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The spaces M(A) and H(A)

In this chapter, we introduce the notion of complementary space, which gener-

alizes the classic geometric notion of orthogonal complement. This notion of

complementary space is central in the theory of H(b) spaces. In Section 16.1,

we study the bounded (contractively or isometrically) embeddings. This leads

to the definition of M(A) spaces. Then, in Section 16.2, we characterize the

relations between two M(A) spaces. In Section 16.3, we describe the linear

functional on M(A). In Section 16.4, we give our first definition of comple-

mentary space based on an operatorial point of view. As we will see in the

next chapter, this operatorial point of view seems particularly interesting in the

context of H(b) spaces and Toeplitz operators. In Section 16.5, we describe

the relation between H(A) and H(A∗). This relation, though very simple,

is probably one of the most useful results in the theory of H(b) spaces. The

overlapping space is introduced and described in Section 16.6. In Sections 16.7

and 16.8, we give useful results concerning some decomposition of M(A) and

H(A) spaces. In Section 16.9, we introduce our second definition of comple-

mentary space and show that it coincides with the first one. Finally, in the last

section, we show how the Julia operator can be used to connect this notion of

complementary spaces to the more familiar geometric structure of orthogonal

complements.

16.1 The space M(A)

Suppose that H1 and H2 are Hilbert spaces and H1 ⊂ H2. We do not nec-

essarily assume that H1 inherits the Hilbert structure of H2. They can have

different Hilbert space structures. The assumption H1 ⊂ H2 ensures that the

inclusion mapping

i : H1 −→ H2

x �−→ x

1
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2 The spaces M(A) and H(A)

is well defined. If this mapping is bounded, i.e. if there is a constant c > 0 such

that

‖x‖H2
≤ c ‖x‖H1

(x ∈ H1), (16.1)

we say that H1 is boundedly contained in H2 and write H1 ⋐ H2. If the

mapping i is a contraction, i.e. c ≤ 1, we say that H1 is contractively included

in H2 and write H1 →֒ H2. Finally, if

‖x‖H2
= ‖x‖H1

(x ∈ H1),

we say that H1 is isometrically contained in H2. If it happens that the set

identity H1 = H2 holds and, moreover, H1 and H2 have the same Hilbert

space structure, i.e. ‖x‖H2
= ‖x‖H1

for all possible x, then we write H1 ≖

H2. It is important to distinguish between the set identity H1 = H2 and the

Hilbert space identity H1 ≖ H2.

A very special case of the above phenomenon is when H1 is a closed sub-

space of H2 and inherits its Hilbert space structure. In this case, H1 is isometri-

cally embedded inside H2. In the next section, we will look at this phenomenon

from a slightly different angle.

The inequality (16.1) reveals some facts about the topologies of H1 and H2.

If E is a closed (or open) subset of H2, then E ∩ H1 is closed (or open) in H1

with respect to the topology of H1. However, the topology of H1 is usually

richer. In other words, the topology of H1 is finer than the topology it inherits

from H2. That is why, if Λ is a continuous function on H2, then its restriction

to H1 remains continuous. We will treat this fact in more detail in Section 16.3.

As a special case, if E ⊂ H1 ⊂ H2 is closed in H2, then E is also closed in

H1. However, if E is closed in H1, we cannot conclude that it is also closed

in H2. The following result reveals the relation between different closures of a

set in H1.

Lemma 16.1 Let H1 and H2 be two Hilbert spaces, assume that H1 is

boundedly embedded into H2, and let E ⊂ H1. Then

ClosH2
(ClosH1

E) = ClosH2
E .

Proof For simplicity, put F = ClosH1
E . Since E ⊂ F , we have

ClosH2
E ⊂ ClosH2

F .

To prove the converse, let x ∈ ClosH2
F and fix any ε > 0. Then there exists

y ∈ F such that ‖x − y‖H2
≤ ε/2. But, since y ∈ F and F = ClosH1

E ,

there exists z ∈ E such that ‖y − z‖H1
≤ ε/2C, where C is the constant of

embedding of H1 into H2, i.e.

‖x‖H2
≤ C ‖x‖H1

(x ∈ H1).
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16.1 The space M(A) 3

Therefore, we have ‖y − z‖H2
≤ ε/2 and then

‖x− z‖H2
≤ ‖x− y‖H2

+ ‖y − z‖H2
≤ ε.

Therefore, x ∈ ClosH2
E .

