

Index

AAs. See assigned amounts Algeria, FITs in, 118 AAUs. See assigned amount units alkaline-type batteries, 238 absorbed glass mat (AGM) lead acid batteries, alliance of small islands states (AOSIS), 197 alternative depreciation system (ADS), 57 ACCC HTC. See aluminum conductor, composite alternative transportation credits, for LEED, 225 core HTC aluminum conductor, composite core (ACCC) ACCR HTC. See aluminum conductor composite HTC, 215-16 reinforced HTC aluminum conductor, steel supported (ACSS) accreditation by independent entity (AIE), 196 HTC, 215, 216 ACSS HTC. See aluminum conductor, steel aluminum conductor composite reinforced supported HTC (ACCR) HTC, 215 additionality, in Kyoto Protocol, 194, 196 AM. See air mass ambient humidity, PV technologies, 32 ADS. See alternative depreciation system affordable housing projects, under CSI, 99 ambient temperature, PV technologies, 32 afforestation, 197 American Recovery and Reinvestment Act, 76 AGM lead acid batteries. See absorbed glass mat analytical software, for cost analysis. See also Solar lead acid batteries Advisor Model; Solar Power Econometric Analysis System agreements. See also commercial leases; municipal leases; Power Purchase Agreements; taxcomponents, 150-1 construction costs, 156-57 exempt municipal leases CER units, international applications of, 192 CSI compliance, 151 creditor, 75 for design calculations, 50-2, 153-55 for dual axis platform systems, 168-69 ERPA, 199 intercreditor, 75 first life cycle, 161–62 in Kyoto Protocol, international non-treaty, 197 first year performance, 157-60 lease-to-own, 114 for future cost-to-value calculations, 159-60 loan, 74-5 long-term energy savings, 162-5 off-take contractual, 74 power output computations, 155-56 shareholder, 74 PTC values, 152 SPPAs, 75-6, 79-81, 110-11, 115 PV module power output normalization, 151–2 system operation and maintenance guarantee second life cycle, 162 documents, 73 for single axis platform systems, 168-69 agriculture, climate change effects, 2 solar power economics analytical software, 150 AIE. See accreditation by independent entity air mass (AM), 33 summary overview, 165-8 air pollution system loss computation, 152-3 abetment considerations, 3 AOSIS. See alliance of small islands states IPCC Directive, 200 assigned amount units (AAUs), 197 solar energy power systems, 168 assigned amounts (AAs), 197 air quality Australia climate change and, 3 FITs in, 118-19 management plan credit, in LEED, 230 Kyoto Protocol, 191 Albedo Effect, 32 automobile lead acid batteries, 237-8

barometric pressure, 34	program budget, 86–7
batteries. See also flow batteries; foam lead acid	public and charter schools under, funding for,
batteries; lead acid storage batteries; Lithium-	
ion batteries	purpose, 85
alkaline-type, 238	PV system sizing requirements, 91–2 reservation form calculations, 97–9
cold temperature operation for, 248–9 hot temperature operation for, 249–51	by sector type, 87–9
lead carbon batteries, 255	solar power contractors under, 91
LFP, 257–9	solar power economics analytical software, 151
lithium cobalt oxide, 257	California Sustainable Building Task Force
lithium manganese oxide, 257	(SBFT), 223
lithium nickel oxide, 257	Canada, FITs in, 119
Nickel-Metal Hydride, 243	cap and trade system, 197–8, 199
SMC batteries, 259	carbon credit trading, 185, 190–200
sodium sulfur, 259–60, 261–4	AIE, 196
VRBs, 263–5	benefits of, 194
ZnBr batteries, 265–7, 268	CER units, 191–2
bio-fuel power production, in U.S., 14	crediting period for, 198
BIPVs. See Building Integrated Photovoltaics	development of, 190
bond issues, 83, 101	emission allowances, 191
Brownfield redevelopment credits, for LEED, 225	within EU, 192
bubble combination, in Kyoto Protocol, 197	GHG reductions, 194-5
Building Integrated Photovoltaics (BIPVs), PBI,	global warming and, 192–3
90	through international markets, 192
building reuse credit, in LEED, 228-9	purpose of, 185
bypass diodes, 129	as scheme, 190–1
	tax credits with, 194–5
California. See also California Solar Initiative;	carbon cycle, 185
Green Building Action Plan	carbon dioxide (CO ₂), 185-7. See also carbon
CPUC, 224	credit trading
feed-in tariffs, 103–6	atmospheric concentrations, 185
NEA applications in, 116	carbon cycle, 185
RPS in, 103–4	carbonia glass, 186
solar power system property tax exemptions, 57	carbonic acid, 188
California Energy Commission (CEC), 85	in chemical industry, 189
feed-in tariffs report, 103–6	commercial applications, 188
California Public Utilities Commission (CPUC),	in decaffeination processes, 188
224	dry ice, 186
California Solar Initiative (CSI), 48, 85–93.	in fertilizer production, 189
See also Performance-Based Incentive	in glass-making, 189
affordable housing under, funding for, 99	industrial manufacture of, 187
application procedures, 94–5	in leavening agents, 188
calculation procedures, for incentive payments,	from limestone decomposition, 187
96–9	in paper-making, 190
calculator, for solar power system design, 50	in pesticides, 188, 189
CEC regulation, 85	in petroleum industry, 189
claims procedures, 95	in plastic manufacturing, 189
energy efficiency audit, 92	production sources, 185
EPBB, 85–6, 89–90, 93, 94, 96	properties, 185–6
equipment sellers under, 91, 99 fund distribution, 86	sequestration, 187–8
grid interconnection requirements, 93	in soaps and detergents, 190 soda ash, 189
host customers, 90–1	
incentive payments, 88–124	sublimation process, 186 toxicity levels, 186
inspection requirements, 93	from vegetable matter combustion, 185–6
insurance requirements, 93	in water treatment, 190
limitations, 93–4	carbon dioxide capture and storage (CCS), 198
metering requirements, 93	carbon dioxide capture and storage (CCS), 198 carbon dioxide (CO_2) emissions, 2. See also carbo
PBI, 85, 90, 93, 94–5	credit trading
performance permanency requirements, 92	AAs, 197
power generation targets, 86–8	AAUs, 197 AAUs, 197
power generation targets, 60-6	111100, 171

