

The Theory of $\mathcal{H}(b)$ Spaces

Volume 2

An $\mathcal{H}(b)$ space is defined as a collection of analytic functions that are in the image of an operator. The theory of $\mathcal{H}(b)$ spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding.

Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of $\mathcal{H}(b)$ spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.

EMMANUEL FRICAIN is Professor of Mathematics at Laboratoire Paul Painlevé, Université Lille 1, France. Part of his research focuses on the interaction between complex analysis and operator theory, which is the main content of this book. He has a wealth of experience teaching numerous graduate courses on different aspects of analytic Hilbert spaces, and he has published several papers on $\mathcal{H}(b)$ spaces in high-quality journals, making him a world specialist in this subject.

JAVAD MASHREGHI is Professor of Mathematics at Université Laval, Québec, Canada, where he has been selected Star Professor of the Year seven times for excellence in teaching. His main fields of interest are complex analysis, operator theory and harmonic analysis. He is the author of several mathematical textbooks, monographs and research articles. He won the G. de B. Robinson Award, the publication prize of the Canadian Mathematical Society, in 2004.

NEW MATHEMATICAL MONOGRAPHS

Editorial Board

Béla Bollobás, William Fulton, Anatole Katok, Frances Kirwan, Peter Sarnak, Barry Simon, Burt Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit www.cambridge.org/mathematics.

- 1. M. Cabanes and M. Enguehard Representation Theory of Finite Reductive Groups
- 2. J. B. Garnett and D. E. Marshall Harmonic Measure
- 3. P. Cohn Free Ideal Rings and Localization in General Rings
- 4. E. Bombieri and W. Gubler Heights in Diophantine Geometry
- 5. Y. J. Ionin and M. S. Shrikhande Combinatorics of Symmetric Designs
- 6. S. Berhanu, P. D. Cordaro and J. Hounie An Introduction to Involutive Structures
- 7. A. Shlapentokh Hilbert's Tenth Problem
- 8. G. Michler Theory of Finite Simple Groups I
- 9. A. Baker and G. Wüstholz Logarithmic Forms and Diophantine Geometry
- 10. P. Kronheimer and T. Mrowka Monopoles and Three-Manifolds
- 11. B. Bekka, P. de la Harpe and A. Valette Kazhdan's Property (T)
- 12. J. Neisendorfer Algebraic Methods in Unstable Homotopy Theory
- 13. M. Grandis Directed Algebraic Topology
- 14. G. Michler Theory of Finite Simple Groups II
- 15. R. Schertz Complex Multiplication
- 16. S. Bloch Lectures on Algebraic Cycles (2nd Edition)
- 17. B. Conrad, O. Gabber and G. Prasad Pseudo-reductive Groups
- 18. T. Downarowicz Entropy in Dynamical Systems
- 19. C. Simpson Homotopy Theory of Higher Categories
- 20. E. Fricain and J. Mashreghi The Theory of H(b) Spaces I
- 21. E. Fricain and J. Mashreghi The Theory of $\mathcal{H}(b)$ Spaces II
- 22. J. Goubault-Larrecq Non-Hausdorff Topology and Domain Theory
- 23. J. Śniatycki Differential Geometry of Singular Spaces and Reduction of Symmetry
- 24. E. Riehl Categorical Homotopy Theory
- 25. B. A. Munson and I. Volić Cubical Homotopy Theory
- 26. B. Conrad, O. Gabber and G. Prasad Pseudo-reductive Groups (2nd Edition)
- 27. J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson Sobolev Spaces on Metric Measure Spaces
- 28. Y.-G. Oh Symplectic Topology and Floer Homology I
- 29. Y.-G. Oh Symplectic Topology and Floer Homology II

The Theory of $\mathcal{H}(b)$ Spaces

Volume 2

EMMANUEL FRICAIN
Université Lille 1

JAVAD MASHREGHI Université Laval, Québec

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107027787

© Emmanuel Fricain and Javad Mashreghi 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Fricain, Emmanuel, 1971–author.

