

Cambridge University Press 978-1-107-02848-7 — Renewable Energy Engineering Nicholas Jenkins , Janaka Ekanayake Index More Information

INDEX

1/10th power law, 245 capacitive loads, 384 dispersion equation, 258 capacitors, 381 1/7th power law, 56 diversity of loads, 335 carbon intensity, 17 doubling time, 6 absorptivity (α), 208, 410 cavitation, 98 draft tube. 98 acid rain, 15 cellulose, 281 Drax Power Ltd, 298, 299 air mass, 131 characteristics of flat plate solar Drax power station, 298 solar noon, 133 collectors, 207 droop characteristics of a governor, 348 air/fuel ratio, 293 charge regulator, 159 albedo, 121 climate change, 15 ecliptic plane, 124 altitude of the sun at solar noon, 128 coincidence factor, 335 economic appraisal anaerobic digestion, 306 combined heat and power, 285, 307 of energy efficiency measures, 9 Annual Capacity Factor, 142 combustion, 291 of renewable energy schemes, 324 apparent motion of the sun, 124 3Ts, 291 effect of PV generation on system inerassessment of the renewable energy stoichiometric, 292 tia, 350 resource, 320 Concentrating Solar Power (CSP), 210 effective head, 104 advantages and disadvantages, 211 electrical energy growth of use, 333 batteries, 162 technologies, 211 Bernoulli theorem, 34, 90, 425 conduction, 402 power losses, 338 connection of 3-phase windings, 390 Betz limit, 35 power system, 336 connection of PV systems, 367 biodiesel, 311 frequency control, 347 bioenergy, 277, 278 connection of renewable energy schemes voltage control by reactive combustion, 294 offshore wind farms, 365 power, 344 conversion processes onshore, 365 voltage levels, 336, 340 thermochemical, biochemical, consumption of primary energy, 2 power transmitted, 338 extraction, 282 continiuity of mass flow, 424 electrical engineering land required, 282 convection, 405 alternating current, 376 small combustion plant in Sri Cumulative Sum of the Differences direct current, 375 Lanka, 285 (CUSUM), 196 frequency, 377 sources of, 278 modern power systems, 376 Czochralski process, 171 biofuels, 278 RMS values, 377 biogas, 306 Daily Capacity Factor, 142 sinusoidal waveforms, 377 calorific value, 306 degree days, 193 emissivity (ε), 209, 410 biomass, 277, 278 base temperature, 193 energy conservation, 11 combustion, 283, 296 energy efficiency, 7 monitoring the energy consumption of a furnace, 283 building, 194 difficulties, 8 in large power stations, 298 predicting the energy consumption of a energy storage, 362 stages, 283 building, 198 batteries, 363 conversion into transport fuel, 309 useful internal heat gain, 195 energy use Demand Side Participation, 12, 360 gasification, 302 annual. 4 general formula, 281 depleted reach, 112 limiting, 7 diffuse radiation, 121 properties of fuels, 287 environmental impact properties of solid, 287 Digest of UK Energy Statistics, 17, 183 of bioenergy, 279 black body, 408 diode of burning fossil fuels, 15 spectra, 409 forward voltage drop, 148 of hydro power, 72 blocking diode, 156 V-I characteristic, 147 of renewable energy schemes, 17 BP Statistical Review of World Energy, 2, Direct or beam radiation, 121 of tidal range generation, 229 discount rate, 10 of transport fuel derived from bulb turbines, 239 Discounted Cash Flow (DCF), 9, biomass, 311

324, 325

bypass diode, 156

of wind farms, 60

Cambridge University Press 978-1-107-02848-7 — Renewable Energy Engineering Nicholas Jenkins , Janaka Ekanayake Index