banking of, under Kyoto Protocol, 197	CO ₂ emissions, 7
cap and trade system, 197–8, 199	ecological effects of, 13
under carbon credit trading, 191	future cost projections, 7–8
CER units, 191–2	IGCC technology, 7
coal-based power generation, 7	new plant construction, 7
emissions-to-cap calculations, 199	resource limits, 14
future estimations, 2, 5	cogeneration systems, energy costs, 4
solar energy power system, 168	cold temperature operation, for batteries
carbon dioxide equivalent (CO _{2e}), 198	cold cranking, 248
carbon neutrality, 198	foam lead acid batteries, 249
carbon sequestration, 187–8	lead acid batteries, 248–9
in ocean waters, 188	Collaborative for High Performance Schools
storage for, 188	(CHPS), 224
terrestrial, 200	commercial buildings, under Green Building
carbonia glass, 186	Action Plan, 224
carbonic acid, 188	commercial leases, 101–2
carport-mounted solar power systems, 144	communication systems
Carter, Jimmy, 116	in electrical power grid systems, 208
CCS. See carbon dioxide capture and storage	in mesh networking, 216–17
	concentrated solar power (CSP) technologies, 17
CDM. See Clean Development Mechanism	in SAM, 52
CEC. See California Energy Commission	
certified emission reduction (CER) units, 191 for GHGs, 191–2	configuration, of solar power systems
	inverter technologies, 131
international agreements, 192	operational costs, 131
certified wood use credit, in LEED, 230	power output performance, 130–2
chemical industry, CO ₂ production, 189	PV modules, 139
China	real-time monitoring, 130
energy production estimations, 11	solar topology design, 131
FITs in, 119	construction waste management credits, for
Kyoto Protocol and, 195	LEED, 229
solar energy production in, 16, 17	consumer electronic devices, 208
CHPS. See Collaborative for High Performance	contracts. See also agreements; commercial
Schools	leases; municipal leases; Power Purchase
Clean Development Mechanism (CDM), 194, 198	Agreements; tax-exempt municipal leases
additionality, 194, 196	ESPC, 54
limitations of, 195	EUL, 54–5
Clear Skies Act Initiative, 198	off-take agreements, 74
climate change	for solar energy power systems, 110
agricultural effects, 2	for SPPA timelines, 110–11
CO ₂ emissions, 2, 5, 7	third-party ownership, 71
electrical energy demand, 2	third-party ownership, in PPAs, 71
energy escalation cost projections, 3–4	UESC, 54
environmental concerns, 4–7	control devices
forestry effects, 2	for EVs, 220
Greenhouse Effect, 1, 2, 5, 7	for grid monitoring, 220
human health risks, 3	load control switches, 219
Kyoto Protocol, 8	for residential appliances, 219
natural habitat effects, 3	for smart grid systems, 219–20
pollution abetment consideration, 3	corrosion failure, of lead acid batteries, 242
regional air quality effects, 3	costs
renewable fuels, 1–2	climate change, energy escalation projections,
rising ocean levels, 3	3–4
smart grid systems and, 218–19	coal-based electric power generation, 7–8
social concerns, 4–7	cogeneration systems, 4
surface temperature changes, 1, 2	configuration of solar power systems, 131
water resources, 2	DCC, 58-9
CO ₂ . See carbon dioxide; carbon dioxide	from dust accumulation, 128
emissions	for electrical energy, 37, 204–5
CO _{2e} . See carbon dioxide equivalent	electrical energy demand, parity with grid
coal-based power generation, 7–9.	
See also electrical energy demand	power, 17–18 engineering component analysis, 47

374 Index

MAC, 200 rapid renewable materials use credit, 229 maintenance, for SAM, 59 recyclable storage credits, 228 per kilowatt, for flow batteries, 268 recycled content credits, 229 PV model financing, 21-2 reduced water usage credits, 227 SAM, 52-3, 59 regional materials use credits, 229 solar energy power efficiency, 107 site selection credits, 225 solar energy power systems, 12, 38, 59-62, 107 storm water management credits, 225-6 solar energy production investment, 12 system controllability credit, 231 solar power output performance, 132-3 thermal comfort credit, 231 SPSEAS, 148-50 ventilation improvement credits, 230 system training curriculum, 44 creditor agreements, 75 unit cost of electrical energy, 37 intercreditor, 75 cost analysis, solar power systems design, 46-9. CSI. See California Solar Initiative CSP technologies. See concentrated solar power See also Modified Accelerated Cost Recovery System; Solar Advisor Model technologies additional cost considerations, 59-62 customer technical training, solar system design, in California, property tax exemptions, 57 construction and integration costs, 47-9 Czech Republic, FITs in, 119 CSI calculator, 50 DCC, 58-9 DACS. See Data Acquisition and Control System electrical energy cost increases, 62 daily insolation, 26 engineering cost component analysis, 47 Data Acquisition and Control System (DACS), 140 ESPC, 54 EUL Contract, 54-5 DC (direct current) power financial analysis, 48 PV strings, 140 grid power energy expenditures, 49 solar energy system design maintenance, 46 indirect capital costs, 59 DCC. See direct capital costs DC-to-DC peak inverter technologies, 133 maintenance costs, 62 operational costs, 62 reliability, 137 output performance analysis, 48 Debs Park Audubon center, 232-4 PBI, 48 de-bundling, 197 PPAs, 47, 48, 49, 61 decaffeination processes, 188 production investment, 12 declination angle considerations, 26 ROI in, 65-6 deep-cycle lead acid batteries, 238 plates in, 239 sample econometrics case study, 49 software, 50-2 deep-discharge lead acid batteries, 238 design, solar energy systems. SPSEA, 47 UESC, 54 See also configuration, of solar power cost per kilowatt, for flow batteries, 268 systems; cost analysis, solar power systems CPUC. See California Public Utilities Commission design; system training curriculum, solar power system design credits, for LEED. See also carbon credit trading air quality management plan credit, 230 analytical software for, 50-2, 153-55 alternative transportation credits, 225 client technical representatives, 41-2 Brownfield redevelopment credits, 225 commissioning, 41-2 building reuse credit, 228-9 consultant responsibilities, 38 certified wood use credit, 230 customer technical training, 42 construction waste management credits, 229 DC current knowledge, 46 development density credits, 225 engineering details, 39-40 evaluation and analysis, 39-40 habitat conservation credits, 225 heat island effect credits, 226 executive training seminar, 45-6 feasibility studies, 38-9 indoor chemical and pollutant source control credit, 231 integration supervision, 40 innovation in design credits, 231-2 maintenance, 46 innovative water technologies credit, 226 project management, 40-1 landscaping credits, 226 project supervision, 41-2 light pollution reduction credits, 226 scope of work, 40 low-emitting materials credit, 231 topology, 131 material reuse credits, 229 detergents. See soaps and detergent One Point accreditation credit, 232 manufacturing outdoor air delivery credits, 230 development density credits, for LEED, 225 outdoor views credit, 231 direct capital costs (DCC), 58-9