Suppose that H1 is a Hilbert space, H2 is a set and A : H1 −→ H2 is a set

bijection between H1 and H2. Then the map A can be served to transfer the

Hilbert space structure of H1 to H2. It is enough to define

〈Ax,Ay〉H2
= 〈x, y〉H1

(16.2)

for all x, y ∈ H1. The algebraic operations on H2 are defined similarly. If H2

is a linear space and A is an algebraic isomorphism between H1 and H2, the

latter requirement is already fulfilled. In this case, (16.2) puts an inner product,

maybe a new one, on H2.

The above construction sounds very elementary. Nevertheless, it has pro-

found consequences. In fact, it is the main ingredient in the definition of H(b)

spaces. To move in this direction, suppose that H1 and H2 are Hilbert spaces

and that A ∈ L(H1,H2). By the first homomorphism theorem, the operator

A induces an isomorphism between the quotient space H1/kerA and R(A).

Hence, by (16.2), the identity

〈Ax,Ay〉R(A) = 〈x+ kerA, y + kerA〉H1/kerA (x, y ∈ H1) (16.3)

gives a Hilbert space structure on R(A). We denote this Hilbert space by

M(A). The norm of x+ kerA in H1/kerA is originally defined by

‖x+ kerA‖H1/kerA = inf
z ∈ kerA

‖x+ z‖H1
.

But, for each z ∈ kerA,

‖x+ z‖2H1
= ‖P(kerA)⊥x+ (z + PkerAx)‖

2
H1

= ‖P(kerA)⊥x‖
2
H1

+ ‖z + PkerAx‖
2
H1

,

and thus we easily see that

‖x+ kerA‖H1/kerA = ‖P(kerA)⊥x‖H1
(x ∈ H1).

Hence, by the polarization identity (1.16), we have

〈x+kerA, y+kerA〉H1/kerA = 〈P(kerA)⊥x, P(kerA)⊥y〉H1
(x, y ∈ H1).

Moreover, by (1.27),

〈P(kerA)⊥x, P(kerA)⊥y〉H1
= 〈x, P(kerA)⊥y〉H1

= 〈P(kerA)⊥x, y〉H1
.
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4 The spaces M(A) and H(A)

Therefore, the definition (16.3) reduces to

〈Ax,Ay〉M(A) = 〈P(kerA)⊥x, P(kerA)⊥y〉H1

= 〈x, P(kerA)⊥y〉H1

= 〈P(kerA)⊥x, y〉H1
(16.4)

for each x, y ∈ H1. In particular, for each x ∈ H1,

‖Ax‖M(A) = ‖P(kerA)⊥x‖H1
. (16.5)

Moreover, if at least one of x or y is orthogonal to kerA, then, by (16.4),

〈Ax,Ay〉M(A) = 〈x, y〉H1
. (16.6)

The rather trivial inequality

‖Ax‖M(A) ≤ ‖x‖H1
(x ∈ H1), (16.7)

which is a direct consequence of (16.5), will also be frequently used. The

preceding formulas should be kept in mind throughout the text.

On R(A) we now have two inner products. One is inherited from H2 and

the new one imposed by A. In the following, when we write M(A) we mean

that R(A) is endowed with the latter structure. If this is not the case, we will

explicitly mention which structure is considered on R(A). Let us explore the

relation between these two structures. Since A is a bounded operator, we have

‖Ax‖H2
= ‖AP(kerA)⊥x‖H2

≤ ‖A‖L(H1,H2) ‖P(kerA)⊥x‖H1
(x ∈ H1).

Therefore, by (16.5),

‖Ax‖H2
≤ ‖A‖L(H1,H2) ‖Ax‖M(A) (x ∈ H1). (16.8)

This inequality means that the inclusion map

i : M(A) −→ H2

w �−→ w

is continuous and its norm is at most ‖A‖. In fact, by (16.7),

‖Ax‖H2
≤ ‖i‖ ‖Ax‖M(A) ≤ ‖i‖ ‖x‖H1

(x ∈ A).

Thus, considering (16.8), we deduce that

‖i‖L(M(A),H2) = ‖A‖L(H1,H2). (16.9)

Moreover,

i∗ = AA∗. (16.10)

Indeed, let y ∈ H2 and Ax ∈ M(A), with x ∈ H1 and x ⊥ kerA. Then we

have

〈Ax, i∗y〉M(A) = 〈Ax, y〉H2
= 〈x,A∗y〉H1

= 〈Ax,AA∗y〉M(A),
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16.1 The space M(A) 5

which proves that i∗y = AA∗y. We will see in Section 16.8 that, in a sense,

the operator i∗ plays the role of an orthogonal projection of H2 onto M(A).