More Information

438

Index

Environmental Impact Assessment, 17, 328	crossflow turbine (Michell–Banki), 92	management of energy demand throug
of hydro schemes, 112	history, 73	price, 11
of tidal range scheme, 240	impulse turbine, 84, 85	Marine Current Turbines, 248
of wind farms, 62	operation, 89	marine energy, 225
Environmental Statement, 328	operation, 77	Maximum Power Point Tracking
contents, 328	reaction turbine, 84	(MPPT), 167
ethanol, 309	resource, 72	measure–correlate–predict, 61, 321
evacuated tube solar collector, 202	Turgo turbine, 91	method of bins, 52
exponential growth, 5	hydro power scheme	moisture content, 287, 288
external costs, 11	high head, 82	Moody chart, 430
extraction of oils, 310	low head, 82	Woody Chart, 430
extraction of ons, 510	medium head, 82	net head, 104
fermentation	hydro scheme	Net Present Value, 11
of sugars into ethanol, 310	intake, 75	New Mills Engineering, 86, 99
fixed speed induction generator, 344		
flat plate solar collector, 201	operation, 75 penstock, 75	Nominal Operating Cell Temperature (NOCT), 156
*	*	(NOC1), 130
performance, 205	hydro turbines	O P D-li 271
flow duration curve, 79	bulb, 98	Ocean Power Delivery, 271
fluid flow, 422	inclined shaft, 98	Openhydro, 249
in a pipe, 430	reduced flow, 101	operating the power system, 351
turbulent and laminar, 422	transient conditions, 107	generator scheduling, 351,354
fluidised bed combustor, 284	variable speed, 101	with CO ₂ cost, 356
fossil fuels	hydrograph, 79	reserve generation
energy density, 334	hydrological cycle, 79	requirements, 358
energy storage, 335		stability, 359
Francis turbine	incremental conductance, 167	
analysis, 95	induction generator, 40, 388	parabolic troughs, 212
operation, 97	inductive loads, 383	particulate emissions, 15
fuel cells, 364	inductors, 379	payback period, 9
Fuel/Air Equivalence Ratio, 293	industrial load, 339	peak sun hours, 142
	inertia constant (H), 349	Pelton turbine, 86
gasifier, 302	infant mortality and energy use, 5	Penstock diameter
bubbling fluidised bed, circulating	insolation or irradiation (J/m ² or	determination, 106
fluidised bed, 304	kWh/m^2), 122	Penstock losses, 104
generator, 386	Internal Rate of Return (IRR), 326	performance line, 196
geocentric view, 126	International Energy Agency, 4, 5	performance of glass, 199
Gilkes, 78, 84, 86, 92, 94	irradiance (W/m ²), 122	Perturb and Observe (P&O), 167
greenhouse		phasor diagram, 339
effect, 16	joule (J), 3	phasor representation, 381
gases, 16		photosynthesis, 280
grid access, 318, 322	kilowatt-hour (kWh), 3	photovoltaic cell
		open-circuit voltage, 149
heat loss of a small building, 192	landfill gas, 308	short-circuit current, 148
heat transfer, 401	landlord-tenant problem, 9	technologies, 170
at low temperature, 401	Lanka Transformers Ltd, 305	photovoltaic energy conversion, 139
from a steam pipe, 416	lead-acid battery, 162	advantages and disadvantages, 139
heat transfer due to air changes, 191	life expectancy and energy use, 5	history, 139
heat transfer in a flat plate solar water	light output of lamps, 8	photovoltaic inverter (grid
heater, 415	lignocellulose, 281	connected), 168
heat use in the UK, 182	linear and angular momentum, 429	photovoltaic module, 155
heating value	linear Fresnel solar collector, 215	photovoltaic systems, 138
HHV, LHV, 287, 289	linear momentum or actuator disk	estimation of performance, 142
hemicellulose, 281	theory, 33, 250	generations of, 143
high voltage switchyard, 338	load flow program, 343	grid-connected, 166
Hill chart, 102	load rejection, 108	performance assessment
hour angle, 129	low carbon electricity generation, 18	Performance Ratio, 158
hydro power, 72	low temperature thermal systems, 189	Specific Yield, 157
60 MW plant in Sri Lanka, 336	thermal conductance, 190	stand-alone, off-grid, 158
advantages and disadvantages 75	thermal resistance 190	example 164

thermal resistance, 190

low voltage disconnect, 159

advantages and disadvantages, 75

capacity factor, 72, 82

example, 164

pitch and stall regulation, 46

Cambridge University Press 978-1-107-02848-7 — Renewable Energy Engineering Nicholas Jenkins , Janaka Ekanayake Index