battery systems, 58	Emergency Economic Stabilization Act (U.S.),
inverter systems, 58	75–6
PV systems, 58	emission allowances
direct current power. See DC power	carbon credit trading, 191
dispatchable energy, 202	CER units, 191–2
dry ice, 186	emissions banking, 197
dual axis platform type, PV technologies, 27-8	emissions-to-cap calculations, under Kyoto
analytical software for, 168–69	Protocol, 199
dust accumulation, solar power output	under ERPA, 199
performance and, 125–9	Emission Reduction Purchase Agreement
granular data acquisition system, 128	(ERPA), 199
projected costs from, 128	emissions-to-cap calculations, under Kyoto
shading strategies, 128–9	Protocol, 199
shading strategies, 120)	energy conservation
earthquakes	in LEED, as credit, 227
ground-mounted solar power farms during, 145	with smart grid systems, 218
roof mount solar power systems during, 142–3	energy efficiency audit, 92
EEX. See European Energy Exchange	energy escalation costs, from climate change, 3–4
efficiency, of power systems	Energy Policy Acts (U.S.), 62
under Green Building Action Plan, 223	PPAs under, 71
smart grid systems, 218	energy production. See also renewable fuels
solar energy power systems, costs of, 107	agricultural effects, 2
water, 226–7	air quality effects, 3
electrical energy. See also electrical power grid	in China, 11
systems	collective responsibility for, 12–13
demand and supply controls for, in smart grid	in developing nations, 11
systems, 203–4	Earth surface temperature changes, 1, 2
kilowatt-hours, 37	ecological effects, 11–12. See also climate
in smart grid systems, use costs, 204–5	change
unit cost of energy, 37	feedstock for, 20
use costs, 37, 204–5	forestry effects, 2
electrical energy demand	human population growth, 13
climate change effects, 2	in India, 11
cost parity with grid power, 17–18	natural habitat effects, 3
HDI, 5–7, 13	rising ocean levels, 3
in smart grid systems, demand and supply	in U.S., 11–12
controls, 203–4	water resources, 2
electrical power grid systems, 207. See also high	Energy Savings Performance Contract (ESPC), 54
temperature conductors; mesh networking	Energy Service Company (ESCO), 54
communication systems in, 208	energy storage systems. See also batteries; flow
consumer electronic device use, 208	batteries; foam lead acid batteries; lead acid
HTCs, 215	storage batteries
load control switches, 214	applications of, 269–7
modernization of, with smart grid systems,	categories, 235
209–10	characteristics of, 268–7
municipal grids, 207–8	on demand needs for, 235
peak power consumption controls, 211	energy applications and, 236
residential networking systems, 208	load leveling, 236
synchronized interconnections, 211–12	power delivery and, 236
VFTs, 212	ramping, 236
Wide Area Synchronous Grid, 211–12	energy-efficiency lease, 82–3
electrical vehicles (EVs), 219	engineering cost component analysis, 47
control devices for, 220	Engineering Procurement Construction (EPC)
LIBs in, 243	documents, 72–3
Nickel-Metal Hydride batteries in, 243	Enhanced Use Lease (EUL) Contract, 54–5
electrolytes	environmental design. See design, solar energy
in flow batteries, 261	systems; Green Building Action Plan;
in LIBs, 256	leadership in energy and environmental
in ZnBr batteries, 266	design
electron charge transfer, in REDOX	Environmental Protection Agency (EPA), 3
process, 263	environmental tobacco smoke (ETS), 230

EPA. See Environmental Protection Agency	financing, solar power projects, 69-70, 102-3
EPBB. See Expected Performance-Based Buy Down	limited resource, 72 long-term industrial, 71–2
EPBI. See Expected Performance-Based	PPAs, 72, 76
Incentive	PV model costs, 21–2
EPC documents. See Engineering Procurement	risk allocation, 103
Construction documents	fire hazards
ERPA. See Emission Reduction Purchase	ground-mounted solar power farms, 145
Agreement	roof mount solar power systems, 142
ESCO. See Energy Service Company	Firefly Energy, 244–5. See also foam lead acid
ESPC. See Energy Savings Performance Contract	batteries; Microcell foam lead acid batteries
etching processes, 159	3D cell technology, 245–7
ETS. See environmental tobacco smoke	3D2 cell technology, 254–5
EU. See European Union	first life cycle, for solar energy systems, 161–62
EUL Contract. See Enhanced Use Lease Contract	first year performance, for solar energy power
European Continental Grid, 206	systems, 157–60
European Energy Exchange (EEX), 211–12	FITs. See feed-in tariffs
European Union (EU)	fixed angle platform type, PV technologies, 27–8
carbon credit trading within, 192	flooding hazards, for ground-mounted solar power
EEX, 211-12	farms, 145
SuperSmart Grid in, 205, 206-7	flow batteries, 261–9
synchronized electrical power grid	cost per kilowatt, 268
interconnections, 211–12	electrolytes in, 261
EVs. See electrical vehicles	future applications, 268
Expected Performance-Based Buy Down	REDOX process, 261–3, 264–8
(EPBB), 85-6, 89-90	for solar energy power systems, 268
application steps, 94	VRB technology, 263–5
BIPVs, 89	ZnBr batteries, 265–7, 268
calculation procedures, 97–9	foam lead acid batteries, 240–1, 244–5
inspection requirements, 93	architecture of, 244
payment structure, 96	charge per volume for, 245
Expected Performance-Based Incentive (EPBI),	cold temperature operation, 249
50	commercial applications, 245
extended life cycle. See second life cycle, for solar	design objectives, 240–1
power systems	electrode surface area, 246–7
6 7 7 7 7	historical development, 240
feasibility studies, solar energy system design,	hot temperature operation, 249–51
38–9	life cycle improvements, 252–3
project outlines, 39	low self-discharge rates, 253
project site surveys, 38–9	Microcell, 240, 244–5
system training curriculum, 44	OCV in, 247
topology mapping, 39	performance summary for, 253–4
feed-in tariffs (FITs), 115–17	PSoC regimes in, 253
in California, 103–6, 124	spatial efficiency, 247
in China, 119	sulfation failure, 248, 253
electricity rates, 116–17	3D2 technology, 254–5
in Germany, 119–21 in Hawaii, 124	3D cell technology, 245–7 utilization levels, 247
in India, 121	forestry, climate change effects, 2
in international economic policies, 115, 118–23 objectives, 115	fossil fuels, 1. See also coal-based power generation; natural gas power generation
origins, 116	CO ₂ emissions, 2
tariff digression, 115	early historical uses of, 221
tariff regression, 115	carry historical uses of, 221
in U.S., 124	gelled type lead acid batteries 237
feedstock	gelled -type lead acid batteries, 237 geothermal energy production, 1–2
for alternative energy sources, 15	feedstock, 15
for energy production, 20	in U.S., 14
solar PV technologies, 20	Germany
for sustainable energy systems, 14–15	FITs in, 119–21
fertilizer production, 189	PV technologies in 17

