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1

Review of mathematical notions

used in the analysis of transport

problems in densely-packed

composite materials

In this chapter, for the convenience of the reader, we briefly recall several basic

notions used in the network approximation method which will be used throughout

the book.

The network approximation method intensively addresses three branches of

mathematics: graph theory, the theory of partial differential equations and duality

theory (convex analysis). These branches are very wide and we present here

the minimal necessary information. Detailed explanations can be found in the

literature referred to in the corresponding sections of our review.

1.1 Graphs

In this section, we present basic notions related to networks. The study of networks,

in the form of mathematical graph theory (see, e.g., West (2000)) is the fundamental

cornerstone of discrete mathematics.

1.1.1 General information about graphs (networks)

A network is a set of items, which we call vertices or nodes, with connections

between them, called edges, see Figure 1.1. In the mathematical literature networks

are often called graphs.

Two vertices xi and x j connected by an edge ei j are called adjacent. The con-

nections in a network can be represented by the collection of the edges {ei j} or by

the connectivity matrix Gi j determined as

Gi j =
�

1 if the i-th and j-th vertices are connected,

0 otherwise; i, j = 1, . . . , N.
(1.1.1)

A graph can be described by the set X = {xi; i = 1, . . . , N} of its vertices and

the set E = {ei j; i, j = 1, . . . , N} of its edges or by the set X of vertices and the
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2 Review of mathematical notions

xi

xj

eij

Figure 1.1 A graph.

connectivity matrix G = {Gi j; i, j = 1, . . . , N}. Thus, a graph can be represented

in the form G = (X, E) or G = (X, G).

Both vertices and edges may have a variety of properties associated with them.

In many cases some numbers (called the weights of the edges) are assigned in

correspondence to the edges. A graph with weights is called a weighted graph.

For a weighted graph, the definition (1.1.1) is modified as follows

Gi j =
�

gi j �= 0 if the i-th and j-th vertices are connected,

0 otherwise; i, j = 1, . . . , N.
(1.1.2)

The weights gi j (1.1.2) include complete information about the connectivity

matrix Gi j (1.1.1).

The edges of a graph can also be directed. Graphs composed of directed edges

are called directed graphs. Directed weighted graphs are described by (1.1.2) with

the weights taking positive or negative values. In specific problems the weights gi j

will represent fluxes in networks such as fluxes of fluid, electric current, heat, etc.

A weighted graph can be described by the set (X, G) = {xi, gi j; i, j = 1, . . . , N}.
The size of the network is defined as the total number N of vertices in the

network. In this book, we consider networks of finite (possibly large) size.

We say that a network (graph) is connected if every two vertices of the network

are connected by a path consisting of edges in this network. A loop in the network

is a path, which begins and ends at the same vertex.

1.1.2 Delaunay–Voronoi graphs in modeling of disordered structures

The key condition for structural modeling of disordered particle-filled compos-

ites is the high intensity of physical fields in the gaps between closely spaced

neighboring particles. That is why the notion of neighboring particles plays an

important role. While for periodic arrays of particles the notion of neighbors is

obvious, for disordered (non-periodic) arrays the formal definition of neighbors

requires an effort.

One way of introducing such a notion is by employing the Delaunay–Voronoi

method (Aurenhammer and Klein, 2000; Sahimi, 2003). We now briefly outline

this method. Recall that the Voronoi tessellation (also known as Dirichlet tessella-

tions and sometimes referred to as Wigner–Seiz tessellations (Sahimi, 2003) of a
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1.2 Functional spaces and weak solutions of partial differential equations 3

Figure 1.2 Voronoi polygons (tessellations) and Delaunay graph in dimension two.

collection of geometric objects, called the generating points (e.g., a collection of

centers of particles in our case), is a partition of the space into Voronoi cells, each

of which consists of the points of the space, which are closer to one particular

object than to any others.

It is well known that for a given set of generating points in a plane (space)

the Voronoi cells are polygons (polyhedra). The generating points which share a

common edge (face) in such a partition are called neighbors.

