
Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction

1.1 Temporal Logics and Computer Science: A Brief Overview 1

1.1.1 Historical Origins of Temporal Reasoning and Logics 1

1.1.2 The Role of Temporal Logics in Computer Science 3

1.1.3 The Inluence of Computer Science on the Development of

Temporal Logics 5

1.2 Structure and Summary of the Book Content 6

1.3 Using the Book for Teaching or Self-Study 12

Temporal logics provide a generic logical framework for modelling and reasoning about

time and temporal aspects of the world. While stemming from philosophical considera-

tions and discussions, temporal logics have become over the past 50 years very useful and

important in computer science, and particularly for formal speciication, veriication and

synthesis of computerised systems of various nature: sequential, concurrent, reactive, dis-

crete, real time, stochastic, etc. This book provides a comprehensive exposition of the most

popular discrete-time temporal logics, used for reasoning about transition systems and com-

putations in them.

1.1 Temporal Logics and Computer Science: A Brief Overview

We begin with a brief historical overview of temporal reasoning and logics and their role

in computer science.

1.1.1 Historical Origins of Temporal Reasoning and Logics

The study of time and temporal reasoning goes back to the antiquity. For instance, some

of Zeno’s famous paradoxical arguments refer to the nature of time and the question of

ininite divisibility of time intervals. Perhaps the earliest scientiic reference on temporal

reasoning, however, is Aristotle’s ‘Sea Battle Tomorrow’ argument in the Organon II – On

1

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

Interpretation, Chapter 9, claiming that future contingents, i.e. statements about possible

future events which may or may not occur, such as ‘There will be a sea-battle tomorrow’,

should not be ascribed deinite truth values at the present time. A few decades later the

philosopher Diodorus Cronus from the Megarian school illustrated the problem of future

contingents in his famousMaster Argument where he, inter alia, deined ‘possible’ as ‘what

is or will ever be’ and ‘necessary’ as ‘what is and will always be’.

Philosophical discussions on temporality, truth, free will and determinism, and their

relationships continued during the Middle ages. In particular, William of Ockham held

that propositions about the contingent future cannot be known by humans as true or false

because only God knows their truth value now. However, he argued that humans can still

freely choose amongst different possible futures, thus suggesting the idea of a future-

branching model of time with many possible time-lines (histories), truth of propositions

being relativised to a possible actual history. This model of time is now often called Ock-

hamist or actualist. Later, several philosophers and logicians raised and analysed problems

relating temporality with nondeterminism, historical necessity, free will, God’s will and

knowledge, etc., proposing various different solutions. Still, little tangible progress in the

formal study of temporal reasoning occurred until some new ideas emerged in the late 19th

to early 20th century, including the developments of Minkowski’s four-dimensional space

time model and its application to Einstein’s relativity theory, of Reichenbach’s theory of

temporality and tenses in natural language, as well as some informal philosophical stud-

ies of temporal reasoning by C. Peirce, McTaggart, B. Russell, W. Quine, J. Findley, J.

Łukasiewicz and others. However, temporal logic as a formal logical system only emerged

in the early 1950s when the philosopher Arthur Prior set out to analyse and formalise such

arguments, leading him, inter alia, to the invention of (as Prior called it) Tense Logic, of

which he developed and discussed several formal systems. Prior’s seminal work initiated

the modern era of temporal logical reasoning, leading to numerous important applications

not only to philosophy, but also to computer science, artiicial intelligence and linguistics.

Prior introduced the following basic temporal modalities:

P ‘It has at some time in the past been the case that…’

F ‘It will at some time in the future be the case that…’

H ‘It has always been the case that…’

G ‘It will always be the case that…’

Put together in a formal logical language they allow complex temporal patterns to be

expressed, for instance:

There is a solstice ∧ there is a lunar eclipse→GP ‘There is a solstice and a lunar eclipse’

means that if there is a solstice and there is a lunar eclipse now then it will always be the

case that there has been a solstice and a lunar eclipse at the same moment of time.

Subsequently, other temporal modalities were introduced, notably Nexttime and the

binary operators Since and Until in Kamp’s (1968) very inluential doctoral thesis. The

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Temporal Logics and Computer Science: A Brief Overview 3

simplest and most common models of time are linear-ordered time lows and Prior’s tem-

poral operators, as well as Since andUntil, have natural interpretation in them. The resulting

temporal logics for linear time are quite expressive. A classical expressiveness result, due

to Kamp (1968) states that the temporal logic with Since and Until is as expressive as irst-

order logic. The temporal logic with operators for Next-time and Until interpreted on the

time low of natural numbers, known as the linear-time temporal logic LTL, became since

the late 1970s the most popular temporal logic used in computer science.