Index 377

solar energy production, 17 system controllability credit, 231 Gevorkian, Peter, 10 thermal comfort credit, 231 GHGs. See greenhouse gases USGBC rating systems, 222-3 ventilation improvement credits, 230 GIS. See green investment scheme water efficiency measures, 226-7 glass-making, 189 global warming, carbon credit trading and, 192-3 green energy pricing programs, 114 global warming potential (GWP), 199 green investment scheme (GIS), 199 Green Building Action Plan, 222-34. Greenhouse Effect, 1 See also indoor environmental quality CO₂ emissions, 2, 5, 7 fossil fuels, 1 requirements additional commissioning credits, 228 Kyoto Protocol, 8 air quality management plan credit, 230 greenhouse gases (GHGs) alternative transportation credits, 225 AAs in, 197 Brownfield redevelopment credits, 225 AAUs, 197 building reuse credit, 228-9 auctioning of, under Kyoto Protocol, 197 carbon credit trading, 194-5 certified wood use credit, 230 CHPS criteria for, 224 CER credit transactions, 191-2 for commercial buildings, 224 under Kyoto Protocol, 194-5, 199 construction waste management credits, 229 smart grid systems and, 218 CPUC and, 224 grid parity, 117 Debs Park Audubon center, 232-4 grid power energy expenditures, 49 design goal evaluation prerequisites, 227 sodium sulfur batteries and, 259-60 development density credits, 225 SPSEAS, 150 ground-mounted solar power farms, 144-7 energy calculations in, 227–8 energy efficiency standards, 223 during earthquakes, 145 energy optimization performance credit, 227 fire hazards, 145 financing under, 223-4 floods, 145 WISPR, 145-7 habitat conservation credits, 225 heat island effect credits, 226 Gsänger, Stefan, 122 indoor chemical and pollutant source control GWP. See global warming potential credit, 231 innovation in design credits, 231-2 habitat conservation credits, for LEED, 225 innovative water technologies credit, 226 Hawaii, FITs in, 124 for institutional buildings, 224 hazard mitigation, for solar power systems landscaping credits, 226 for dust accumulation, 125-9 leadership principles, 224 fire, 142, 145 light pollution reduction credits, 226 for flooding, 145 low-emitting materials credit, 231 for ground-mounted solar power farms, 145 material reuse credits, 229 for roof mount solar power system, 142 materials and resources in, 228-30 WISPR, 141-2, 146 HDI. See Human Development Index measurement and verification credits, 228 minimum energy performance prerequisites, heat island effect credits, for LEED, 226 high temperature conductors (HTCs), 215 municipal/state code compliance, 227 ACCC, 215-16 One Point accreditation credit, 232 ACCR, 215 on-site renewable energy credit, 227 ACSS, 215, 216 outdoor air delivery credits, 230 host countries, under Kyoto Protocol, 198, 199 outdoor views credit, 231 host customers, 90-1 for public buildings, 222 hot temperature operation, for batteries, 249-51 rapid renewable materials use credit, 229 sodium sulfur batteries, 259 HTCs. See high temperature conductors recyclable storage credits, 228 recycled content credits, 229 Human Development Index (HDI), 5-7, 13 reduced water usage credits, 227 humidity. See ambient humidity, PV refrigerant management criteria, 227, 228 technologies hydroelectric power generation, 13 regional materials use credits, 229 **SBTF**, 223 early historical uses of, 221 for schools, 224 feedstock, 15 site selection credits, 225 in U.S., 14 smart grid system use credits, 228 storm water management credits, 225-6 IEQ requirements. See indoor environmental sustainable building credits, 224-6 quality requirements