While the faces (edges) of Voronoi cells in two dimensions form a graph,

in dimension three, this tessellation does not define a graph. However, in all

dimensions a graph, called a Delaunay graph, can be introduced based on a given

Voronoi tessellation. The edges of the Delaunay graph are obtained by connecting

neighboring generating points in the Voronoi tessellation. Sometimes the Delaunay

graph is referred to as a Voronoi graph (Sahimi, 2003).

Finally, we remark that the Delaunay graph is connected; that is, every two

vertices of this graph are connected by a path, which consists of edges of this

graph, see Figure 1.2.

1.2 Functional spaces and weak solutions of

partial differential equations

In this section we briefly recall several basic notions from the theory of partial

differential equations. Detailed explanations can be found in (Kato, 1976; Kol-

mogorov and Fomin, 1970; Lions and Magenes, 1972; Mizohata, 1973; Schwartz,

1966; Yosida, 1971).

1.2.1 Distributions and distributional derivatives

A complete normed linear space is called a Banach space. A Banach space H with

the norm defined as ||x||H =
:

(x, x)H , where (x, y)H means the scalar product in

H, is called a Hilbert space.

Denote by D(Q) the set of infinitely differentiable functions with compact

support (a function has compact support if it is equal to zero outside a compact

set K ¢ Q), where Q is a bounded domain in R
N .
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4 Review of mathematical notions

Topology (convergence) on D(Q) is introduced as follows: let �i * D(Q), i =
1, 2, . . . ; �0 * D(Q). Then the convergence �i ³ �0 in D(Q) as i ³ > means

that the supports of all functions belong to the same compact set from Q, and �i

and all its derivatives converge uniformly to �0 and its corresponding derivatives.

Now, let T be a linear continuous functional determined on D(Q), i.e., a map

(a rule) that assigns to every � * D(Q) a number "T,�", which is the value

of the functional T on this function � * D(Q) (in other words ", " means the

dual coupling). This map is linear with respect to � and "T,�i" ³ "T,�0" if

�i ³ �0 in D(Q) as i ³ >. Such functionals are called distributions on Q. The

set of distributions is denoted by D"(Q).

Every locally integrable function f (x) on Q generates a distribution Þf * D"(Q)

defined as follows

" Þf ,�" =
�

Q

f (x)�(x)dx.

If T * D"(Q), its distributional derivative
"T

"xi

* D
"(Q) is determined by the

equality
""T

"xi

,�

"

= 2
"

T,
"�

"xi

"

(1.2.1)

for every � * D(Q).

Formula (1.2.1) of the distributional derivative reminds us of the integration by

parts identity. This is not a coincidence. Historically, the notion of distributional

derivative was inspired by this formula, see (Schwartz, 1966; Sobolev, 1937,

1950).

1.2.2 Sobolev functional spaces

We consider a function f (x) defined on the domain Q such that | f (x)|p (the p-th

power of the function) is Lebesgue integrable (Burkill, 2004; Rudin, 1964). This

set of such functions is denoted by Lp(Q). When supplied with the norm

|| f ||Lp
=

"�

Q

| f (x)|pdx

"1/p

Lp(Q) is Banach functional space.

The functional space L>(Q) is introduced as the set of integrable functions

bounded almost everywhere (Rudin, 1964). The norm in L>(Q) is introduced as

|| f ||L> = ess sup
x*Q

| f (x)|

or

|| f ||L> = lim
n³>

|| f ||Ln
.

These two definitions are equivalent (Rudin, 1964).
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1.2 Functional spaces and weak solutions of partial differential equations 5

For p = 2, L2(Q) becomes a Hilbert space with the scalar product

( f , g)L2
=

�

Q

f (x)g(x)dx.

The Sobolev functional space W m,p(Q) is the set of distributions which (with

all its distributional derivatives of order less than or equal to m) are generated by

functions from Lp(Q). This is a Banach space with the norm

|| f ||W m,p =

»

¿

�

Q

#

0fm1+...+mNfm

�

�

�

�

"m1+...+mN f

"x
m1

1
. . . "x

mN

N

�

�

�

�

p

dx

¿

£

1/p

. (1.2.2)

For p = 2, W m,p(Q) is a Hilbert space, which is denoted by Hm(Q), with scalar

product

( f , g)Hm =
�

Q

#

0fm1+...+mNfm

"m1+...+mN f

"x
m1

1
. . . "x

mN

N

· "m1+...+mN g

"x
m1

1
. . . "x

mN

N

dx.