If A is invertible, then the relations (16.7), (16.8) and

‖x‖H1
= ‖A−1Ax‖H1

≤ ‖A−1‖ ‖Ax‖H2

imply that the norms in H1, H2 and M(A) (which as a set is equal to H2) are

equivalent, i.e.

‖x‖H1
≍ ‖Ax‖H2

≍ ‖Ax‖M(A). (16.11)

If A is a bounded operator, the above construction puts M(A) boundedly

inside H2. If A is a contraction, i.e. ‖A‖ ≤ 1, then M(A) is contractively

contained in H2; and if ‖w‖M(A) = ‖w‖H2
, w ∈ M(A), then M(A) is

isometrically contained in H2. Based on the conventions made in Section 16.1,

we emphasize that, for A,B ∈ L(H1,H2), the notation M(A) ≖ M(B)

means not only that the algebraic equality M(A) = M(B) holds, but also

that the Hilbert space structures coincide, i.e.

〈w1, w2〉M(A) = 〈w1, w2〉M(B)

for all possible elements w1 and w2. Clearly, in the light of the polarization

identity, the latter is equivalent to

‖w‖M(A) = ‖w‖M(B)

for all possible elements w.

The relation (16.5) contains all the information regarding the definition of

the structure of M(A). In short, the structure of M(A) is the same as that of

H1/kerA. This fact is explained in another language in the following result.

Theorem 16.2 Let A ∈ L(H1,H2) and define

A : H1 −→ M(A)

x �−→ Ax.

Then A is a bounded operator, i.e. A ∈ L(H1,M(A)), and, moreover, A∗ is

an isometry on M(A).

Proof The inequality (16.7) can be rewritten as

‖Ax‖M(A) = ‖Ax‖M(A) ≤ ‖x‖H1
(x ∈ H1).

This means that A is a bounded operator. In order to show that A∗ is an isom-

etry on M(A), by Corollary 7.23, it is enough to show that A is a surjective

partial isometry. That A is surjective is a trivial consequence of the definition

of M(A). Moreover, kerA = kerA. Hence, by (16.5),

‖Ax‖M(A) = ‖Ax‖M(A) = ‖P(kerA)⊥x‖H1
= ‖P(kerA)⊥x‖H1

www.cambridge.org/9781107027787
www.cambridge.org


Cambridge University Press
978-1-107-02778-7 — The Theory of H(b) Spaces
Emmanuel Fricain , Javad Mashreghi 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 The spaces M(A) and H(A)

for each x ∈ H1. Thus, A is a partial isometry (see the original definition

(7.14)).

The definition of spaces M(A) is closely related to the notion of bounded

embeddings introduced at the beginning of this section. Indeed, if M is a

Hilbert space that is boundedly contained in another Hilbert space H, then

the inclusion map

i : M −→ H

x �−→ x

is bounded from M into H. Now, since for any x ∈ M = M(i), we have

‖x‖M(i) = ‖i(x)‖M(i) = ‖x‖M,

the space M coincides with M(i), that is

M ≖ M(i).

Conversely, if M ≖ M(A), where A : H1 −→ H is bounded, then M is

boundedly contained in H. Thus, we get the following result.

Theorem 16.3 Let M and H be two Hilbert spaces. Then the following

assertions are equivalent.

(i) The space M is boundedly contained in H (respectively contractively;

respectively isometrically).

(ii) There exists a bounded operator A ∈ L(H1,H) (respectively a contrac-

tion; respectively an isometry) such that

M ≖ M(A). (16.12)

In the next section, we examine the problem of uniqueness in the represen-

tation of M given by (16.12). See also Exercise 16.2.2.

The following result shows that, if A ∈ L(H) is an orthogonal projection,

then in fact we do not obtain a new structure on M(A). The Hilbert space

structure of M(A) is precisely the one it has in the first place as a closed

subspace of H.

Lemma 16.4 Let M be a closed subspace of H, and let PM ∈ L(H) denote

the orthogonal projection on M . Then

M(PM ) ≖ M,

i.e. M(PM ) = M and ‖w‖M(PM ) = ‖w‖H for all w ∈ M .

