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Normed linear spaces and their operators

In this chapter, we gather some basic facts about complex normed linear spaces
and their operators. In particular, we discuss Banach spaces, Hilbert spaces and
their bounded operators. There is no doubt that the subject is very vast and it
is impossible to give a comprehensive treatment in one chapter. Our goal is to
recall a few important aspects of the theory that are used in the study of H(b)

spaces. We start by giving some examples of Banach spaces and introduce
some classic operators. Then the dual space is defined and the well-known
Hahn–Banach theorem is stated without proof. However, some applications
of this essential result are outlined. Then we discuss the open mapping theo-
rem (Theorem 1.14), the inverse mapping theorem (Corollary 1.15), the closed
graph theorem (Corollary 1.18) and the uniform boundedness principle (The-
orem 1.19). The common root of each of these theorems stems from the Baire
category theorem (Theorem 1.13). Then we discuss Banach algebras and intro-
duce the important concept of spectrum and state a simple version of the spec-
tral mapping theorem (Theorem 1.22). At the end, we focus on Hilbert spaces,
and some of their essential properties are outlined. We talk about Parseval’s
identity, the generalized version of the polarization identity, and Bessel’s in-
equality. We also discuss in detail the compression of an operator to a closed
subspace. Then we consider several topologies that one may face on a Hilbert
space or on the space of its operators. The important concepts of adjoint and
tensor product are discussed next. The chapter ends with some elementary facts
about invariant subspaces and the cyclic vectors.

1.1 Banach spaces

Throughout this text we will consider only complex normed linear spaces. A
complete normed linear space is called a Banach space. The term linear man-
ifold refers to subsets of a linear space that are closed under the algebraic op-
erations, while the term subspace is reserved for linear manifolds that are also
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2 Normed linear spaces and their operators

closed in the norm or metric topology. Nevertheless, the combination closed
subspace can also be found in the text. Given a subset E of a Banach space
X , we denote by Lin(E) the linear manifold spanned by E , which is the lin-
ear space whose elements are finite linear combinations of elements of E . The
closure of Lin(E) in X is denoted by SpanX (E), or by Span(E) if there is no
ambiguity.

We start by briefly discussing some relevant families of Banach spaces that
we encounter in the sequel. For a sequence z = (zn)n≥1 of complex numbers,
define

‖z‖p =

( ∞∑
n=1

|zn|p
)1/p

(0 < p <∞)

and

‖z‖∞ = sup
n≥1

|zn|.

Then the sequence space �p = �p(N), 0 < p ≤ ∞, consists of all sequences z
with ‖z‖p <∞. Addition and scalar multiplication are defined componentwise
in �p. With this setting, (�p, ‖ · ‖p), 1 ≤ p ≤ ∞, is a Banach space. The
sequence space

c0 = c0(N) = {z : lim
n→∞

zn = 0}

is a closed subspace of �∞. In certain applications, it is more appropriate to
let the index parameter n start from zero or from −∞. In the latter case, we
denote our spaces by �p(Z) and c0(Z).

For each n, let en be the sequence whose components are all equal to 0
except in the nth place, which is equal to 1. Clearly each en belongs to all
sequence spaces introduced above. These elements will repeatedly enter our
discussion.

Let (X,A, μ) be a measure space with μ ≥ 0. For a measurable function f ,
let

‖f‖p =

( ∫
X

|f |p dμ
)1/p

(0 < p <∞)

and let

‖f‖∞ = inf{M : |f(x)| ≤M, x ∈ X \ E, E ∈ A, μ(E) = 0 }.