The theory of H(b) spaces / Emmanuel Fricain, Javad Mashreghi. 2 volumes ; cm. – (New mathematical monographs ; v. 20–21) ISBN 978-1-107-02777-0 (Hardback)

Hilbert space.
 Hardy spaces.
 Analytic functions.
 Linear operators.
 Mashreghi, Javad, author.
 Title.
 QA322.4.F73 2014
 Title.
 QA322.4.F73 2014

ISBN – 2 Volume Set 978-1-107-11941-3 Hardback ISBN – Volume 1 978-1-107-02777-0 Hardback ISBN – Volume 2 978-1-107-02778-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To our families: Keiko & Shahzad Hugo & Dorsa, Parisa, Golsa

Contents for Volume 2

	Prefac	ce	page xvii
16	The s	paces $\mathcal{M}(A)$ and $\mathcal{H}(A)$	1
	16.1	The space $\mathcal{M}(A)$	1
	16.2	A characterization of $\mathcal{M}(A) \subset \mathcal{M}(B)$	8
	16.3	Linear functionals on $\mathcal{M}(A)$	14
	16.4	The complementary space $\mathcal{H}(A)$	15
	16.5	The relation between $\mathcal{H}(A)$ and $\mathcal{H}(A^*)$	18
	16.6	The overlapping space $\mathcal{M}(A) \cap \mathcal{H}(A)$	20
	16.7	The algebraic sum of $\mathcal{M}(A_1)$ and $\mathcal{M}(A_2)$	21
	16.8	A decomposition of $\mathcal{H}(A)$	25
	16.9	The geometric definition of $\mathcal{H}(A)$	32
	16.10	The Julia operator $\mathfrak{J}(A)$ and $\mathcal{H}(A)$	39
	Notes	on Chapter 16	41
17	Hilbe	rt spaces inside H^2	44
	17.1	The space $\mathcal{M}(u)$	44
	17.2	The space $\mathcal{M}(ar{u})$	47
	17.3	The space $\mathcal{H}(b)$	49
	17.4	The space $\mathcal{H}(ar{b})$	51
	17.5	Relations between different $\mathcal{H}(\bar{b})$ spaces	53
	17.6	$\mathcal{M}(\bar{u})$ is invariant under S and S^*	55
	17.7	Contractive inclusion of $\mathcal{M}(u)$ in $\mathcal{M}(\bar{u})$	56
	17.8	Similarity of S and $S_{\mathcal{H}}$	58
	17.9	Invariant subspaces of $Z_{\bar{u}}$ and $X_{\bar{u}}$	62
	17.10	An extension of Beurling's theorem	64
	Notes	on Chapter 17	67

vii

viii Contents

18	The st	tructure of $\mathcal{H}(b)$ and $\mathcal{H}(ar{b})$	69
	18.1	When is $\mathcal{H}(b)$ a closed subspace of H^2 ?	69
	18.2	When is $\mathcal{H}(b)$ a dense subset of H^2 ?	71
	18.3	Decomposition of $\mathcal{H}(b)$ spaces	73
	18.4	The reproducing kernel of $\mathcal{H}(b)$	75
	18.5	$\mathcal{H}(b)$ and $\mathcal{H}(\bar{b})$ are invariant under $T_{\bar{\varphi}}$	77
	18.6	Some inhabitants of $\mathcal{H}(b)$	80
	18.7	The unilateral backward shift operators X_b and $X_{\bar{b}}$	85
	18.8	The inequality of difference quotients	90
	18.9	A characterization of membership in $\mathcal{H}(b)$	91
	Notes	on Chapter 18	96
19	Geom	netric representation of $\mathcal{H}(b)$ spaces	99
	19.1	Abstract functional embedding	99
	19.2	A geometric representation of $\mathcal{H}(b)$	108
	19.3	A unitary operator from \mathbb{K}_b onto \mathbb{K}_{b^*}	112
	19.4	A contraction from $\mathcal{H}(b)$ to $\mathcal{H}(b^*)$	117
	19.5	Almost conformal invariance	124
	19.6	The Littlewood subordination theorem revisited	127
	19.7	The generalized Schwarz–Pick estimates	129
	Notes	on Chapter 19	131
20	Representation theorems for $\mathcal{H}(b)$ and $\mathcal{H}(ar{b})$		
	20.1	Integral representation of $\mathcal{H}(\bar{b})$	135
	20.2	$\mathbf{K}_{ ho}$ intertwines $S_{ ho}^*$ and $X_{ar{b}}$	138
	20.3	Integral representation of $\mathcal{H}(b)$	139
	20.4	A contractive antilinear map on $\mathcal{H}(b)$	144
	20.5	Absolute continuity of the Clark measure	146
	20.6	Inner divisors of the Cauchy transform	147
	20.7	V_b intertwines S^*_{μ} and X_b	149
	20.8	Analytic continuation of $\mathcal{H}(b)$ functions	151
	20.9	Multipliers of $\mathcal{H}(b)$	154
	20.10	Multipliers and Toeplitz operators	156
	20.11	Comparison of measures	162
	Notes	on Chapter 20	167
21	Angul	lar derivatives of $\mathcal{H}(b)$ functions	170
	21.1	Derivative in the sense of Carathéodory	171
	21.2	Angular derivatives and Clark measures	182
	21.3	Derivatives of Blaschke products	186
	21.4	Higher derivatives of b	191