IGCC technology. See Integrated Gasification	Japan
Combined Cycle technology	PV technologies in, 17
incentives. See also Performance-Based Incentive	solar energy production, 17
for commercial solar energy production, 63–4	Vata Grag 222
CSI, 88–124 EPBI, 50	Kats, Greg, 222 Kelley, Kurt, 240
independent power providers (IPPs), 71	kilowatt-hours, 37
India	flow batteries, costs per kilowatt, 268
energy production estimations, 11	Kyoto Protocol, 8. See also carbon credit trading
FITs in, 121	AAs in, 197
Kyoto Protocol and, 195	AAUs in, 197
indoor chemical and pollutant source control	additionality in, 194, 196
credit, for LEED, 231	afforestation under, 197
indoor environmental quality (IEQ)	AIE in, 196
requirements, 230–1	allocation plans under, 197
air quality management plan credit, 230	allowance restrictions under, 195
ETS control prerequisites, 230	AOSIS under, 197
indoor chemical and pollutant source control credit, 231	auctioning of GHGs, 197 Australia and, 191
low-emitting materials credit, 231	baseline scenario in, 197
minimum prerequisites for, 230	bubble combination in, 197
outdoor air delivery credits, 230	cap and trade system, 197–8, 199
outdoor views credit, 231	carbon neutrality, 198
system controllability credit, 231	CDM, 194, 195, 196, 198
thermal comfort credit, 231	CER units, 191–2
ventilation improvement credits, 230	certification process, 198
Industrial Revolution, 5	China and, 195
innovation in design credits, for LEED, 231–2	Clear Skies Act Initiative, 198
innovative water technologies credit, for LEED,	CO _{2e} units, 198
226	crediting period in, 198
institutional buildings, under Green Building Action Plan, 224	de-bundling in, 197 emission allowances under, 191
insurance, for solar energy production, 55	emissions banking, 197
under CSI, 93	emissions-to-cap calculations, 199
Integrated Gasification Combined Cycle (IGCC)	ERPA, 199
technology, 7	establishment of, 190
Integrated Pollution Prevention and Control	GHG reductions, 194-5, 199
(IPCC) Directive, 200	GIS, 199
Intergovernmental Panel on Climate Change	Greenhouse Effect and, 8
(IPCC), 199	GWP in, 199
international smart grid systems, 206	host country approval guidelines, 198, 199
international transaction log (ITL) database, 199	India and, 195
inverter technologies	international non-treaty agreements within, 197
configuration of solar power systems, 131 DC-to-DC peak, 133, 137	IPCC Directive, 200 ITL database in, 199
micro-inverters, 134, 136–8	LDCs economic underwriting, 197
micro-power, 133	limitations of, 195–6
MPPT circuits, 136	MAC under, 200
string, 134, 136–8	operators, 191
investment tax credit (ITC), 63-5	reforestation under, 197
MACRS, 64–5	tax credits under, 194–5
IPCC. See Intergovernmental Panel on Climate	Umbrella group and, 200
Change	U.S. and, 191, 195
IPCC Directive. See Integrated Pollution	validation organizations under, 198
Prevention and Control Directive	Lordon and the feed EED 226
IPPs. See independent power providers Iran, FITs in, 121	landscaping credits, for LEED, 226 LDCs. See least developed countries
Isc. See short circuit current	lead acid storage batteries. <i>See also</i> foam lead acid
Israel, FITs in, 121	batteries
ITC. See investment tax credit	AGM, 237
ITL database. See international transaction log	automobile, 237–8
database	cold cranking, 248

Index 379

cold temperature operation, 248-9 regional materials use credits, 229 corrosion failure, 242 site selection credits, 225 deep-cycle, 238, 239 smart grid system use credits, 228 deep-discharge, 238 storm water management credits, 225-6 definition of, 237 sustainable building credits, 224-6 electric charge generation in, 237 system controllability credit, 231 energy discharge rates, 239-40 thermal comfort credit, 231 USGBC and, 221, 222 failure modes, 241-3 foam technology, 240-1 ventilation improvement credits, 230 gelled-type, 237 water efficiency measures, 226-7 hot temperature operation, 249-51 lease-to-own agreements, for ownership of solar life cycle, 243, 251–2 energy power systems, 114 life span, 238-40 least developed countries (LDCs), 197 major types, 237-8 leavening agents, 188 in marine engines, 238 LEED. See leadership in energy and power output, 240 environmental design in PV systems, 238 LFP batteries. See lithium-iron phosphate spatial efficiency in, 247 **batteries** LIBs. See lithium-ion batteries sulfation failure, 243 utilization levels, 247 life cycle lead carbon batteries, 255 first, analytical software for cost analysis, 161-62 leadership in energy and environmental design for lead acid storage batteries, 243, 251-3 (LEED). See also design, solar energy Microcell foam lead acid batteries, 252-3 systems; Green Building Action Plan; indoor second, analytical software for cost analysis, 162 environmental quality requirements SPSEAS financial analysis, 149-50 additional commissioning credits, 228 light pollution reduction credits, for LEED, 226 air quality management plan credit, 230 limestone decomposition, 187 alternative transportation credits, 225 lithium cobalt oxide batteries, 257 Brownfield redevelopment credits, 225 lithium manganese oxide batteries, 257 building reuse credit, 228-9 lithium nickel oxide batteries, 257 certified wood use credit, 230 lithium-ion batteries (LIBs), 243, 255-9 CHPS, 224 charge transfer electrochemistry, 256-7 construction waste management credits, 229 components, 256 development of, 255-6 Debs Park Audubon center, 232-4 design goal evaluation prerequisites, 227 electrochemistry in, 256 development density credits, 225 electrolytes in, 256 energy calculations in, 227-8 intercalation in, 256 energy optimization performance credit, 227 properties, 257-61 habitat conservation credits, 225 lithium-iron phosphate (LFP) batteries, 257-9 heat island effect credits, 226 load control switches, 214 indoor chemical and pollutant source control in control devices, 219 credit, 231 load leveling, 236 innovation in design credits, 231-2 loan agreements, 74-5 innovative water technologies credit, 226 longevity, of solar power system, PV modules, landscaping credits, 226 20 - 1.159light pollution reduction credits, 226 low-emitting materials credit, for LEED, 231 low-emitting materials credit, 231 low-voltage ride-through (LVRT), 205 materials and resources in, 228-30 synchronous generators, 205 materials reuse credits, 229 wind energy technology, 205 measurement and verification credits, 228 MAC. See marginal abatement cost minimum energy performance prerequisites, MACRS. See Modified Accelerated Cost municipal/state code compliance, 227 Recovery System One Point accreditation credit, 232 MANET. See Mobile Ad Hoc Networks on-site renewable energy credit, 227 marginal abatement cost (MAC), 200 outdoor air delivery credits, 230 marine engine lead acid batteries, 238 outdoor views credit, 231 material reuse credits, in LEED, 229 rapid renewable materials use credit, 229 maximum power point tracking (MPPT) circuits, 134-6 recyclable storage credits, 228 recycled content credits, 229 inverter technologies, 136 solar power charge regulators, 136 reduced water usage credits, 227 mean time between failures (MTBF), 132 refrigerant management criteria, 227, 228