Then the family of Lebesgue spaces

Lp(X,μ) = Lp(X) = Lp(μ) = {f : ‖f‖p <∞}

is another important example that we will need. To emphasize the role of μ, we
sometimes use the more detailed notation ‖f‖Lp(μ) for ‖f‖p. For 1 ≤ p ≤ ∞,
(Lp(X,μ), ‖ · ‖p) is a Banach space. In fact, the sequence spaces �p(N) can be
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1.1. Banach spaces 3

considered as a special family in this category. It is enough to let A = P(N),
the power set of N, and consider the counting measure

μ(E) =

{
n, if E is finite and has n elements,

∞, if E is infinite,

on N. Then we have �p(N) = Lp(N, μ).
Two more special classes are vital in practice. The unit circle T equipped

with the normalized Lebesgue measure

dm(eit) =
dt

2π

and the real line R equipped with the Lebesgue measure dt give rise to the
classic Lebesgue spaces Lp(T) and Lp(R). If E is a Borel subset of T, then
|E| will denote its length with respect to the normalized Lebesgue measure,
that is

|E| = m(E).

The Banach space (�∞, ‖ · ‖∞) is equipped with a third operation. Besides
vector addition and scalar multiplication, we have vector multiplication in this
space. Given x = (xn)n≥1 and y = (yn)n≥1 in �∞, let

x y = (xnyn)n≥1.

Clearly x y ∈ �∞, and �∞ with this operation is an algebra that satisfies

‖x y‖∞ ≤ ‖x‖∞ ‖y‖∞.

If a Banach space B is equipped with a multiplication operation that turns it
into an algebra, then it is called a Banach algebra if it satisfies the multiplica-
tive inequality

‖xy‖ ≤ ‖x‖ ‖y‖ (x ∈ B, y ∈ B). (1.1)

If, furthermore, the multiplication has a unit element, i.e. a vector e such that

x e = ex = x (x ∈ B)

and

‖e‖ = 1,

then it is called a unital Banach algebra. The sequence space �∞ is our first
example of a unital commutative Banach algebra with the unit element

e = (1, 1, 1, . . .).
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4 Normed linear spaces and their operators

Another example of a unital commutative Banach algebra is C(T), the fam-
ily of continuous functions on T endowed with the norm

‖f‖∞ = max
ζ∈T

|f(ζ)|.

The unit element is the constant function 1. The monomials

χn(ζ) = ζn (n ∈ Z, ζ ∈ T)

are clearly in C(T). With this notation, the unit element is χ0. However, for
simplicity, we usually write zn for χn. In particular, we denote the constant
function χ0 by 1.

A linear combination of χn, n ∈ Z, is called a trigonometric polynomial,
and the linear manifold of all trigonometric polynomials is denoted byP . How-
ever, if we restrict n to be a nonnegative integer, then a linear combination of
χn, n ≥ 0, is called an analytic polynomial, and the linear manifold of all an-
alytic polynomials is denoted by P+. The term “analytic” comes from the fact
that each element of P+ extends to an analytic function on the complex plane.
Similarly, P− denotes the linear manifold created by χn, n ≤ −1, and P0+

denotes the linear manifold created by χn, n ≥ 1. In other words, P0+ is the
linear manifold of analytic polynomials vanishing at 0.

The family of all complex Borel measures on the unit circle T is denoted
by M(T). The set of positive measures in M(T) is denoted by M+(T). Re-
call that all measures inM(T) are necessarily finite. The normalized Lebesgue
measure m is a distinguished member of this class. Another interesting exam-
ple is the Dirac measure δα, which attributes a unit mass to the point α ∈ T.
For each μ ∈ M(T), the smallest positive Borel measure ν that satisfies the
inequality

|μ(E)| ≤ ν(E)

for all Borel sets E ⊂ T is called the total variation measure of μ and is
denoted by |μ|. The total variation |μ| is also given by the formula

|μ|(E) = sup

n∑
k=1

|μ(Ek)|,

where the supremum is taken over all possible partitions {E1, E2, . . . , En} of
E by Borel sets. The norm of an element μ ∈ M(T) is defined to be its total
variation on T, i.e.

‖μ‖ = |μ|(T).