		Contents	ix
	21.5	Approximating by Blaschke products	196
	21.6	Reproducing kernels for derivatives	204
	21.7	An interpolation problem	207
	21.8	Derivatives of $\mathcal{H}(b)$ functions	214
	Notes	s on Chapter 21	220
22	Bern	stein-type inequalities	224
	22.1	Passage between $\mathbb D$ and $\mathbb C_+$	225
	22.2	Integral representations for derivatives	228
	22.3		236
	22.4	Some auxiliary integral operators	238
	22.5		248
	22.6	Distances to the level sets	251
	22.7	Carleson-type embedding theorems	256
	22.8	A formula of combinatorics	262
	22.9	Norm convergence for the reproducing kernels	266
	Notes	s on Chapter 22	271
23	$\mathcal{H}(b)$) spaces generated by a nonextreme symbol b	273
	23.1	The pair (a, b)	274
	23.2	Inclusion of $\mathcal{M}(u)$ into $\mathcal{H}(b)$	277
	23.3	The element f^+	278
	23.4	Analytic polynomials are dense in $\mathcal{H}(b)$	284
	23.5	A formula for $ X_b f _b$	285
	23.6	Another representation of $\mathcal{H}(b)$	289
	23.7	A characterization of $\mathcal{H}(b)$	293
	23.8	More inhabitants of $\mathcal{H}(b)$	305
	23.9	Unbounded Toeplitz operators and $\mathcal{H}(b)$ spaces	308
	Notes	s on Chapter 23	312
24	Oper	ators on $\mathcal{H}(b)$ spaces with b nonextreme	315
	24.1	The unilateral forward shift operator S_b	316
	24.2	A characterization of $H^{\infty} \subset \mathcal{H}(b)$	322
	24.3	Spectrum of X_b and X_b^*	327
	24.4	Comparison of measures	329
	24.5	The function F_{λ}	332
	24.6	The operator W_{λ}	335
	24.7	Invariant subspaces of $\mathcal{H}(b)$ under X_b	345
	24.8	Completeness of the family of difference quotients	348