More Information

Index

439

Planck's constant, 133	solar cell	tidal range generation, 225, 235
Planck's distribution, 408	amorphous silicon, 172	Annapolis Royal, 228
Power Coefficient (C_p) , 28	band model, 146	Cardiff–Weston tidal barrage, 228
power density of renewable energy	bond model, 144	disadvantages, 229
sources, 335 power electronics, 395	current source, 154 equivalent circuit, 149	history, 227 La Rance, 227
power in a 3-phase system, 394	Fill Factor, 150	Sihwa Lake, 228
power in deep water waves, 262	mono- or poly-crystalline silicon, 138	turbine generators, 238
power purchase agreement	operation, 148	tidal range power plants, 226
peed-in-tariff, 322	p-n junction, 146	tidal stream
PQ quadrant diagram, 339	silicon, 143	currents, 242
projects, 317	varying irradiance, 151	harmonic constituents, 242
agreements and contracts, 323	varying temperature, 151	generation, 226, 242
development, 317, 322	<i>V–I</i> characteristic, 176	polar plot, 243
feasibility assessment, 319	solar constant, 131	speed, 243
phases of development, 318	solar gain from glazing, 188	turbulence, 243
planning permission, 319	solar heating of buildings, 185	variation of speed with depth, 245
proximate (thermo-chemical)	direct, 186	tidal stream project development, 246
analysis, 295	indirect, 186	tidal stream turbine, 246
Pure Plant Oil (PPO), 310	Trombe wall, 187	comparison with wind turbine, 250
pyrolysis, 302	solar irradiance	ducts or shrouds, 247
	example, 122	performance, 252
radiation, 408	solar irradiance entering the atmo-	rotating kinetic energy, 252
reaction turbine, 93	sphere, 121	tides
Francis, 93 Kaplan, 95	solar panel	declinational, 230
Propeller, 93	orientation, 130	effect of sun, 231 Form Factor, 234
real and reactive power, 338	tilt angle, 130 minimum, 130	harmonic constituents, 232
considered independently, 340	solar power tower, 215, 216	example, 233
summation at a node, 339	solar resource, 121	semi-diurnal, 230
Renewable Energy Systems, 27, 39, 140,	solar spectrum, 131	spring and neap, 232
141, 319, 320	solar thermal energy, 182	types of, 235
requirements for connection of PV	advantages and disadvantages, 184	time value of money, 324
systems, 166	high temperature systems, 210	tip speed ratio (λ), 37
reserves of fossil fuels, 13	low temperature systems, 184	tonne of oil equivalent, 3
Reserves/Production ratio, 13	solar water heating, 201	Torque Coefficient (C_Q), 37
resistors, 378	Spear valve, 91	transformer, 389
Rhico, 204	Special Purpose Vehicle (SPV), 323	transformer tap changing, 341
Richard Jones, 18	specific speed, 99	transmission line, 392
rim generator, 240	use of, 100 spectrum of sunlight, 132	turn-key
runoff, 79 RWE Innogy UK, 27, 29	Standard Test Conditions (STC), 132, 141	procurement, 323
KWE milogy OK, 27,29	steam (Rankine) cycle, 284	ultimate (elemental composition)
sea state	Stefan–Boltzmann constant, 408	analysis, 295
scatter diagram, 266	Straight Vegetable Oil (SVO), 310	units of energy, 3
selective absorber surface, 209	sun–earth geometry, 124	useful energy from wet biomass, 290
self-regulating module, 161	synchronous generator, 388	<i>U</i> -value, 191
small hydro schemes, 109	syngas, 302	
Archimedes screw, 113		Van der Hoven spectrum, 51
generators, 112	temperature of a flat metal plate in sun-	vertical axis wind turbines, 29
stand-alone	light, 411	viscosity, 423
governors, 113	thermal circuits, 191	voltage drop on a circuit, 342
smart meters, 12	Thrust Coefficient (C_T) , 36	P and Q flows, 342
solar	Tidal Energy Ltd, 243, 244, 249	voltage rise at the connection of a genera
altitude angle, 126 azimuth angle, 126	tidal lagoon, 241 tidal range	tor, 345
declination angle,	ebb generation, 236	water hammer, 108
day number, 126	energy resource, 229	water hammer, 700 waterwheels, 73
equinox, 124	tidal range barrage	wave–particle duality of light, 133
solstice, 124	main components, 238	wave energy resource (UK), 255

Cambridge University Press 978-1-107-02848-7 — Renewable Energy Engineering Nicholas Jenkins , Janaka Ekanayake Index

More Information

440

Index

wave power generation, 226, 254 devices, 267 difficulties, 254 wavelength of light to operate a silicon solar cell, 134 waves, 256 deep, intermediate depth, shallow, 258 description of, 263 formation, 254 speed of propagation, 257 Weibull and Raleigh statistics, 53 Weibull parameters, 56 wind cumulative distribution function, F(U), 52 probability density function, f(U), 52 turbulence, 57

wind energy advantages and disadvantages, 26 wind farm development, 58 wind speed extreme, 58 variation with height, 54 wind structure and statistics, 49 wind turbine C_P/λ curve, 38 axial flow induction factor (a), 34 control variable speed, 46, 47 Doubly Fed Induction Generator, 49 energy output, 31 fixed speed, 38 generator, 40 forces on aerofoil section, 42 Full Power Converter, 47

lift and drag forces, 44 linear momentum or actuator disk theory, 33 limitations, 37 noise, 62 operation, 28, 40 power control, 41 pitch control, 44 stall control, 44 Power Curve, 30 wind turbine rotor, 43 wind turbines history, 26 offshore, 26 World Bank, 3,5 world population, 2 zenith angle, 133