Then M(T), endowed with the above norm, is a Banach space. However,
with an appropriate definition of product (the convolution of two measures)
on M(T), this space becomes a commutative unital Banach algebra. But, for
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1.1. Banach spaces 5

our applications, we do not need to treat the details of this operation. A mea-
sure μ ∈ M(T) that takes only real values is called a signed measure. Note
that we assume in the definition of signed measure that they are finite.

The nth Fourier coefficient of a measure μ ∈M(T) is defined by

μ̂(n) =

∫
T

χ−n dμ =

∫
T

e−int dμ(eit) (n ∈ Z).

In the particular case dμ = ϕdm, where ϕ ∈ L1(T), we use ϕ̂(n) to denote
the nth Fourier coefficient of μ, that is

ϕ̂(n) =

∫
T

ϕχ−n dm =
1

2π

∫ 2π

0

ϕ(eit) e−int dt (n ∈ Z).

We refer to the sequence (ϕ̂(n))n∈Z as the spectrum of ϕ. For example, the
negative part of the spectrum of any analytic polynomials is identically zero.
The uniqueness theorem for the Fourier coefficients says that μ = 0 if and only
if μ̂(n) = 0, n ∈ Z.

There is a method to connect an arbitrary Lebesgue integral to a standard
Riemann integral on R. To do so, for a measurable function f defined on a
measure space (X,μ), we define the distribution function

mμ,f (t) = μ({x ∈ X : |f(x)| > t}).

For simplicity, instead of mμ,f , we sometimes write mμ or mf , or even m

whenever there is no confusion. The promised connection is described in the
following result.

Lemma 1.1 Let (X,μ) be a measure space, and let f : X −→ C be a
measurable function. Then, for any 0 < p <∞, we have∫

X

|f |p dμ =

∫ ∞

0

p tp−1mμ,f (t) dt.

Proof For x ∈ X and t > 0, define

Ax,t = {x ∈ X : |f(x)| > t}

and let χAx,t
be the characteristic function of the set Ax,t. Then, by Fubini’s

theorem, we have∫ ∞

0

p tp−1m(t) dt =

∫ ∞

0

p tp−1μ({x ∈ X : |f(x)| > t}) dt

=

∫ ∞

0

p tp−1

(∫
X

χAx,t
(x) dμ(x)

)
dt

=

∫
X

(∫ |f(x)|

0

p tp−1 dt

)
dμ(x)

=

∫
X

|f(x)|p dμ(x).
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6 Normed linear spaces and their operators

This completes the proof.

As a special case of Lemma 1.1, we have the interesting formula∫
X

|f | dμ =

∫ ∞

0

mμ,f (t) dt.

We will also need the following elementary result about convergence in
L1(T).

Lemma 1.2 Let f ∈ L1(T) and (fn)n≥1 be a sequence of nonnegative func-
tions in L1(T) such that ‖fn‖1 = ‖f‖1, n ≥ 1, and fn −→ f a.e. on T. Then
fn tends to f in L1(T), i.e.

lim
n→∞

‖fn − f‖1 = 0.

Proof Define the set En = {ζ ∈ T : fn(ζ) > f(ζ)}. Since ‖fn‖1 = ‖f‖1,
we have ∫

En

(fn − f) dm =

∫
T\En

(f − fn) dm.

This implies that

‖fn − f‖1 =

∫
T

|fn − f | dm

=

∫
En

(fn − f) dm+

∫
T\En

(f − fn) dm

= 2

∫
T\En

(f − fn) dm.

But fn − f −→ 0 and 0 ≤ f − fn ≤ f a.e. on T \ En. Hence, the dominated
Lebesgue convergence theorem implies that∫

T\En

(f − fn) dm −→ 0 (n −→∞),

which gives the result.

Exercises

Exercise 1.1.1 Show that, for each 0 < p < 1, ‖ · ‖p does not fulfill the
triangle inequality.
Remark: That is why �p, or more generally Lp(X,μ), 0 < p < 1, is not a
Banach space.
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1.1. Banach spaces 7

Exercise 1.1.2 Let p < ∞. Show that the linear manifold generated by en,
n ≥ 1, is dense in �p. What is the closure of this manifold in �∞?