Notes on Chapter 24

350

x Contents

25	$\mathcal{H}(b)$	spaces generated by an extreme symbol b	353
	25.1	A unitary map between $\mathcal{H}(\bar{b})$ and $L^2(\rho)$	354
	25.2	Analytic continuation of $f \in \mathcal{H}(\bar{b})$	356
	25.3	Analytic continuation of $f \in \mathcal{H}(b)$	357
	25.4	A formula for $ X_b f _b$	360
	25.5	S^* -cyclic vectors in $\mathcal{H}(b)$ and $\mathcal{H}(\bar{b})$	362
	25.6	Orthogonal decompositions of $\mathcal{H}(b)$	364
	25.7	The closure of $\mathcal{H}(\bar{b})$ in $\mathcal{H}(b)$	365
	25.8	A characterization of $\mathcal{H}(b)$	367
	Notes	on Chapter 25	375
26	Oper	ators on $\mathcal{H}(b)$ spaces with b extreme	377
	26.1	Spectrum of X_b and X_b^*	378
	26.2	Multipliers of $\mathcal{H}(b)$ spaces, extreme case, part I	381
	26.3	Comparison of measures	384
	26.4	Further characterizations of angular derivatives for b	388
	26.5	Model operator for Hilbert space contractions	391
	26.6	Conjugation and completeness of difference quotients	394
	Notes	on Chapter 26	399
27	Inclu	sion between two $\mathcal{H}(b)$ spaces	402
	27.1	A new geometric representation of $\mathcal{H}(b)$ spaces	403
	27.2	The class $\mathscr{I}nt(V_{b_1},V_{b_2})$	407
	27.3	The class $\mathscr{I}nt(\mathscr{S}_{b_1},\mathscr{S}_{b_2})$	412
	27.4	Relations between different $\mathcal{H}(b)$ spaces	417
	27.5	The rational case	425
	27.6	Coincidence between $\mathcal{H}(b)$ and $\mathcal{D}(\mu)$ spaces	432
	Notes	on Chapter 27	436
28	Topic	is regarding inclusions $\mathcal{M}(a)\subset\mathcal{H}(ar{b})\subset\mathcal{H}(b)$	439
	28.1	A necessary and sufficient condition for $\mathcal{H}(\bar{b}) = \mathcal{H}(b)$	440
	28.2	Characterizations of $\mathcal{H}(\bar{b}) = \mathcal{H}(b)$	443
	28.3	Multipliers of $\mathcal{H}(b)$ spaces, extreme case, part II	451
	28.4	Characterizations of $\mathcal{M}(a) = \mathcal{H}(b)$	457
	28.5	Invariant subspaces of S_b when $b(z) = (1+z)/2$	464
	28.6	Characterization of $\overline{\mathcal{M}(a)}^b = \mathcal{H}(b)$	475
	28.7	Characterization of the closedness of $\mathcal{M}(a)$ in $\mathcal{H}(b)$	476
	28.8	Boundary eigenvalues and eigenvectors of S_b^*	477
	28.9	The space $\mathcal{H}_0(b)$	482
	28.10	The spectrum of S_0	485
	Notes	on Chapter 28	486

Contents xi

29	Rigid	I functions and strongly exposed points of H^1	489
	29.1	Admissible and special pairs	489
	29.2	Rigid functions of H^1 and $\mathcal{H}(b)$ spaces	492
	29.3	Dimension of $\mathcal{H}_0(b)$	497
	29.4	S_b -invariant subspaces of $\mathcal{H}(b)$	504
	29.5	A necessary condition for nonrigidity	507
	29.6	Strongly exposed points and $\mathcal{H}(b)$ spaces	511
	Notes	s on Chapter 29	518
30	Near	ly invariant subspaces and kernels of Toeplitz operators	520
	30.1	Nearly invariant subspaces and rigid functions	520
	30.2	The operator R_f	522
	30.3	Extremal functions	526
	30.4	A characterization of nearly invariant subspaces	529
	30.5	Description of kernels of Toeplitz operators	536
	30.6	A characterization of surjectivity for Toeplitz operators	543
	30.7	The right-inverse of a Toeplitz operator	546
	Notes	s on Chapter 30	551
31	Geon	netric properties of sequences of reproducing kernels	553
	31.1	Completeness and minimality in $\mathcal{H}(b)$ spaces	554
	31.2	Spectral properties of rank-one perturbation of X_b^*	561
	31.3	Orthonormal bases in $\mathcal{H}(b)$ spaces	564
	31.4	Riesz sequences of reproducing kernels in $\mathcal{H}(b)$	567
	31.5	The invertibility of distortion operator and Riesz bases	571
	31.6	Riesz sequences in $H^2(\mu)$ and in $\mathcal{H}(\bar{b})$	584
	31.7	Asymptotically orthonormal sequences and bases in $\mathcal{H}(b)$	585
	31.8	Stability of completeness and asymptotically	
		orthonormal basis	588
	31.9	Stability of Riesz bases	595
	Notes	Notes on Chapter 31	
	Refer	ences	603
		ol index	614
		or index	616
	Subje	ct index	618