mean time to repair (MTTR), 132	in U.S., 14
mesh networking	OCV. See open circuit voltage
communication systems in, 216–17	off-take contractual agreements, 74
MANET, 216	OLPC mesh communication system, 217
OLPC mesh communication system, 217	One Point accreditation credit, from LEED, 232
smart grid systems and, 216-18	open circuit voltage (OVC), 126-7
SMesh, 217–18	in foam lead acid batteries, 247
structure, 216	outdoor air delivery credits, for LEED, 230
in U.S., 217–18	outdoor views credit, for LEED, 231
Microcell foam lead acid batteries, 240, 244–5	ownership, of solar energy power systems
life cycle improvements for, 252–3	advantages of, 113–14
3D cell technology, 245–7	cash investment options, 111
3D2 cell technology, 254–5	debt or loan options, 112
micro-inverters, 134	lease-to-own agreements, 114
advantages/limitations of, 136–7	operating lease options, 112
reliability calculations, 137–8	purchasing options, 113
micro-power inverters, 133 Mobile Ad Hoc Networks (MANET), 216	responsibilities, 113–14
Modified Accelerated Cost Recovery System	paper-making, 190
(MACRS), 56–7	partial-state-of-charge (PSoC) regimes, 253
ADS, 57	PBI. See Performance-Based Incentive
depreciable lives by class, 56	peak power consumption controls, 211
depreciation methods, 56–7	Peak Power Shaving, 29
federal accelerated depreciation, 56, 57–70	Performance-Based Incentive (PBI), 48
ITC, 64–5	application procedures, 94–5
mono-silicon power cell construction, 159	BIPVs, 90
MPPT. See maximum power point tracking	CSI, 50, 85, 90
circuits	EPBI, 50
MTBF. See mean time between failures	inspection requirements, 93
MTTR. See mean time to repair	payment structure, 96
municipal electrical power grid systems, 207–8	SPSEAS, 149
municipal leases, 82–3, 100–2. See also Power	pesticide manufacture, 188, 189
Purchase Agreements	petroleum industry, 189
advantages, 84, 102	plastic manufacturing, 189
energy-efficiency, 82–3	platform types, PV technologies, 27
payment options, 102	dual axis, 27–8
qualifying entities, 100–1 tax-exempt, 83–4, 100, 101–2	fixed angle, 27–8 single axis, 27–8
tax-exempt, 83–4, 100, 101–2	pollution. <i>See</i> air pollution; air quality
National Energy Act (NEA) (U.S.), 116	poly-silicon power cell construction, 159
National Renewable Energy Laboratories	power grid systems. See electrical power grid
(NREL), 48, 114. See also Solar Advisor	systems; smart grid systems
Model	power output performance. See also solar power
natural gas power generation, resource limits, 14	output performance
NEA. See National Energy Act	for lead acid batteries, 240
Nickel-Metal Hydride batteries, 243	Power Purchase Agreements (PPAs), 47, 48, 49, 61
nonprofit organizations, PPAs for, 77	advantages of, 77
North American Grid. See Wide Area	creditor agreements, 75
Synchronous Grid	disadvantages of, 77–8
NREL. See National Renewable Energy	under Energy Policy Act, 71
Laboratories	EPC documents, 72–3
nuclear energy, 13	evaluation, 81–2
OL . P 1.005	financing participants, 72
Obama, Barack, 205	financing responsibilities, 76
oceans	intercreditor agreements, 75
carbon sequestration in, 188 carbonic acid, 188	IPPs, 71 limited resource financing, 72
sea level changes, 3	loan agreements, 74–5
ocean wave-power energy production	long-term industrial financing, 71–2
early historical uses of, 221	for nonprofit organizations, 77
feedstock, 15	off-take contractual agreements, 74

power purchase price, 76–7	renewable fuels, 1–2. <i>See also</i> geothermal energy
preparation for proposal, 78–9 under PURPA, 72	production; ocean wave-power energy production; solar energy; wind energy
regulations, 71	production
shareholder agreements, 74	cells, 1–2
SPPAs, 75–6, 79–81, 110–11, 115	educational awareness of, 12–14
SPSEAS, 150	Renewables Portfolio Standard (RPS), 103-4, 117
system operation and maintenance guarantee	Republic of Ireland, FITs in, 121
agreement documents, 73	residential appliances, control devices for, 219
term sheets, 75	smart thermostats, 219
termination date, 76	residential electrical power grid systems, 208
third-party ownership contracts, 71	return on investment (ROI), 65–6
power test condition (PTC) value, 152 PPAs. See Power Purchase Agreements	ROI. See return on investment roof mount solar power systems
price-dampening effect, 116	during building fires, 142
project managers, solar system design, 41	during earthquakes, 142–3
PSoC regimes. See partial-state-of-charge regimes	hazards, 142–4
PTC value. See power test condition value	maintenance and repair, 143-4
public and charter schools	rotational axis considerations, 27
CHPS criteria for, 224	RPS. See Renewables Portfolio Standard
under CSI, 99	
under Green Building Action Plan, 224	SAI. See Solar America Initiative
solar energy production for, 82 public buildings, under Green Building Action	salvage value, of solar power systems, 66–9 computation methodology, 67–9
Plan, 222	by utility companies, 68
Public Utility Regulatory Policy Act (PURPA)	SAM. See Solar Advisor Model
(U.S.), 72	SAS. See Solar Analytic Solutions
PV strings, 139–40	SBFT. See California Sustainable Building Task
DC power, 140	Force
solar arrays, 140	schools. See public and charter schools
PV technologies. See solar photovoltaic	SDA. See systems-driven approach
technologies	second life cycle, for solar power systems, 162
romning 226	semi-permeable membrane (SPM), 261
ramping, 236 rapid renewable materials use credit, in LEED,	SETP. See Solar Energy Technologies Program shading
229	bypass diodes, 129
rechargeable batteries. See lithium-ion batteries	dust accumulation and, 128–9
recyclable storage credits, in LEED, 228	over PV technologies, 34–5
recycled content credits, in LEED, 229	solar power output performance, 129-30
REDOX flow batteries. See flow batteries	shareholder agreements, 74
REDOX process. See reduction-oxidation process	short circuit current (Isc), 126
reduced water usage credits, for LEED, 227	single axis platform type, PV technologies, 27–8
reduction-oxidation (REDOX) process, 261–3, 264–8	analytical software for, 168–69 site selection credits, for LEED, 225
carbon oxidation in, 262–3	Skyllas-Kazacoss, Maria, 264
electron charge transfer, 263	smart grid systems. See also electrical power grid
SPM in, 261	systems; high temperature conductors
reforestation, 197	advanced services and devices, 212
refrigerant management, in LEED, 227, 228	advantages of, 204–5
Regional Greenhouse Gas Initiative, 200	architecture of, 208–11
regional materials use credits, in LEED, 229	benefits of, 219, 220
reliability, of solar power systems, 132–3	climate change and, 218–19
DC-to-DC peak inverters, 137	control devices, 219–20
micro-inverters, 137–8 string inverters, 137–8	dispatchable energy in, 202 economic challenges of, 204–5
renewable energy	efficiency of, 218
early historical uses of, 221	electrical energy demand and supply controls,
grid parity, 117	203–4
in LEED, 227	energy conservation with, 218
quota-based policies, 117–18	energy storage, 203
in smart grid systems, 203, 211, 218, 220	energy user benefits, 220