Exercise 1.1.3 Show that �p, 0 < p <∞, is separable.
Hint: Use Exercise 1.1.2.
Remark: We recall that a space is called “separable” if it has a countable dense
subset.

Exercise 1.1.4 Show that �∞ is not separable.
Hint: What is ‖em − en‖∞?

Exercise 1.1.5 Consider the spaces of two-sided sequences,

�p(Z) =
{
(zn)n∈Z : ‖(zn)n∈Z‖pp =

∞∑
n=−∞

|zn|p <∞
}

and

�∞(Z) =
{
(zn)n∈Z : ‖(zn)n∈Z‖∞ = sup

n∈Z

|zn| <∞
}
.

Let x = (xn)n∈Z and y = (yn)n∈Z ∈ �1(Z). Define x ∗ y = (zn)n∈Z, where

zn =
∞∑

m=−∞
xm yn−m (n ∈ Z).

Show that the operation ∗ is well defined on �1(Z) and, moreover, that �1(Z)
equipped with ∗ is a unital commutative Banach algebra.
Remark: The operation ∗ is called convolution.
Hint: We have

∞∑
n=1

( ∞∑
m=−∞

|xm yn−m|
)

=

( ∞∑
m=−∞

|xm|
)( ∞∑

k=−∞
|yk|
)
.

Exercise 1.1.6 Let

�p(Z+) = { (zn)n∈Z ∈ �p(Z) : zn = 0, n ≤ −1 }.

Show that �p(Z+), 0 < p ≤ ∞, is closed in �p(Z).

Exercise 1.1.7 The family of sequences of compact support is defined by

c00 = {(zn)n≥1 : ∃ N such that zn = 0, n ≥ N}.

Show that c00 is dense in c0.
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8 Normed linear spaces and their operators

Exercise 1.1.8 Let (X,A, μ) be a measure space with μ ≥ 0. Show that

‖f‖∞ = inf{M : μ({x ∈ X : |f(x)| > M}) = 0}.

Exercise 1.1.9 Let (X,A, μ) be a measure space. Show that L∞(X) en-
dowed with the pointwise multiplication is a unital commutative Banach alge-
bra.

Exercise 1.1.10 Show that L1(R) equipped with the convolution operation

(f ∗ g)(x) =
∫
R

f(t) g(x− t) dt

is a nonunital commutative Banach algebra. Why does L1(R) not have a unit?

Exercise 1.1.11 Show that L1(T) equipped with the convolution operation

(f ∗ g)(eiθ) = 1

2π

∫
T

f(eit) g(ei(θ−t)) dt

is a nonunital commutative Banach algebra. Why does L1(T) not have a unit?

Exercise 1.1.12 Let (bk)k≥1 be a decreasing sequence of nonnegative real
numbers such that the series

∑∞
k=1 bk converges.

(i) Using Abel’s summation technique, show that

N∑
k=0

k(bk − bk+1) ≤
N∑

k=1

bk.

Deduce that the series
∑N

k=0 k(bk − bk+1) is convergent.

(ii) Show that the series
∑∞

k=1(bk − bk+1) is convergent and

bn =
∞∑

k=n

(bk − bk+1).

(iii) Deduce that

0 ≤ nbn ≤
∞∑

k=n

k(bk − bk+1).

(iv) Conclude that nbn −→ 0 as n −→∞.
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1.2. Bounded operators 9

Exercise 1.1.13 Let X be a Banach space, let E be a linear manifold of X
and let x ∈ X . Show that x ∈ Clos(E) if and only if there exists a sequence
(xn)n of vectors of E such that ‖xn‖ ≤ 1/2n, n ≥ 2 and

x =

∞∑
n=1

xn.

Hint: If x = limn→∞ un with un ∈ E, then consider a subsequence (uϕ(n))n
such that

‖uϕ(n+1) − uϕ(n)‖ ≤
1

2n
(n ≥ 1).