Coming back to Prior’s philosophical studies of temporal reasoning: in his analysis of

Diodorus’s Master Argument Prior argued that its fallacy lay in Diodorus’s assumption that

whatever is, or is not, or will be, or will never be, has in the past been necessarily so – thus, in

effect assuming that the future is deterministic. Prior supported Aristotle’s view that ‘while

it is now beyond the power of men or gods to affect the past, there are alternative futures

between which choice is possible’. In order to resolve the problems pointed out by Aristotle

and Diodorus, Prior wanted, inter alia, to capture the logic of historical necessity. His philo-

sophical analysis and the quest for formalisation of the arguments for ‘the incompatibility

of foreknowledge (and fore-truth) and indeterminism’ lead him to consider two formalisa-

tions of temporal logic of branching time, relecting the ‘Peircean’ and the ‘Ockhamist’ (or,

‘actualist’) views, underlying respectively the ideas behind the branching-time temporal

logics CTL and CTL∗ presented here. For further reading on the history of temporal rea-

soning and logics, see Øhrstrøm and Hasle (1995). In particular, for details on Prior’s views

and motivating analyses, see Prior (1967, Chapter VII) and Øhrstrøm and Hasle (1995,

Chapters 2.6 and 3.2). A broad but concise overview of temporal logics is Goranko and

Galton (2015).

1.1.2 The Role of Temporal Logics in Computer Science

Temporal aspects and phenomena are pervasive in computer and information systems.

These include: scheduling of the execution of programs by an operating system; concurrent

and reactive systems and, in particular, synchronisation of concurrent processes; real-time

processes and systems; hardware veriication; temporal databases, etc. Many of these are

related to speciication and veriication of properties of transition systems and computations

in them. Formally, transition systems are directed graphs consisting of states and transitions

between them. They are used to model sequential and concurrent processes. There can be

different types of transitions (e.g. affected by different types of actions) which we indi-

cate by assigning different labels to them. Thus, more generally, we talk about labelled

transition systems. A state in a transition system may satisfy various properties: it can be

initial, terminal, deadlock, safe or unsafe, etc. One can describe state properties by formu-

lae of a suitable state-description language; on propositional level these are simply atomic

propositions. The set of such propositions that are true at a given state is encoded in the

label of that state, and a transition system where every state is assigned such label will be

called an interpreted transition system. In terms of the semantics of modal logics, transition

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

systems are simply Kripke frames, and the labelling of states corresponds to a valuation of

the atomic propositions in such frames, so interpreted transition systems are just Kripke

models. A computation in a transition system is, intuitively, the observable trace of a run –

a sequence of states produced by following the transition relations in the system, viz. the

sequence of the labels of these states. It can be regarded as a record of all observable suc-

cessive intermediate results of the computing process.

Early work implicitly suggesting applications of temporal reasoning to modelling and

analysis of deterministic and stochastic transition systems is the theory of processes and

events in Rescher and Urquhart (1971, Chapter XIV). The use of temporal logic for speci-

ication and veriication of important properties of reactive and concurrent systems, such as

safety, liveness and fairness, was irst explicitly proposed in Amir Pnueli’s (1977) seminal

paper (see also Abrahamson 1979; Lamport 1980; Ben-Ari et al. 1981, 1983; Clarke and

Emerson 1981). In particular, Pnueli proposed and developed, together with Zohar Manna,

versions of the temporal linear-time logic LTL, in Manna and Pnueli (1979, 1981) as logi-

cal framework for deductive veriication of such systems. Other inluential early works on

temporal logics of programs and processes include Abrahamson (1979, 1980) and Kröger

(1987).

Since the late 1970s temporal logics have found numerous other applications in com-

puter science. The key for their success and popularity is that temporal logics are syn-

tactically simple and elegant, have natural semantics in interpreted transition systems, are

well expressive for properties of computations and – very importantly – have good com-

putational behaviour. Thus, they provide a very appropriate logical framework for formal

speciication and veriication of programs and properties of transition systems. Depending

on the type of systems and properties to specify and verify, two major families of temporal

logics have emerged: linear-time and branching-time logics. Manna and Pnueli (1992) is

a comprehensive reference on the early use of (linear time) temporal logics for speciica-

tion of concurrent and reactive systems, and Manna and Pnueli (1995) is its continuation

showing how that can be used to guarantee safety of such systems.