smart grid systems (cont.)	Solar Analytic Solutions (SAS), 138, 141
essential features, 219	solar arrays, 140
in EU, 205, 206	solar energy power systems, 26–8.
with EVs, 219	See also configuration, of solar power
future prospects, 206–7	systems; cost analysis, solar power systems
GHG reductions with, 218	design; design, solar energy systems;
HTCs, 215	financing, solar power projects; ownership,
intelligent monitoring systems in, 201, 204	of solar energy power systems; solar
international, 206	photovoltaic technologies; system training
in LEED, 228	curriculum, solar power system design
load control switches, 214	additional cost considerations, 59–62
LVRT, 205	carport-mounted, 144
mesh networking and, 216–18	in China, 16, 17
modernization of traditional systems and,	as CO ₂ -free energy source, 168
209–10	collaboration between principals, 110
objectives, 201	as collective responsibility, 12–13
peak power consumption controls, 211	contract negotiations for, 110
power controls, 207	CSP technologies, 17
power routing within, 201–3	daily insolation, 26
pricing fluctuations, for electricity, 204–5	direct funding, 55
principle functions, 208–11	disadvantages of, 7
renewable power generation, 203, 211, 218, 220	early historical uses of, 221
for residential customers, 205	Earth declination angle considerations, 26
scope of, 207	economic benefits of, 7
special features, 206–7	education awareness, 12–14
SuperGrid systems, 207	energy use efficiency costs, 107
SuperSmart Grid, 205, 206–7	engineering consultants for, 108–9
surplus power management, 207	engineering principles in, 12
technological challenges of, 204	ESCO, 54
technology components, 203–4	ESPC, 54
transitions to, 202–3	EUL Contract, 54–5
Unified National Smart Grid, 205–6	federal depreciation, 55, 57–70
utility provider benefits, 220	federal tax credits, 62–5
smart thermostats, 219	first life cycle, 161–62
SMC batteries. <i>See</i> sulfur-metal-chloride batteries	first year performance, 157–60
SMesh, 217–18	flow batteries for, 268
soaps and detergent manufacturing, 190	in Germany, 17
soda ash, 189	ground-mounted, 144–7
in glass-making, 189	human lifestyle effects, 15–17
sodium sulfur batteries, 259	incentives for commercial production, 63–4
components, 259	insurance, 55
for grid power energy, 259–60	investment costs, 12
hot temperature operation for, 259	ITC, in U.S., 63–5
SMC batteries, 259	in Japan, 17
worldwide deployment of, 261–4	long-term energy savings, 162–5
software. See analytical software, for cost analysis;	long-term operations, 110–11
Solar Advisor Model	maintenance monitoring, 110–11
Solar Advisor Model (SAM), 52–3	power integrator criteria, 109–10
annual system performance, 59	power platform identification, 108
CSP technologies, 52	preliminary project evaluation, 107
DCC, 58–9	project financing, 102–3
indirect capital costs, 59	for public and charter schools, 82
maintenance costs, 59	as renewable source, 1–2
operation costs, 59	resource limits, 15
PV costs, 53	ROI for, 65–6
SAI, 52	roof mount, 142–4
SDA approach, 52	rotational axis considerations, 27
SETP, 52	second life cycle, 162
system cost data, 52–3	system costs, 38
users guide, 53–5	system salvage value, 66–9
Solar America Initiative (SAI), 52	taxes. 55