Contents for Volume 1

Ргеја	ce	page xv11
Norn	ned linear spaces and their operators	1
1.1	Banach spaces	1
1.2	Bounded operators	9
1.3	Fourier series	14
1.4	The Hahn–Banach theorem	15
1.5	The Baire category theorem and its consequences	21
1.6	The spectrum	26
1.7	Hilbert space and projections	30
1.8	The adjoint operator	40
1.9	Tensor product and algebraic direct sum	45
1.10	Invariant subspaces and cyclic vectors	49
1.11	Compressions and dilations	52
1.12	Angle between two subspaces	54
Notes	s on Chapter 1	57
Some	families of operators	60
2.1	Finite-rank operators	60
2.2	Compact operators	62
2.3	Subdivisions of spectrum	65
2.4	Self-adjoint operators	70
2.5	Contractions	77
2.6	Normal and unitary operators	78
2.7	Forward and backward shift operators on ℓ^2	80
2.8	The multiplication operator on $L^2(\mu)$	83
2.9	Doubly infinite Toeplitz and Hankel matrices	86
Notes	s on Chapter 2	92
	Norm 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 Notes Some 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	1.2 Bounded operators 1.3 Fourier series 1.4 The Hahn–Banach theorem 1.5 The Baire category theorem and its consequences 1.6 The spectrum 1.7 Hilbert space and projections 1.8 The adjoint operator 1.9 Tensor product and algebraic direct sum 1.10 Invariant subspaces and cyclic vectors 1.11 Compressions and dilations 1.12 Angle between two subspaces Notes on Chapter 1 Some families of operators 2.1 Finite-rank operators 2.2 Compact operators 2.3 Subdivisions of spectrum 2.4 Self-adjoint operators 2.5 Contractions 2.6 Normal and unitary operators on ℓ^2 2.8 The multiplication operator on $L^2(\mu)$

		Contents	xiii
3	Harn	nonic functions on the open unit disk	96
	3.1	Nontangential boundary values	96
	3.2	Angular derivatives	98
	3.3	Some well-known facts in measure theory	101
	3.4	Boundary behavior of $P\mu$	106
	3.5	Integral means of $P\mu$	110
	3.6	Boundary behavior of $Q\mu$	112
	3.7	Integral means of $Q\mu$	113
	3.8	Subharmonic functions	116
	3.9	Some applications of Green's formula	117
	Notes	s on Chapter 3	120
4	Hard	y spaces	122
	4.1	Hyperbolic geometry	122
	4.2	Classic Hardy spaces H^p	124
	4.3	The Riesz projection P_+	130
	4.4	Kernels of P_+ and P	135
	4.5	Dual and predual of H^p spaces	137
	4.6	The canonical factorization	141
	4.7	The Schwarz reflection principle for H^1 functions	148
	4.8	Properties of outer functions	149
	4.9	A uniqueness theorem	154
	4.10	More on the norm in H^p	157
	Notes	s on Chapter 4	163
5	More	function spaces	166
	5.1	The Nevanlinna class ${\cal N}$	166
	5.2	The spectrum of b	171
	5.3	The disk algebra ${\cal A}$	173
	5.4	The algebra $\mathcal{C}(\mathbb{T})+H^\infty$	181
	5.5	Generalized Hardy spaces $H^p(\nu)$	183
	5.6	Carleson measures	187
	5.7	Equivalent norms on H^2	198
	5.8	The corona problem	202
	Notes	s on Chapter 5	211
6	Extre	eme and exposed points	214
	6.1	Extreme points	214
	6.2	Extreme points of $L^p(\mathbb{T})$	217
	6.3	Extreme points of H^p	219
	6.4	Strict convexity	224