Twomajor developments, both starting in the 1980s, contributed strongly to the popular-

ity and success of temporal logics in computer science. The irst one is the advancement of

model checking as amethod for formal veriication by Clarke and Emerson (1981), followed

by Clarke et al. (1983, 1986), and independently by Queille and Sifakis (1982a). Introduc-

tions to model checking can be found in Huth and Ryan (2000) and Clarke and Schlingloff

(2001), and for more comprehensive expositions, see Clarke et al. (2000) and Baier and

Katoen (2008). The second major development is the emergence of automata-based meth-

ods for veriication, initially advocated in a series of papers by Streett (1982), Sistla, Vardi

and Wolper (1987), Vardi and Wolper (1986a,b) and Emerson and Sistla (1984), and fur-

ther developed in Sistla et al. (1987), Emerson and Jutla (1988), Muller et al. (1988), Streett

and Emerson (1989), Thomas (1990), Emerson and Jutla (1991), Vardi (1991), Vardi and

Wolper (1994), Vardi (1996, 1997), Wolper (2000), Kupferman et al. (2000), Löding and

Thomas (2000), etc. See also Vardi andWilke (2007), Vardi (2007) and Grädel et al. (2002)

for broader overviews and further references.

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Temporal Logics and Computer Science: A Brief Overview 5

1.1.3 The Inluence of Computer Science on the Development of Temporal Logics

The applications of temporal logics for speciication and veriication of computer systems

have in turn strongly stimulated the study of their expressiveness and computational com-

plexities and the development of eficient algorithmicmethods for solving their basic logical

decision problems.

The irst proof systems developed for temporal logics were Hilbert-style axiomatic

systems (see e.g. Rescher and Urquhart 1971; Goldblatt 1992; Reynolds 2001), as well

as tableaux-style calculi and some Gentzen-type systems (see e.g. Fitting 1983; Wolper

1985; Goré 1991; Schwendimann 1998b; Goré 1999). In particular, eficient and intuitively

appealing tableau-based methods for satisiability testing of temporal formulae were devel-

oped in the early 1980s, by Wolper (1983, 1985) for the linear-time logic LTL, Ben-Ari,

Manna and Pnueli (1981) for the branching-time logic UB and Emerson and Halpern (1982,

1985) for the branching-time logic CTL. The increasing demand coming from the ield of

formal veriication for eficient algorithmic methods solving veriication problems has led

to the subsequent development of new methods, based on automata (see earlier references)

and games (Stirling 1995, 1996; Stevens and Stirling 1998; Lange and Stirling 2000, 2001,

2002; Grädel 2002; Lange 2002a; see also Grädel et al. 2002 for a comprehensive cover-

age and further references). Other methods, such as temporal resolution, have also been

developed recently (see e.g. Fisher 2011).

Whereas traditional systems of logical deduction and tableaux-style calculi can be qual-

iied as direct methods, since they handle temporal formulae directly, the automata-based

and the game-theoretic approaches work by reducing the decision problems for tempo-

ral logics to decision problems about automata and games, respectively. For instance, the

automata-based approach is based on reducing logical to automata-based decision problems

in order to take advantage of known results from automata theory (D’Souza and Shankar

2012). The most standard target problems on automata used in this approach are the lan-

guage nonemptiness problem (checking whether an automaton admits at least one accepting

computation) and the language inclusion problem (checking whether the language accepted

by an automatonA is included in the language accepted by another automaton B). In a pio-

neering work, Richard Büchi (1962) introduced a class of automata on ininite words and

showed that these automata are equivalent in a precise sense to formulae in the monadic

second-order theory (MSO) of the structure (N,<), which eventually resulted in Büchi’s

proof of the decidability of that theory. Later this idea and the result were extended by Rabin

(1969) in his seminal paper to automata on trees and the decidability of the MSO theory of

the ininite binary tree (equivalently, the MSO theory of two successor functions). These

results provide the theoretical foundation of the automata-based decision methods in tem-

poral logics.

Likewise, in the game-theoretic approach, the question of whether a temporal formula

is satisiable corresponds to the question of whether some designated player has a winning

strategy in an associated satisiability game.More generally, the existence of winning strate-

gies of a given player in model-checking games and satisiability-checking games provide

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

uniform characterisations of the model checking and the satisiability-testing problems for

many temporal logics. These game-theoretic characterisations are of particular interest in

the context of program veriication.