For m = 1, the scalar product in H1(Q) is

( f , g)H1 =
�

Q

�

f (x)g(x) + ' f (x)'g(x)
"

dx, (1.2.3)

where

' =
"

"

"x1

, . . . ,
"

"xn

"

.

The norm in H1(Q) is

|| f ||H1 =
"

�

Q

�

f 2(x) + |' f (x)|2
"

dx. (1.2.4)

The functional space Hm(Q) may also be introduced as the closure of the func-

tional space C>(Q) in the norm (1.2.2) (p = 2) (Adams, 1975). The closure of

D(Q) (the space of C>(Q) functions with compact support) in the norm (1.2.2)

or (1.2.4) is denoted by W
m,p

0
(Q) or H1

0 (Q), respectively (Adams, 1975). In partic-

ular, this means that the sets C>(Q) and D(Q) are dense subsets of the respective

functional spaces Hm(Q) and Hm
0 (Q).

It is possible to introduce the space Hs(Q) for real (not necessary integer or

even positive) values of s. In the special case where Q = R
N , p = 2, the space

Hs(RN ) can be introduced by using the Fourier transform. Hs(RN ) is the set of all

functions f * L2(R
N ) such that their Fourier transforms

Æf (· ) = (2Ã)2
N
2

�

RN

f (x)e2i(x,· )dx, · = (·1, . . . , ·N ) * R
N
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6 Review of mathematical notions

satisfy the condition |
�

1 + |· |2
"s/2 Æf | * L2(R

N ). The norm of f (x) in Hs(RN ) is

introduced as follows

|| f ||Hs(RN ) = ||
�

1 + |· |2
"s/2 Æf (· )||L2(RN ).

This way of introducing of non-integer order derivatives is based on the

well-known property of the Fourier transform of the derivative (see, e.g., Rudin

(1992))

i·n
Æf (· ) = (2Ã)2

N
2

�

RN

" f

"xn

(x)ei(x,· )dx, n = 1, . . . , N (1.2.5)

and Plancherel’s theorem
�

RN

f 2(x)dx =
�

RN

Æf 2(· )d· . (1.2.6)

From (1.2.5) and (1.2.6) we have

�

RN

|' f |2(x)dx =
�

Rn

|· |2 Æf 2(· )d· . (1.2.7)

For the second, third and higher order derivatives

(i)2·n·m
Æf (· ) = 2·n·m

Æf (· ) = (2Ã)2
N
2

�

RN

"2 f

"xn"xm

(x)e2i(x,· )dx,

and so on, and we conclude that the power m of the factor · in the expression

|· |m Æf (· ) is the order of the derivatives of the original function f (x).

While the classical derivatives are defined for integer orders only, the expression

�

RN

|· |s Æf 2(· )d·

is determined for various s (integer and real, positive and negative).

In particular, from (1.2.6) and (1.2.7), it follows that the norm in H1(RN ) can

be defined in two equivalent ways:

|| f ||H1 =
"

�

RN

�

f 2(x) + |' f (x)|2
"

dx =
"

�

Rn

�

1 + |· |2
" Æf 2(· )d· .

The functional space H2s(Q), s > 0, can be associated with the dual space of

Hs
0(Q) (Lions and Magenes, 1972).

1.2.3 Traces of functions from Hm(Q)

The material properties of particle-filled composite materials are often described

by piecewise constant functions, which is why the classical formulation of the

corresponding boundary-value problems does not apply. Then we will use weak
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1.2 Functional spaces and weak solutions of partial differential equations 7

formulations (see next section) in the space H1(Q). In particular, we will need

to assign boundary values for the functions from H1(Q). These functions are not

in general continuous and moreover they are defined almost everywhere (but not

everywhere) in the domain Q. Thus assigning boundary values on "Q for such

functions is not straightforward and requires special techniques.

Recall that the set C>(Q̄) of infinitely differentiable functions in Q̄ = Q
�

"Q

(we assume "Q is a C>-smooth surface) is dense in H1(Q) (Lions and Magenes,

1972).