Then, put x1 = uϕ(1) and xn = uϕ(n) − uϕ(n−1), n ≥ 2.

1.2 Bounded operators

LetX ,X1 andX2 be normed linear spaces. The family of all linear and contin-
uous maps from X1 into X2 is denoted by L(X1,X2), and we will write L(X )

for L(X ,X ). Given a linear map A : X1 −→ X2, it is a well-known result that
A is continuous if and only if

‖A‖L(X1,X2) = sup
x∈X1
x �=0

‖Ax‖X2

‖x‖X1

<∞. (1.2)

If there is no ambiguity, we will also write ‖A‖ for ‖A‖L(X1,X2). A linear map
A belongs to L(X1,X2) if and only if it satisfies

‖Ax‖X2
≤ C‖x‖X1

(x ∈ X1) (1.3)

and ‖A‖ is the infimum of C satisfying (1.3). That is why the elements of
L(X1,X2) are called bounded operators. If X2 is a Banach space, then the
space L(X1,X2) endowed with the norm ‖ · ‖L(X1,X2) is also a Banach space.
In the special case where X1 = X2 = X is a Banach space, the space L(X ),
equipped with the composition of operators as its multiplication, is a unital
noncommutative Banach algebra.

In the definition (1.2), the supremum is not necessarily attained. See Exer-
cises 1.2.9 and 1.2.3. But if this is the case, any vector x ∈ X1, x �= 0, for
which

‖Ax‖X2
= ‖A‖ ‖x‖X1

is called a maximizing vector for A.
The operator A ∈ L(X1,X2) is called lower bounded or bounded below if

there is a constant c > 0 such that

‖Ax‖X2
≥ c‖x‖X1

(x ∈ X1).
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10 Normed linear spaces and their operators

It is easy to see that A is lower bounded if A is left-invertible, that is, there is
a bounded operator B ∈ L(X2,X1) such that BA = IX1

. The converse is true
in the Hilbert space setting.

For a bounded operator A : X1 −→ X2, the closed subspace

kerA = {x ∈ X1 : Ax = 0}

is called the kernel of A. The kernel plays a major role in our discussion.
Another set that frequently appears in this subject is the range of A,

R(A) = {Ax : x ∈ X1},

which is a linear manifold of X2. Note that, contrary to the kernel, the range
of a bounded operator is not necessarily closed. Nevertheless, if A is lower
bounded, then the kernel of A is trivial (reduced to {0}) and the range of A is
closed if X1 is a Banach space. Conversely, if A is one-to-one and has a closed
range, and if X1 and X2 are Banach spaces, then A is lower bounded. This is
a profound result and will be treated after studying the open mapping theorem
(Corollary 1.17).

An operator A ∈ L(X ) is said to be power bounded if there exists a constant
C > 0 such that

‖An‖ ≤ C (n ≥ 0). (1.4)

More restrictively, A is said to be polynomially bounded if there exists a con-
stant C > 0 such that

‖p(A)‖ ≤ C‖p‖∞ (1.5)

for every analytic polynomial p, where ‖p‖∞ = sup|z|=1 |p(z)|. Clearly, a
polynomially bounded operator is also power bounded. But the converse is not
true.

A linear map from a normed linear space X into the complex plane C is
called a functional. The family of all continuous functionals on X is called the
dual space of X and is denoted by X ∗. The vector space X ∗ equipped with the
operator norm

‖f‖X∗ = sup
‖x‖X≤1

|f(x)| (f ∈ X ∗)

is a Banach space. If there is no ambiguity, we will also write ‖f‖ for ‖f‖X∗ .
Characterizing the elements ofX ∗ is an important theme in functional analysis,
and it has profound applications. Since X ∗ is a normed linear space, we can
equally consider the dual of X ∗, which is called the second dual of X and is
naturally denoted by X ∗∗. The mapping

X −→ X ∗∗

x 
−→ x̂,
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