As we demonstrate in this book, the methods for solving decision problems of temporal

logics, based on automata, tableaux and games are closely related, both conceptually and

technically, while each of them has pros and cons compared to the other. Because of the

conceptual elegance and technical power and convenience, the automata-based methods

have generally been favoured by the researchers in the area of veriication and most of

the tools that have been implemented are based on automata. On the other hand, tableau-

based methods for model checking and satisiability checking of temporal logics have so

far been less developed for practical purposes and less tested for industrial applications, but

are arguably more natural and intuitive from logical perspective, easier for execution by

humans and potentially more lexible and practically eficient, if suitably optimised.

1.2 Structure and Summary of the Book Content

With this book we aim to offer a comprehensive, uniform, technically precise and concep-

tually in-depth exposition of the ield, focusing on the intrinsically logical aspects of it and

including both classical and recent results and methods of fundamental importance. The

book has been written with the speciic intention to be suitable both as a comprehensive

graduate textbook and as a professional reference on the current state of the art in the ield.

For that purpose, it presents an essentially self-contained and rigorous treatment of the

content, with precise deinitions, statements and many detailed proofs, as well as numerous

examples and exercises. Many easy or routine proofs are omitted in the main text but are

explicitly left as exercises.

Except for the introductory chapter, we do not make references and credits to speciic

results in the main text, but provide such references in the bibliographic notes at the end of

every chapter, where we also mention related topics not treated in the book and provide a

number of additional references.

The book consists of 15 chapters structured in four parts. Here we will give a concise

summary of their contents and will mention a few highlights in each chapter. More detailed

summaries can be found at the beginning of each chapter.

Part I, ‘Models’, presents the basic theory of the abstract models for the temporal logics

studied further, viz. transition systems and computations in them.

Chapter 2, ‘Preliminaries and Background I’, provides some preliminary material that

will be needed further, including basics of sets, binary relations and orders, ixpoint the-

ory, computational complexity and 2-player games on graphs. We do not intend to teach

this material here but rather to recall the most basic deinitions, terminology and notation,

mainly for readers’ convenience, as a quick reference.

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Structure and Summary of the Book Content 7

Chapter 3, ‘Transition Systems’, introduces the basic concepts and facts related to transi-

tion systems, computations and important types of their properties. In particular, we provide

simple algorithms solving the basic reachability problems in transition systems. Besides, we

discuss transition systems as abstract models of the behaviour of real systems with respect

to transitions between states. A real transition system can be modelled by different abstract

transition systems and at different levels of detail. The chapter addresses the important ques-

tion of when two transition systems should be considered behaviourally equivalent, that is,

modelling essentially equivalent real transition systems. That question leads to the funda-

mental notion of bisimulation, the main versions of which are introduced and studied in the

chapter. In particular, we introduce bisimulation games and relate the existence of winning

strategies for one of the players in such games to the existence of bisimulation between the

transitions systems on which the game is played. This is the irst place in the book where

games are considered and they will be one of its main themes.

Part II, ‘Logics’, is the core part of the book, presenting and studying the most impor-

tant temporal logics used for speciication and veriication of discrete transition systems

and many variations of them. In a relatively uniform manner we introduce the syntax and

semantics of each of these logical systems, discuss and illustrate their use for formal spec-

iication of properties of transition systems and computations, study their expressiveness

and the basic logical decision problems (model checking, satisiability and validity test-

ing) for them, relate them to standard veriication tasks and present algorithms for solving

some of these decision problems. The expositions are written from the primary perspec-

tive of computer science rather than from the perspective of pure modal and temporal log-

ics. Thus, we have emphasised the more relevant topics associated with transition systems,

such as expressiveness, bisimulation invariance, model checking, small model property and

deciding satisiability, while other fundamental logical topics, such as deductive systems

and proof theory (except for short sections on axiomatic systems and derivations in them),

model theory, correspondence theory, algebraic semantics, duality theory, etc. are almost

left untouched here, but references are given in the bibliographic notes to other books where

they are treated in depth.

Following is a brief summary of the chapters in this part.

Chapter 4, ‘Preliminaries and Background II’, provides some common background,

terminology and notation related to logical decision problems and deductive systems. It

assumes some knowledge of propositional logic, upon which all temporal logics studied

here are built.