Consider an (n 2 1)-dimensional surface � ¢ "Q. For a function f * H1(Q),

the trace (“boundary values” of f on �) f |� : � ³ R can be defined as follows. For

a given f * H1(Q) choose fi * C>(Q), i = 1, 2, . . . , such that fi ³ f in H1(Q)

as i ³ >. For fi * C>(Q) the notion of trace is defined in the classical sense as

the value of fi on �. The sequence fi|� has a limit in H1/2(�) (Lions and Magenes,

1972). This limit is called the trace of the function f * H1(Q) on the surface �.

Due to the density property the trace operator can be extended by continuity from

C>(Q̄) to H1(Q) and thus it becomes a linear bounded (continuous) operator from

H1(Q) to H1/2(�).

Similarly, the trace operator can be defined as a bounded operator from Hm(Q)

to Hm21/2(�). This definition of the trace operator allows for integration by parts

for functions from Sobolev functional spaces which follows immediately from the

density of C>(Q̄) in Hm(Q). The space of Hm(Q) functions with zero trace is

Hm
0 (Q).

This trace theorem will often be used in the following generalized form (Lions

and Magenes, 1972; Ekeland and Temam, 1976). If a domain Q has Lipschitz (C0,1

smooth) boundary, and v is a three- or two-dimensional vector field, such that

v * L2(Q) and div v * L2(Q), (1.2.8)

then the trace v(x) · n is determined on � ¦ "Q as a function from H1/2(�).

A particular (but very important) case of (1.2.8) is the case of divergence-free

functions from L2(Q):

v * L2(Q) and div v = 0. (1.2.9)

A detailed proof of the trace theorem for divergence-free functions (1.2.9) can be

found in Temam (1979).

1.2.4 Weak solutions of partial differential equations with

discontinuous coefficients

An introduction to the theory of weak solutions of partial differential equations

can be found in Lions and Magenes (1972). Here we present a weak formulation

of an elliptic boundary-value problem.
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8 Review of mathematical notions

Consider the following boundary-value problem (hereafter the summation of

repeated indices is assumed if not indicated otherwise)

"

"xi

"

a(x)
"u

"xi

"

= f (x) in Q, (1.2.10)

a(x)
"u

"n
(x) = u1(x) on � ¦ "Q, (1.2.11)

u(x) = u2(x) on "Q \ �, (1.2.12)

with coefficients

a(x) * L>(Q) (1.2.13)

that satisfy the coercivity condition

a(x) g ³ > 0 for all x * Q. (1.2.14)

If the functions a(x), f (x), u1(x), u2(x) and the surface "Q are sufficiently

smooth, the problem (1.2.10) has a classical solution belonging to C2(Q)
�

C1(C̄)

(Ladyzhenskaya and Ural’tseva, 1968). Multiplying the differential equation

(1.2.10) by an arbitrary function � * C>(Q) such that �(x) = 0 on "Q \ �

and integrating by parts, we obtain
�

Q

a(x)
"u

"xi

(x)
"�

"xi

(x)dx = 2
�

Q

f (x)�(x)dx +
�

�

u1(x)�(x)dx (1.2.15)

for any � * D(Q).

The equalities (1.2.15) and (1.2.12) are defined for functions a(x) * L>(Q),

u1(x) * H21/2("Q), u2(x) * H1/2("Q), u(x) * H1(Q), and �(x) * H1(Q).

Thus, it is possible to define the solution of the boundary-value problem (1.2.10)

for non-differentiable (in particular, for piecewise continuous) coefficients a(x).

The solution of (1.2.15) is referred to as a generalized solution of the boundary-

value problem (1.2.10)–(1.2.12) and it is understood in the sense of distributions.

1.2.5 Variational form of boundary value problems

Let H be a Hilbert space. A scalar function a(u, v) determined on H × H is called

a bilinear form on H if it is linear with respect to the first and the second variables.

The bilinear form is called continuous if there exists a constant C < > such that

|a(u, v)| f C||u||H · ||v||H

for any u, v * H.

A bilinear form is called Hermitian if a(u, v) = a(v, u) for any u, v * H. A

bilinear form is called coercive if there exists a constant c > 0 such that

a(u, u) g c||u||2H (1.2.16)

for any u, v * H.
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1.3 Duality of functional spaces and functionals 9

For any bilinear continuous, coercive and Hermitian form a(u, v) on H there

exists unique operator L : H ³ H7 such that

a(u, v) = "Lu, v" (1.2.17)

for any v * H.