Proof The identity M(PM ) = M is an immediate consequence of the defi-

nition of an orthogonal projection. Remember that kerPM = M⊥, and since

M is closed, (M⊥)⊥ = M . Hence, by (16.5),

‖PMx‖M(PM ) = ‖P(kerPM )⊥x‖H = ‖PMx‖H (x ∈ H1).
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16.1 The space M(A) 7

Lemma 16.5 Let A ∈ L(H1,H) and B ∈ L(H). Then

‖Bw‖M(BA) ≤ ‖w‖M(A) (w ∈ M(A)).

Proof It is clear that BM(A) ⊂ M(BA). Put w = Ax, x ∈ H1. Hence, by

(16.5),

‖Bw‖M(BA) = ‖P(kerBA)⊥x‖H1
and ‖w‖M(A) = ‖P(kerA)⊥x‖H1

.

But, since kerBA ⊃ kerA, we have

‖P(kerBA)⊥x‖H1
≤ ‖P(kerA)⊥x‖H1

.

Therefore, we deduce that ‖Bw‖M(BA) ≤ ‖w‖M(A).

Exercises

Exercise 16.1.1 Let H be a set endowed with two inner products whose

corresponding norms are complete and equivalent, i.e.

c ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 (x ∈ H),

where c and C are positive constants. Show that (H, 〈 ·, · 〉1) is boundedly

contained in (H, 〈 ·, · 〉2), and vice versa.

Exercise 16.1.2 Let (X,A) be a measurable space, and let μ and ν be two

positive measures on the σ-algebra A. Suppose that

μ(E) ≤ ν(E) (16.13)

for all E ∈ A. Show that L2(ν) is contractively contained in L2(μ).

Hint: The assumption (16.13) can be rewritten as
∫

X

χE dμ ≤

∫

X

χE dν,

where χE is the characteristic function of E. Take linear combinations with

positive coefficients, and then apply the monotone convergence theorem to

obtain
∫

X

ϕdμ ≤

∫

X

ϕdν

for all positive measurable functions ϕ. Hence, deduce ‖f‖L2(µ) ≤ ‖f‖L2(ν).

Exercise 16.1.3 Let ϕ ∈ L∞(T), and consider the multiplication operator

Mϕ : L2(T) −→ L2(T)

f �−→ ϕf,
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8 The spaces M(A) and H(A)

which was studied in Section 7.2. Show that

‖ϕf‖M(Mϕ) =

(

1

2π

∫

T\E

|f(eit)|2 dt

)1/2

(f ∈ L2(T))

and that

〈ϕf, ϕg〉M(Mϕ) =
1

2π

∫

T\E

f(eit) g(eit) dt (f, g ∈ L2(T)),

where E = {ζ ∈ T : ϕ(ζ) = 0}. The first identity reveals that M(Mϕ) =

ϕL2(T) is contractively contained in L2(T). Under what condition is M(Mϕ)

isometrically contained in L2(T)?

Exercise 16.1.4 Let Θ be an inner function for the open unit disk, and let

MΘ : H2(D) −→ H2(D)

f �−→ Θf.

Show that

‖Θf‖M(MΘ) = ‖f‖H2(D) = ‖Θf‖H2(D) (f ∈ H2(D)).

Thus M(MΘ) = ΘH2 is isometrically contained in H2(D).

Hint: MΘ is injective and |Θ| = 1 almost everywhere on T.

Exercise 16.1.5 Let A ∈ L(H1, H2) and α ∈ C, α �= 0. Show that

‖w‖M(αA) =
‖w‖M(A)

|α|
(w ∈ M(A)).

16.2 A characterization of M(A) ⊂ M(B)

If the operators A ∈ L(H1,H) and B ∈ L(H2,H) are such that M(A) ⋐

M(B), then we surely have M(A) ⊂ M(B). Conversely, if the set inclusion

M(A) ⊂ M(B) holds, then the inclusion mapping

i : M(A) −→ M(B)

w �−→ w

is well defined. But, in fact, more is true. The way that the structures of M(A)

and M(B) are defined forces i to be a bounded operator and thus M(A) is

boundedly contained in M(B).

Lemma 16.6 Let A ∈ L(H1,H) and B ∈ L(H2,H) be such that M(A) ⊂

M(B). Then M(A) ⋐ M(B).
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16.2 A characterization of M(A) ⊂ M(B) 9

Proof We need to show that the inclusion i : M(A) −→ M(B) is a bounded

operator. The justification is based on the closed graph theorem. Let (wn)n≥1

be a sequence in R(A) that converges to w in M(A) and to w′ in M(B). Note

that iwn = wn. Since M(A) and M(B) are both boundedly embedded into

H , the sequence (wn)n≥1 also tends to w and to w′ in the norm of H . Then,

by uniqueness of the limit, we must have w = w′. Hence, the closed graph

theorem implies that i is continuous.

