNASİ ELLİALTIOĞLU is a former Chairman and Professor of Physics at the Middle East Technical University in Ankara, Turkey. He has been a recipient of Humboldt and Fulbright Fellowships. Currently he is a Professor of Physics and Director of Basic Sciences at TED University in Ankara.

APPLICATIONS OF GROUP THEORY TO ATOMS, MOLECULES, AND SOLIDS

THOMAS WOLFRAM

Formerly of the University of Missouri-Columbia

ŞİNASİ ELLİALTIOĞLU

TED University, Ankara Formerly of Middle East Technical University, Ankara

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India
103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107028524

© T. Wolfram and Ş. Ellialtıoğlu 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Wolfram, Thomas, 1936–

Applications of group theory to atoms, molecules, and solids / Thomas Wolfram, Şinasi Ellialtıoğlu.

pages cm

ISBN 978-1-107-02852-4 (hardback)

1. Solids - Mathematical models. 2. Molecular structure. 3. Atomic structure. 4. Group theory.

I. Title. QC176.W65 2013 530.4′1015122–dc23 2013008434

ISBN 978-1-107-02852-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa	ce	page xi
1	Introductory example: Squarene		1
	1.1	In-plane molecular vibrations of squarene	1
	1.2	Reducible and irreducible representations of a group	12
	1.3	Eigenvalues and eigenvectors	27
	1.4	Construction of the force-constant matrix from the	
		eigenvalues	30
	1.5	Optical properties	31
	Refer	rences	34
	Exerc	rises	35
2	Molecular vibrations of isotopically substituted AB_2 molecules		39
	2.1	Step 1: Identify the point group and its symmetry operations	39
	2.2	Step 2: Specify the coordinate system and the basis functions	39
	2.3	Step 3: Determine the effects of the symmetry operations on	
		the basis functions	41
	2.4	Step 4: Construct the matrix representations for each element	
		of the group using the basis functions	41
	2.5	Step 5: Determine the number and types of irreducible	
		representations	42
	2.6	Step 6: Analyze the information contained in the	
		decompositions	42
	2.7	Step 7: Generate the symmetry functions	43
	2.8	Step 8: Diagonalize the matrix eigenvalue equation	50
	2.9	Constructing the force-constant matrix	50
	2.10	Green's function theory of isotopic molecular vibrations	52
	2.11	Results for isotopically substituted forms of H ₂ O	60

vi Contents

	Refe Exer	rences cises	62 62
3	Spherical symmetry and the full rotation group		
	3.1	Hydrogen-like orbitals	66
	3.2	Representations of the full rotation group	68
	3.3	The character of a rotation	72
	3.4	Decomposition of $D^{(l)}$ in a non-spherical environment	75
	3.5	Direct-product groups and representations	76
	3.6	General properties of direct-product groups and representations	79
	3.7	Selection rules for matrix elements	83
	3.8	General representations of the full rotation group	85
	Refe	rences	88
	Exercises		88
4	Crystal-field theory		
	4.1	Splitting of <i>d</i> -orbital degeneracy by a crystal field	90
	4.2		95
	4.3	•	116
	References		119
	Exercises		119
5	Electron spin and angular momentum		123
	5.1	Pauli spin matrices	123
	5.2		126
	5.3	Irreducible representations of half-integer angular	
		momentum	127
	5.4	Multi-electron spin-orbital states	129
	5.5	The <i>L</i> – <i>S</i> -coupling scheme	130
	5.6	Generating angular-momentum eigenstates	132
	5.7	Spin-orbit interaction	138
	5.8	Crystal double groups	150
	5.9	The Zeeman effect (weak-magnetic-field case)	153
	References		155
	Exercises		156
6	Molecular electronic structure: The LCAO model		158
	6.1	<i>N</i> -electron systems	158
	6.2	Empirical LCAO models	162
	6.3	Parameterized LCAO models	163
	6.4	An example: The electronic structure of squarene	168
	6.5	The electronic structure of H ₂ O	182

More Information

		Contents	vii
	Refe	rences	188
	Exer		189
	Liner	2.500	10)
7	Electronic states of diatomic molecules		193
	7.1	Bonding and antibonding states: Symmetry functions	193
	7.2	The "building-up" of molecular orbitals for diatomic	
		molecules	198
	7.3	Heteronuclear diatomic molecules	206
	Exer	cises	209
8	Transition-metal complexes		211
	8.1	An octahedral complex	211
	8.2	A tetrahedral complex	227
	Refe	rences	237
	Exer	cises	237
9	Space groups and crystalline solids		239
	9.1	Definitions	239
	9.2	Space groups	244
	9.3	The reciprocal lattice	246
	9.4	Brillouin zones	247
	9.5	Bloch waves and symmorphic groups	249
	9.6	Point-group symmetry of Bloch waves	252
	9.7	The space group of the k-vector, g_k^s	258
	9.8	Irreducible representations of $g_{\mathbf{k}}^{s}$	259
	9.9	Compatibility of the irreducible representations of g _k	260
	9.10	Energy bands in the plane-wave approximation	265
	References		276
	Exer	cises	276
10	O Application of space-group theory: Energy bands for the perovskite		
	structure		280
	10.1	The structure of the ABO_3 perovskites	280
	10.2	Tight-binding wavefunctions	282
	10.3	The group of the wavevector, g_k	283
	10.4	Irreducible representations for the perovskite energy bands	284
	10.5	LCAO energies for arbitrary k	298
	10.6	Characteristics of the perovskite bands	300
	References		301
	Exercises		302