Chapter 5, ‘BasicModal Logics’, is a concise introduction to the multimodal logic BML,

regarded here as the basic temporal logic for reasoning about interpreted transition systems.

Highlights on that chapter include: invariance of BML formulae under bisimulations and

characterising the existence of bounded bisimulations between interpreted transition sys-

tems with BML formulae; study of the logical decision problems of model checking and

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

satisiability testing for BML, model-checking games and an axiomatic system for BML.

Inter alia, we provide a simple optimal algorithm for testing satisiability in BML that runs

in polynomial space. These are further adapted to the extension BTL of BMLwith past-time

operators. This chapter can also be viewed as a stepping stone towards the more expressive

and interesting branching-time temporal logics CTL, CTL∗ and the modal µ-calculus, pre-

sented further.

Chapter 6, ‘Linear-Time Temporal Logics’, is devoted to temporal logics for linear-time

models, representing single computations (i.e. ininite sequences of states generated by the

transition relations), rather than entire transition systems. Here we present and study in

detail the linear-time temporal logic LTL. We focus again on the logical and computational

properties of this logic, viz. its semantics, expressiveness, model checking and testing of

satisiability and validity. We provide conceptually simple decision procedures for satis-

iability testing and model-checking problems for LTL based on the so-called ultimately

periodic model property and discuss how these can be reined and transformed into optimal

decision procedures. (Alternative decision methods, essentially using the same property but

based on tableaux and automata, are developed further, respectively in Chapters 13 and 14.)

We also present and discuss here some of the most interesting extensions of LTL over linear

models: with past-time operators, automata-based operators, propositional quantiication,

etc. At the end, we provide a complete axiomatic system for LTL and illustrate it with some

derivations.

Chapter 7, ‘Branching-Time Temporal Logics’, introduces and studies a variety of the

most important and expressive branching-time temporal logics extending BML with global

temporal operators capturing different reachability properties and with quantiiers over

paths/computations. These include, inter alia, the temporal logic of reachability TLR, the

more expressive computation tree logic CTL, and the full computation tree logic CTL∗

combining CTLwith LTL, plus several fragments, variations and extensions of it. We estab-

lish the tree-model property for CTL∗, extend the bisimulation invariance result to it and

discuss the expressiveness of the family of branching-time logics. In particular, we show

that formulae of TLR sufice to characterise every inite interpreted transition system up to

bisimulation equivalence. We then study the logical decision problems for CTL and CTL∗.

We present the linear-time labelling algorithm for model checking CTL formulae and show

howmodel checking in CTL∗ can be reduced to repeated model checking of LTL formulae.

Lastly, we briely present complete axiomatic systems for TLR and CTL and illustrate them

with some derivations.

Chapter 8, ‘TheModalMu-Calculus’, presents themost expressive of all temporal logics

studied in this book. The modal µ-calculus Lµ extends BML with the fundamental syntac-

tic construct of a least ixpoint operator and its dual, the greatest ixpoint operator. Using

these, all previously studied temporal operators in the linear and branching-time logics can

be deined simply and elegantly. The chapter provides a detailed and technically involved

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Structure and Summary of the Book Content 9

exposition of the key syntactic and semantic concepts of the modal µ-calculus, including

the technical machinery needed to understand and evaluate its formulae, viz. approximants,

signatures and games. We present the embedding of all previously studied (single-action)

temporal logics, including CTL∗, into theµ-calculus, as well as related topics such asmodal

equation systems, model-checking games and results about structural complexity of formu-

lae. The chapter also offers a comparison with other logical formalisms, such as monadic

second-order logic and linear-time µ-calculus.

Chapter 9, ‘Alternating-Time Temporal Logics’, introduces concurrent game structures

as multiagent generalisation of the transition systems considered so far and the respective

multiagent extensions of the branching-time logics, known as alternating-time temporal

logics, which enable strategic reasoning in open and multiagent transition systems and have

recently been gaining increasing popularity. Formulae in the alternating-time temporal log-

ics can quantify over strategies of agents and over all computations consistent with a given

collective strategy of a coalition of agents, which is a reinement of the path quantiica-

tion in CTL∗, thus enabling the expression of properties of the type ‘the group of agents

C has a collective strategy to achieve a given (LTL-deinable) temporal objective on all

computations consistent with that strategy’. Following the general structure of the previ-

ous chapters, we present the syntax and semantics of the multiagent analogues ATL and

ATL∗ of the branching-time logics CTL and CTL∗, discuss their expressiveness and study

their logical decision problems. In particular, we show that the linear-time labelling algo-

rithm for model checking CTL extends smoothly to ATL. We also generalise the notion of

bisimulation to alternating bisimulation and extend the bisimulation invariance property to

ATL. This chapter is relatively independent from the rest of the book, as we do not study

alternating-time temporal logics further, but it provides suficient material for their further

study.