If u2 = 0, the problem (1.2.10)–(1.2.12) is associated with the bilinear form

a(u, v) =
�

Q

a(x)'u(x)'v(x)dx (1.2.18)

defined on the functional space

H = {v * H1(Q) | v(x) = 0 on "Q \ �}.

The form (1.2.18) satisfies the conditions above if a(x) satisfies the conditions

(1.2.13) and (1.2.14).

Then the operator

L = "

"xi

"

a(x)
"

"xi

"

can be treated as an operator acting from H to H7. The equation (1.2.15) is now

valid for any test function in H. Namely, it takes the form
�

Q

a(x)
"u

"xi

(x)
"v

"xi

(x)dx = 2
�

Q

f (x)v(x)dx +
�

�

u1(x)v(x)dx (1.2.19)

for any v * H.

The problem (1.2.19) is called the variational form of the problem (1.2.10)–

(1.2.12). The equation (1.2.19) is a necessary condition of the minimum of the

quadratic functional

I(u) =
�

Q

a(x)|'u(x)|2dx +
�

Q

f (x)v(x)dx 2
�

�

u1(x)v(x)dx (1.2.20)

on H.

Under conditions (1.2.13) and (1.2.16) there exists a unique u * H such that

(1.2.19) is satisfied (see, e.g., Ekeland and Temam (1976)).

If the solution of the problem (1.2.15) is sufficiently smooth, then it satisfies

(1.2.10)–(1.2.12) with u2(x) = 0, see, e.g., Ladyzhenskaya and Ural’tseva (1968).

1.3 Duality of functional spaces and functionals

We present brief information about the duality of functional spaces and functionals,

the Legendre transform and the minimax problem following Ekeland and Temam

(1976). Information on convex analysis in finite-dimensional and functional spaces

can be found in Rockafellar (1970, 1969) and Ekeland and Temam (1976) (see

also the references in the cited books).
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10 Review of mathematical notions

1.3.1 Legendre transform

Let H be a Hilbert space. The set of linear functionals defined on H is also a

Hilbert space. It is called the dual (conjugate) space with respect to H and denoted

H7.

As usual (Ekeland and Temam, 1976), we denote by "u, u7" the dual coupling of

elements u * H and u7 * H7 (the value of the linear functional u7 on the element

u).

Let H and H7 be two dual Hilbert spaces and F be a functional of H into R. the

functional

F7(u7) = sup
u*H

{"u, u7" 2 F(u)} (1.3.1)

that defines a function from H7 is called the conjugate functional of F .

It is known that F7 is a convex functional and if F is a convex functional,

F77 = F (Rockafellar, 1970).

For H = R
N (in this case H7 = R

N) the right-hand side of (1.3.1) is known as

a Legendre transform. In this case two convex functions Ç(x) and Ç7(y), related

by the equality

Ç7(y) = max
x*RN

{xy 2 Ç(x)}, (1.3.2)

are called conjugate functions. In (1.3.2) xy means the scalar product of the vectors

x and y in R
N .

If two numbers ³ and ³7 satisfy
1

³
+ 1

³7 = 1, the functions Ç(x) = 1

³
|x|³ and

Ç7(y) = 1

³7 |y|³7
are conjugate functions (Ekeland and Temam, 1976).

For ³ = 2, (1.3.2) takes the form

1

2
|x|2 = max

y*RN

�

xy 2 1

2
|y|2

�

and the functions Ç(x) = 1

2
|x|2 and Ç7(y) = 1

2
|y|2 are conjugate functions.

The functions Ç(x) = a

2
|x|2 and Ç7(y) = 1

2a
|y|2 are conjugate functions for

a �= 0. The condition for a maximum of the function xy 2 a

2
|x|2 is y 2 ax = 0.

Substituting x = y

a
in the analyzed function, we find that its maximum value is

y2

2a
.

1.3.2 The minimax problem

Let H and Z be Hilbert spaces. We consider a minimization problem

I(Ç) ³ min , Ç * H. (1.3.3)
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