trellis-mounted, 144	life cycle financial analysis, 149–50
UESC, 54	output performance analysis, 149
in U.S., 13–14, 63	PBI, 149
Solar Energy Technologies Program (SETP), 52	PPAs, 150
solar photovoltaic (PV) technologies, 19–26.	system construction and integration costing,
See also roof mount solar power systems;	148–50
Wireless Intelligent Solar Power Reader	solar power economics analytical software, 150
additional reflective sources, 32	solar power farms, 139
Albedo Effect, 32	ground-mounted, 144–7
AM, 33	Solar Power in Building Design (Gevorkian), 10
ambient humidity effects, 32	solar power output performance. See also inverter
ambient temperature effects, 32	technologies
analytical software for, 151–2	analytical software for, 155–56
barometric pressure effects, 34	bypass diodes, 129
bypass diodes, 129	by circuit type, 126–7
carport-mounted systems, 144	configuration effects, 130–2
clouds' as influence on, 34	dust accumulation effects, 125–9
under CSI, sizing requirements, 91–2	as economic cost variable, 132–3
daily insolation, 26	during emergencies, 141
DCC for, 58	module shading effects, 129–30
Earth angle declination considerations, 26	MPPT circuits, 134–6
etching processes, 159	MTBF, 132
executive training seminar, 45–6	MTTR, 132
feedstock, 20	oil particulates, 125
financial model costs, 21–2	physical configuration effects, 130–2
in Germany, 17	precipitation, 125
ground-mounted solar power farms, 144–7	PV modules, 125–6
hazard mitigation for, 141–2, 146	SPSEAS, 149
Isc, 126 ITC for, 63–5	system availability, 132
in Japan, 17	system reliability, 132–3 Solar Power Purchase Agreements
knowledge base for, 22–6	(SPPAs), 75–6
lead acid storage batteries in, 238	advantages of, 115
output performance characteristics, 31–6	contract structure, 79–81
OVC, 126–7	contract timelines, 110–11
Peak Power Shaving, 29	large-scale installation experience, 81
photons, 19	technical considerations, 80–1
platform types, 27–8	solar power system technologies. See hazard
power cell construction, 159	mitigation, for solar power systems; specific
power output performance, 125–6	technologies
power production, 28–9	solar topology design, 131
product longevity, 20–1, 159	South Africa, FITs in, 121–2
PTC values, 152	Spain, FITs in, 122
roof mount systems, 142-4	SPM. See semi-permeable membrane
rotational axis considerations, 27	SPPAs. See Solar Power Purchase Agreements
SAM cost analysis, 53	SPSEAS. See Solar Power Econometric Analysis
shading over, 34–5	System
STC for, 33–4	Standard Test Conditions (STC), 33–4
strings, 139–40	storm water management credits, for LEED,
in system configuration, 139	225-6
system training curriculum, 43	string inverters, 134
Tedlar, 35–6	advantages/limitations, 136–7
tilt angle considerations, 27	reliability calculations, 137–8
trellis-mounted systems, 144	sublimation process, 186
windy conditions, 32 WISPR, 140–1	sulfation failure
solar power charge regulators, 136	foam lead acid batteries, 248, 253 lead acid batteries, 243
Solar Power Econometric Analysis System	sulfur-metal-chloride (SMC) batteries, 259
(SPSEAS), 47, 148	SuperGrid systems, 207
comparative analyses functions, 150	SuperSmart Grid, 205
engineering cost component analysis, 148–9	special features, 206–7

surface temperature changes, from climate change, 1, 2	tilt angle considerations, 27 solar power output performance, 125
surplus power management, smart grid systems, 207	topology mapping, 39 trellis-mounted solar power systems, 144
sustainable energy systems. See also renewable	trenis-mounted solar power systems, 144
fuels	UESC. See Utility Energy Savings Contract
feedstock, 14–15	Ukraine, FITs in, 123
human lifestyle effects, 15–17	Umbrella group, 200
as long-term investment, 17–18	Unified National Smart Grid, 205–6
Switzerland, FITs in, 122–3	
	unit cost of energy, for electricity, 37 United Kingdom, FITs in, 123
synchronous generators, 205 system availability, solar power output	
	United States (U.S.). <i>See also</i> California; California Solar Initiative; Hawaii, FITs in
performance and, 132 system controllability credit, for LEED, 231	alternative energy generation technologies, 14
system operation and maintenance guarantee	American Recovery and Reinvestment Act, 76
agreement documents, 73	Clear Skies Act Initiative in, 198
	,
system training curriculum, solar power system	CSP technologies in, 17 Emergency Economic Stabilization Act. 75.6
design	Emergency Economic Stabilization Act, 75–6
case study review, 44	Energy Policy Acts, 62, 71
cost analysis, 44	federal grants, for solar power production, 63
design methodology, 44	FITs in, 124
feasibility study, 44 manufacturing overview, 43	hydroelectric power generation, 14
	ITC, for solar energy production, 63–5
PV technology principles, 43	Kyoto Protocol and, 191, 195 mesh networking in, 217–18
student project design workshops, 44	6 ,
systems applications, 43	NEA, 116
systems integration overview, 43–4	overall energy production in, 11–12
systems-driven approach (SDA), 52	PURPA, 72
towiffs Constant towiffs	smart grid systems, 205–6
tariffs. See also feed-in tariffs	solar power energy production, 13–14, 63–5
digression, 115	synchronized electrical power grid
regression, 115	interconnections within, 211–12
taxation, for solar energy production, 55	Unified National Smart Grid proposal, 205–6
carbon credit trading, 194–5	United States Green Building Council (USGBC)
ITC, 63–5	development of, 222
tax-exempt municipal leases, 83–4, 100 benefits, 83	LEED and, 221, 222
,	rating systems, 222–3
bond issues, 83, 101	Utility Energy Savings Contract (UESC), 54
commercial leases compared to, 101–2	vanadium raday battarias (VDDs) 262.5
Tedlar, 35–6	vanadium redox batteries (VRBs), 263–5
temperature. See also high temperature	advantages of, 264–5
conductors	characteristics, 265
ambient, for PV technologies, 32	construction of, 264
cold cranking, 248 cold temperature operation for batteries, 248–9	variable frequency transformers (VFTs), 212
	vegetable matter combustion, 185–6 ventilation improvement credits, for LEED, 230
foam lead acid battery operation, 249–51	
hot temperature operation for batteries, 249–51, 259	VFTs. See variable frequency transformers VRBs. See vanadium redox batteries
	V KDs. See valiadium redox batteries
lead acid battery operation, 248–9 sodium sulfur battery operation, 259	water officiency in LEED 226.7
J 1	water efficiency, in LEED, 226–7 innovative technologies credit, 226
surface, climate change influences on, 1 terrestrial carbon sequestration, 200	
Thailand, FITs in, 123	landscaping credits, 226 reduced usage credits, 227
thermal comfort credit, for LEED, 231	water resources, climate change, 2
thermostats. See smart thermostats	water fesources, chinate change, 2 water treatment, 190
third-party ownership contracts, 71	
3D cell technology, in foam batteries, 245–7	Wide Area Synchronous Grid, 211–12 wind energy production, 1–2
power performance attributes, 246–7	early historical uses of, 221
3D2 cell technology, in foam batteries, 254–5	feedstock, 15
tidal power. See ocean wave-power energy	LVRT, 205
production	in U.S., 14
Production	111 0.0., 17

Index 385

Wireless Intelligent Solar Power Reader (WISPR), 138, 140–1 DACS, 140 functions, 140–1 ground-mounted solar power farms, 145–7 hazard mitigation, 141–2 hazard signals, 146 special features, 146–7

zero-emission fuels, 1–2. *See also* renewable fuels
zinc bromine (ZnBr) batteries, 265–7
charge process, 267
development of, 267
electrochemistry in, 265–6
electrolytes in, 266
performance characteristic variations, 268