Part III, ‘Properties’, is dedicated to two fundamental generic questions about temporal

logics: their expressiveness and the computational complexity of their main logical decision

problems. We provide a uniform treatment by proposing a synthetic and uniied approach

to both questions. These topics are also discussed in the rest of the book, but in a less

systematic way. A summary of Part III follows.

Chapter 10, ‘Expressiveness’, provides an in-depth study of the relationships and com-

parisons between the different temporal logics introduced in Part II with respect to the

temporal properties of interpreted transition systems that can, or cannot, be expressed by

formulae in a given particular logic. A way to address such questions is to look at the entire

spectrum of all temporal logics. We can naturally compare the expressiveness of two logics

by asking whether every property that is formalisable in one of them can also be formalised

in the other. This yields a preorder on all temporal logics of the same kind, i.e. with seman-

tics based on the same class of models. A temporal formula can be identiied with the class

of (rooted) interpreted transition systems in which that formula is valid. Thus, a formula of

www.cambridge.org/9781107028364
www.cambridge.org


Cambridge University Press
978-1-107-02836-4 — Temporal Logics in Computer Science
Stéphane Demri , Valentin Goranko , Martin Lange 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Introduction

one logic being expressible by a formula in another logic simply amounts to the two formu-

lae being equivalent in the usual logical sense, i.e. being valid in the same class of models.

The structure of this chapter relects the two main kinds of results that are presented

there. The irst two sections contain positive results of expressive inclusions, by means of

translations from one logic to another, where the two different families of logics – for linear

time and for branching time – are treated in separate sections. For instance, we show that

all the different major extensions of LTL introduced earlier – with automata-based oper-

ators (ETL), with propositional quantiication (QLTL), the linear µ-calculus LTµ and the

industrial standard Property Speciication Language (PSL) – have the same expressiveness.

With regards to branching-time logics, we present, for instance, the embedding of CTL∗

intoLµ. The last part of Chapter 10 presents negative expressiveness results of the kind that

some properties in one logic are not expressible in another. For instance, we show that LTL

is expressively weaker than its extensions mentioned earlier, pinpoint the expressive power

of CTL by separating it from the other branching-time logics and prove that higher degree

of ixpoint alternation in Lµ yields greater expressiveness.

Chapter 11, ‘Computational Complexity’, is devoted to analysing the computational

complexity of the main decision problems for temporal logics, which is of great impor-

tance for the assessment of their practical suitability as tools for formal veriication. The

chapter proposes a unifying picture of the computational complexity of most of the tempo-

ral logics studied here, by characterising the complexities of their satisiability and model-

checking problems. Complexity upper bounds for these problems are obtained by providing

respective decision procedures in the other chapters, by using either concretely described

algorithms presented there or by developing general decision methods such as semantic

tableaux, automata or games. These upper bounds are revisited in that chapter and matching

complexity lower bounds are established there, thus establishing the optimal complexities

of the respective decision problems. In particular, the chapter presents a hierarchy class

of problems, namely tiling problems and their variants involving games, thus providing a

uniform and powerful framework for obtaining lower bound complexity results.

In the last part, Part IV, ‘Methods’, we present three fundamental methods for solving

decision problems for temporal logics, namely: the tableaux-based, the games-based and

the automata-based methods, by devoting a chapter to each of these. These technical frame-

works are closely related and we discuss briely their relationships and compare their pros

and cons in the brief opening Chapter 12, ‘Frameworks for Decision Procedures’, pro-

vided to help the understanding of the bridges between these methods. Here is a brief sum-

mary of the other chapters in this part.

Chapter 13, ‘Tableaux-Based Decision Methods’, provides a systematic and uniform

exposition of (a suitable adaptation) of the method of semantic tableaux, for constructive

satisiability testing and model building for formulae of the logics BML, LTL, TLR and

CTL, by organising a systematic search for a satisfying model of the input set of formulae.

www.cambridge.org/9781107028364
www.cambridge.org