xiv Contents

	6.5	Exposed points of $\mathfrak{B}(\mathcal{X})$	227
	6.6	Strongly exposed points of $\mathfrak{B}(\mathcal{X})$	230
	6.7	Equivalence of rigidity and exposed points in H^1	232
	6.8	Properties of rigid functions	235
	6.9	Strongly exposed points of H^1	246
	Notes	s on Chapter 6	254
7	More	e advanced results in operator theory	257
	7.1	The functional calculus for self-adjoint operators	257
	7.2	The square root of a positive operator	260
	7.3	Möbius transformations and the Julia operator	269
	7.4	The Wold-Kolmogorov decomposition	274
	7.5	Partial isometries and polar decomposition	275
	7.6	Characterization of contractions on $\ell^2(\mathbb{Z})$	281
	7.7	Densely defined operators	282
	7.8	Fredholm operators	286
	7.9	Essential spectrum of block-diagonal operators	291
	7.10	The dilation theory	298
	7.11	The abstract commutant lifting theorem	306
	Notes	s on Chapter 7	310
8	The s	shift operator	314
	8.1	The bilateral forward shift operator Z_{μ}	314
	8.2	The unilateral forward shift operator S	321
	8.3	Commutants of Z and S	328
	8.4	Cyclic vectors of S	333
	8.5	When do we have $H^p(\mu) = L^p(\mu)$?	336
	8.6	The unilateral forward shift operator S_{μ}	342
	8.7	Reducing invariant subspaces of Z_{μ}	351
	8.8	Simply invariant subspaces of Z_{μ}	353
	8.9	Reducing invariant subspaces of S_{μ}	360
	8.10	Simply invariant subspaces of S_{μ}	361
	8.11	Cyclic vectors of Z_{μ} and S^*	363
	Notes	s on Chapter 8	372
9	Anal	ytic reproducing kernel Hilbert spaces	376
	9.1	The reproducing kernel	376
	9.2	Multipliers	381
	9.3	The Banach algebra $\mathfrak{Mult}(\mathcal{H})$	383
	9.4	The weak kernel	386
	9.5	The abstract forward shift operator $S_{\mathcal{H}}$	390
		=	

		Contents	XV
	9.6	The commutant of $S_{\mathcal{H}}$	392
	9.7	When do we have $\mathfrak{Mult}(\mathcal{H}) = H^{\infty}$?	394
	9.8	Invariant subspaces of $S_{\mathcal{H}}$	396
	Notes	on Chapter 9	396
10	Bases	in Banach spaces	399
	10.1	Minimal sequences	399
	10.2	Schauder basis	403
	10.3	The multipliers of a sequence	411
	10.4	Symmetric, nonsymmetric and unconditional basis	414
	10.5		422
	10.6	The mappings $J_{\mathfrak{X}}$, $V_{\mathfrak{X}}$ and $\Gamma_{\mathfrak{X}}$	425
	10.7	Characterization of the Riesz basis	430
	10.8	Bessel sequences and the Feichtinger conjecture	435
	10.9	Equivalence of Riesz and unconditional bases	440
	10.10	Asymptotically orthonormal sequences	442
	Notes	on Chapter 10	449
11	Hank	el operators	454
	11.1	A matrix representation for H_{φ}	454
	11.2	The norm of H_{φ}	457
	11.3	•	462
	11.4	The Nehari problem	466
	11.5	More approximation problems	470
	11.6	Finite-rank Hankel operators	473
	11.7	Compact Hankel operators	475
	Notes	on Chapter 11	478
12	Toepl	itz operators	481
	12.1	The operator $T_{\varphi} \in \mathcal{L}(H^2)$	481
	12.2	Composition of two Toeplitz operators	487
	12.3	The spectrum of T_{φ}	490
	12.4	The kernel of T_{φ}	494
	12.5	When is T_{φ} compact?	499
	12.6	Characterization of rigid functions	500
	12.7	Toeplitz operators on $H^2(\mu)$	503
	12.8	The Riesz projection on $L^2(\mu)$	506
	12.9	Characterization of invertibility	511
	12.10	Fredholm Toeplitz operators	515
	12.11	Characterization of surjectivity	518