viii Contents

11	Applications of space-group theory: Lattice vibrations	
	11.1 Eigenvalue equations for lattice vibrations	304 305
	11.2 Acoustic-phonon branches	309
	11.3 Optical branches: Two atoms per unit cell	314
	11.4 Lattice vibrations for the perovskite structure	320
	11.5 Localized vibrations	327
	References	334
	Exercises	334
12	Time reversal and magnetic groups	
	12.1 Time reversal in quantum mechanics	337
	12.2 The effect of \mathbb{T} on an electron wavefunction	340
	12.3 Time reversal with an external field	341
	12.4 Time-reversal degeneracy and energy bands	342
	12.5 Magnetic crystal groups	346
	12.6 Co-representations for groups with time-reversal operator	rs 350
	12.7 Degeneracies due to time-reversal symmetry	357
	References	361
	Exercises	361
13	3 Graphene	
	13.1 Graphene structure and energy bands	363
	13.2 The analogy with the Dirac relativistic theory for massles	SS
	particles	368
	13.3 Graphene lattice vibrations	369
	References	381
	Exercises	381
14	Carbon nanotubes	383
	14.1 A description of carbon nanotubes	384
	14.2 Group theory of nanotubes	386
	14.3 One-dimensional nanotube energy bands	393
	14.4 Metallic and semiconducting nanotubes	401
	14.5 The nanotube density of states	403
	14.6 Curvature and energy gaps	406
	References	407
	Exercises	407
Ap	pendix A Vectors and matrices	410
Ap	pendix B Basics of point-group theory	415

	Contents	ix
Appendix C	Character tables for point groups	430
Appendix D	Tensors, vectors, and equivalent electrons	442
Appendix E	The octahedral group, O and O_h	449
Appendix F	The tetrahedral group, T_d	455
Appendix G	Identifying point groups	462
Index		465

Preface

The majority of all knowledge accumulated in physics and chemistry concerning atoms, molecules, and solids has been derived from applications of group theory to quantum systems.

My (T.W.) first encounter with group theory was as an undergraduate in physics, struggling to understand Wigner's *Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra* (1959). I felt there was something magical about the subject. It was amazing to me that it was possible to analyze a physical system knowing only the symmetry and obtain results that were absolute, independent of any particular model. To me it was a miracle that it was possible to find some exact eigenvectors of a Hamiltonian by simply knowing the geometry of the system or the symmetry of the potential.

Many books devote the initial chapters to deriving abstract theorems before discussing any of the applications of group theory. We have taken a different approach. The first chapter of this book is devoted to finding the molecular vibration eigenvalues, eigenvectors, and force constants of a molecule. The theorems required to accomplish this task are introduced as needed and discussed, but the proofs of the theorems are given in the appendices. (In later chapters the theorems needed for the analysis are derived within the discussions.) By means of this applications-oriented approach we are able to immediately give a general picture of how group theory is applied to physical systems. The emphasis is on the process of applying group theory. The various steps needed to analyze a physical system are clearly delineated. By the end of the first chapter the reader should have an appreciation for the power of group theory, what information can be obtained, and how to obtain it. That is, the "magic" of group theory should already be apparent.

In addition to the essential, traditional topics, there are new topics, including the electronic and vibrational properties of graphene and nanotubes, the vibrations of isotopically substituted molecules, localized vibrations, and discussions of the axially symmetric lattice dynamics model. The energy bands and vibrational

хi

xii Preface

normal modes of crystals with the perovskite structure are also discussed in detail.

The material in this book was developed in part from group-theory courses and from a series of lectures presented in courses on special topics at the University of Missouri-Columbia. It is appropriate for science and engineering graduate students and advanced undergraduate seniors. The ideal reader will have had a course in quantum mechanics and be familiar with eigenvalue problems and matrix algebra. However, no prerequisite knowledge of group theory is necessary.

This book may be employed as a primary text for a first course in group theory or as an auxiliary book for courses in quantum mechanics, solid-state physics, physical chemistry, materials science, or electrical engineering. It is intended as a self-teaching tool and therefore the analyses in the early chapters are given in some detail. Each chapter includes a set of exercises designed to reinforce and extend the material discussed in the chapter.

Thomas Wolfram and Sinasi Ellialtıoğlu