Lemma 16.6 shows that the new notation ⋐ is not needed in the study of

M(A) spaces. However, we emphasize that M(A) = M(B) is not equivalent

to M(A) ≖ M(B). The identity M(A) = M(B) implies that

c ‖w‖M(B) ≤ ‖w‖M(A) ≤ C ‖w‖M(B),

while in the definition of M(A) ≖ M(B) we assumed that

‖w‖M(A) = ‖w‖M(B).

To use Lemma 16.6, we naturally ask under what conditions the set inclusion

M(A) ⊂ M(B) holds. Let us treat a sufficient condition. Suppose that there is

a bounded operator C ∈ L(H1,H2), with ‖C ‖ ≤ c, such that A = BC. Since,

for each x ∈ H1, Ax = B(Cx), we have the set inclusion M(A) ⊂ M(B).

Thus, by Lemma 16.6, M(A) ⋐ M(B). Moreover, by (16.7) and the fact that

‖C ‖ ≤ c, we have

‖Ax‖M(B) = ‖BCx‖M(B) ≤ ‖Cx‖H2
≤ c ‖x‖H1

.

By (16.5), replacing x by P(kerA)⊥x gives us

‖Ax‖M(B) ≤ c ‖Ax‖M(A) (x ∈ H1).

Hence, the norm of i is less than or equal to c. This means that M(A) is

boundedly contained in M(B) and, in particular, if c = 1, M(A) is contrac-

tively contained in M(B). What is surprising is that the existence of C is also

necessary for the bounded inclusion of M(A) in M(B).

Theorem 16.7 Let A ∈ L(H1,H) and B ∈ L(H2,H), and let c > 0. Then

the following are equivalent.

(i) AA∗ ≤ c2BB∗.

(ii) There is an operator C ∈ L(H1,H2), with ‖C ‖ ≤ c, such that A = BC.

(iii) We have M(A) ⊂ M(B) with

‖w‖M(B) ≤ c ‖w‖M(A) (w ∈ M(A)),

i.e. the inclusion i : M(A) −→ M(B) is a bounded operator of norm

less than or equal to c.

In particular, M(A) →֒ M(B) if and only if AA∗ ≤ BB∗.
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10 The spaces M(A) and H(A)

Proof (i) ⇐⇒ (ii) This is the content of Theorem 7.11.

(ii) =⇒ (iii) This was discussed above.

(iii) =⇒ (ii) Take an element w = Ax ∈ M(A), with some x ∈ H1. Hence,

for each x ∈ H1, there is a y ∈ H2 such that

Ax = By. (16.14)

The element y is not necessarily unique. However, if By = By′, with y, y′ ∈

H2, then B(y − y′) = 0 and thus y − y′ ∈ kerB. In other words, we have

P(kerB)⊥y = P(kerB)⊥y
′. Therefore, the mapping

C : H1 −→ H2

x �−→ P(kerB)⊥y,

with y ∈ H2 given by (16.14), is well defined and

BCx = BP(kerB)⊥y = By = Ax (x ∈ H1).

This means that the definition of C is adjusted such that the identity A = BC

holds. Moreover, by (16.5) and (16.7) and our assumption,

‖Cx‖H2
= ‖P(kerB)⊥y‖H2

= ‖By‖M(B)

= ‖Ax‖M(B)

≤ c ‖Ax‖M(A)

≤ c ‖x‖H1
(x ∈ H1).

Hence, C is a bounded operator of norm less than or equal to c.

We gather some important corollaries below. The first one follows immedi-

ately from Theorem 16.7.

Corollary 16.8 Let A ∈ L(H1,H) and B ∈ L(H2,H). Then the following

statements hold.

(i) M(A) ≖ M(B) if and only if AA∗ = BB∗.

(ii) M(A) ≖ M(|A|), where |A| = (AA∗)1/2.

If the linear manifold R(A) is closed in H , then it inherits the Hilbert space

structure of H . One may wonder if this Hilbert space structure coincides with

the one we put on R(A) and called it M(A). The following corollary answers

this question.

Corollary 16.9 Let A ∈ L(H1,H). Then R(A) is a closed subspace of H

and ‖w‖M(A) = ‖w‖H, for each w ∈ M(A), if and only if A is a partial

isometry. In this case, we have

M(A) ≖ M(AA∗).
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