xvi Contents

	12.12	The operator $X_{\mathcal{H}}$ and its invariant subspaces	520
	Notes	on Chapter 12	522
13	Caucl	hy transform and Clark measures	526
	13.1	The space $\mathfrak{K}(\mathbb{D})$	526
	13.2	Boundary behavior of C_{μ}	533
	13.3	The mapping K_{μ}	534
	13.4	The operator $K_{\varphi}:L^2(\varphi)\longrightarrow H^2$	541
	13.5	Functional calculus for S_{arphi}	545
	13.6	Toeplitz operators with symbols in $L^2(\mathbb{T})$	551
	13.7	Clark measures μ_{α}	555
	13.8	The Cauchy transform of μ_{α}	562
	13.9	The function ρ	563
	Notes	on Chapter 13	564
14	Mode	el subspaces K_{Θ}	567
	14.1	The arithmetic of inner functions	567
	14.2	A generator for K_{Θ}	570
	14.3	The orthogonal projection P_{Θ}	576
	14.4	The conjugation Ω_{Θ}	579
	14.5	Minimal sequences of reproducing kernels in K_B	580
	14.6	The operators J and M_{Θ}	583
	14.7	Functional calculus for M_{Θ}	589
	14.8	Spectrum of M_{Θ} and $\varphi(M_{\Theta})$	593
	14.9	The commutant lifting theorem for M_{Θ}	602
	14.10	Multipliers of K_{Θ}	607
	Notes	on Chapter 14	608
15	Bases	of reproducing kernels and interpolation	611
	15.1	Uniform minimality of $(k_{\lambda_n})_{n\geq 1}$	611
	15.2	The Carleson–Newman condition	612
	15.3	Riesz basis of reproducing kernels	618
	15.4	Nevanlinna-Pick interpolation problem	621
	15.5	H^{∞} -interpolating sequences	623
	15.6	H^2 -interpolating sequences	624
	15.7	Asymptotically orthonormal sequences	627
	Notes	Notes on Chapter 15	
	Refere	ences	641
	Symbo	Symbol index	
		Author index	
	Subject index		677

Preface

In 1915, Godfrey Harold Hardy, in a famous paper published in the *Proceedings of the London Mathematical Society*, first put forward the "theory of Hardy spaces" H^p . Having a Hilbert space structure, H^2 also benefits from the rich theory of Hilbert spaces and their operators. The mutual interaction of analytic function theory, on the one hand, and operator theory, on the other, has created one of the most beautiful branches of mathematical analysis. The Hardy–Hilbert space H^2 is the glorious king of this seemingly small, but profoundly deep, territory.

In 1948, in the context of dynamics of Hilbert space operators, A. Beurling classified the closed invariant subspaces of the forward shift operator on ℓ^2 . The genuine idea of Beurling was to exploit the forward shift operator S on H^2 . To that end, he used some analytical tools to show that the closed subspaces of H^2 that are invariant under S are precisely of the form ΘH^2 , where Θ is an inner function. Therefore, the orthogonal complement of the Beurling subspace ΘH^2 , the so-called *model subspaces* K_{Θ} , are the closed invariant subspaces of H^2 that are invariant under the backward shift operator S^* . The model subspaces have rich algebraic and analytic structures with applications in other branches of mathematics and science, for example, control engineering and optics.

The word "model" that was used above to describe K_{Θ} refers to their application in recognizing the Hilbert space contractions. The main idea is to identify (via a unitary operator) a contraction as the adjoint of multiplication by z on a certain space of analytic functions on the unit disk. As Beurling's theorem says, if we restrict ourselves to closed subspaces of H^2 that are invariant under S^* , we just obtain K_{Θ} spaces, where Θ runs through the family of inner functions. This point of view was exploited by B. Sz.-Nagy and C. Foiaş to construct a model for Hilbert space contractions. Another way is to consider submanifolds (not necessarily closed) of H^2 that are invariant under S^* . Above half a century ago, such a modeling theory was developed by L. de Branges and J. Rovnyak. In this context, they introduced the so-called $\mathcal{H}(b)$ spaces. The de Branges–Rovnyak model is, in a certain sense, more flexible, but it causes certain difficulties. For example, the inner product in $\mathcal{H}(b)$ is not given by an explicit integral formula, contrary to the case for K_{Θ} , which is actually

xviii Preface

the inner product of H^2 , and this makes the treatment of $\mathcal{H}(b)$ functions more difficult.

The original definition of $\mathcal{H}(b)$ spaces uses the notion of *complementary* space, which is a generalization of the orthogonal complement in a Hilbert space. But $\mathcal{H}(b)$ spaces can also be viewed as the range of a certain operator involving Toeplitz operators. This point of view was a turning point in the theory of $\mathcal{H}(b)$ spaces. Adopting the new definition, D. Sarason and several others made essential contributions to the theory. In fact, they now play a key role in many other questions of function theory (solution of the Bieberbach conjecture by de Branges, rigid functions of the unit ball of H^1 , Schwarz-Pick inequalities), operator theory (invariant subspaces problem, composition operators), system theory and control theory. An excellent but very concise account of the theory of $\mathcal{H}(b)$ spaces is available in Sarason's masterpiece [166]. However, there are many results, both new and old, that are not covered there. On the other hand, despite many efforts, the structure and properties of $\mathcal{H}(b)$ spaces still remain mysterious, and numerous natural questions still remain open. However, these spaces have a beautiful structure, with numerous applications, and we hope that this work attracts more people to this domain.

In this context, we have tried to provide a rather comprehensive introduction to the theory of $\mathcal{H}(b)$ spaces. That is why Volume 1 is devoted to the foundation of $\mathcal{H}(b)$ spaces. In Volume 2, we discuss $\mathcal{H}(b)$ spaces and their applications. However, two facts should be kept in mind: first, we just treat the scalar case of $\mathcal{H}(b)$ spaces; and second, we do not discuss in detail the theory of model operators, because there are already two excellent monographs on this topic [138]; [184]. Nevertheless, some of the tools of model theory are implicitly exploited in certain topics. For instance, to treat some natural questions such as the inclusion between two different $\mathcal{H}(b)$ spaces, we use a geometric representation of $\mathcal{H}(b)$ spaces that comes from the relation between Sz.-Nagy-Foiaş and de Branges-Rovnyak modeling theory. Also, even if the main point of view that has been adopted in this book is based on the definition of $\mathcal{H}(b)$ via Toeplitz operators, the historical definition of de Branges and Rovnyak is also discussed and used at some points.

In the past decade, both of us have made several transatlantic trips to meet each other and work together on this book project. For these visits, we have been financially supported by Université Claude Bernard Lyon I, Université Lille 1, Université Laval, McGill University, Centre Jacques-Cartier (France), CNRS (Centre National de la Recherche Scientifique, France), ANR (Agence Nationale de la Recherche), FQRNT (Fonds Québécois de la Recherche sur la Nature et les Technologies) and NSERC (Natural Sciences and Engineering Research Council of Canada). We also benefited from the warm hospitality of CIRM (Centre International des Rencontres Mathématiques, Luminy),

Preface xix

CRM (Centre de Recherches Mathématiques, Montréal) and the Fields Institute (Toronto). We thank them all warmly for their support.

During these past years, parallel to the writing of this book, we have also pursued our research, and some projects were directly related to $\mathcal{H}(b)$ spaces. Some of the results, mainly in collaboration with other colleagues, are contained in this monograph. Hence, we would like to thank from the bottom of our hearts our close collaborators: A. Baranov, A. Blandignères, G. Chacon, I. Chalendar, N. Chevrot, F. Gaunard, A. Hartmann, W. Ross, M. Shabankhah and D. Timotin. During the preparation of the manuscript, we also benefited from very useful discussions with P. Gorkin and D. Timotin concerning certain points of this book. We would like to warmly thank them both.

The first author would like to thank T. Ransford for inviting him to Laval University in 2014. During his six-month visit, he met the second author and the seed of mutual collaboration on $\mathcal{H}(b)$ spaces was sown. He is also profoundly influenced in his mathematical life by N. Nikolskii. He takes this opportunity to express his profound gratitude and admiration.

The preparation of the manuscript was not an easy task, and it took several years even after acceptance for publication by Cambridge University Press. We thank the CUP team, who were ultra-patient with us and on numerous occasions intervened to settle difficulties. Above all, we are grateful to Roger Astley for his unique constructive leadership during the whole procedure.

Emmanuel Fricain Javad Mashreghi Lille Kashan