

Essentials of Igneous and Metamorphic Petrology

All geoscience students need to understand the origins, environments, and basic processes that produce igneous and metamorphic rocks. This concise textbook, written specifically for one-semester undergraduate courses, provides students with the key information they need to understand these processes. Topics are organized around the types of rocks to expect in a given tectonic environment, rather than around rock classifications: this is much more interesting and engaging for students, as it applies petrology to real geologic environments. This textbook includes more than 250 illustrations and photos, and is supplemented by additional color photomicrographs made freely available online. Application boxes throughout the text encourage students to consider how petrology connects to wider aspects of geology, including economic geology, geologic hazards, and geophysics. End-of-chapter exercises allow students to apply the concepts they have learned and to practice interpreting petrologic data.

B. Ronald Frost is a professor of geology at the University of Wyoming, where he performs wide-ranging research on igneous and metamorphic petrology as well as ore deposits. He has authored more than 110 scientific papers on topics ranging from serpentinization and the metamorphism of serpentinites, ocean floor metamorphism, granulites, thermobarometry, the geochemistry of granites, and melting of sulfide ore deposits. He has conducted extensive field research in the Precambrian basement of Wyoming, as well as in Siberia, Greenland, northern Canada, and the Broken Hill area of Australia. He received the Alexander von Humboldt Research Award from the German government. He has been an associate editor for the *Journal of Metamorphic Geology* and *Geochimica et Cosmochimica Acta*, and he currently serves on the editorial board of the *Journal of Petrology*. He is a member of the American Geophysical Union, the Society of Economic Geologists, and the Geochemical Society and a Fellow of the Mineralogical Society of America. He has taught mineralogy, petrology, optical mineralogy, and ore deposits for more than thirty-five years.

Carol D. Frost is a professor in the Department of Geology and Geophysics at the University of Wyoming. She investigates the origin and evolution of the continental crust, the provenance of clastic sedimentary rocks, and granite petrogenesis, and she applies isotope geology and geochemistry to environmental issues including water coproduced with hydrocarbons and geological sequestration of carbon dioxide. She is the author of more than 120 scientific papers. She is a Fellow of the Mineralogical Society of America and serves as the science editor for the Geological Society of America's journal, *Geosphere*. She was awarded the CASE Wyoming Professor of the Year award in 2001. In 2008, she received her university's highest faculty award, the George Duke Humphrey medal, recognizing teaching effectiveness, distinction in scholarly work, and distinguished service to the university and to the state. She has served in the administration of the University of Wyoming as director of the School of Energy Resources, associate vice president for research and economic development, and vice president for special projects, and associate provost.

The two authors are unrelated.

Advance praise for Essentials of Igneous and Metamorphic Petrology

"An authoritative and contemporary petrology textbook that is ideal for today's undergraduate student. Frost and Frost provide a concise petrology textbook that distills the essence of igneous and metamorphic petrology."

- Joshua Schwartz, Department of Geological Sciences, California State University, Northridge

"Frost and Frost present a streamlined view of igneous and metamorphic petrology that is most appropriate for a one-semester undergraduate-level course. The text clearly explains fundamental concepts, which are supplemented by abundant figures. Subjects are structured so as to build on previous concepts and be well suited to work with a laboratory component typically associated with petrology courses."

- Jeffrey M. Byrnes, Boone Pickens School of Geology, Oklahoma State University

"Frost and Frost have produced a soon to be very popular igneous and metamorphic petrology textbook, as it is truly written for the undergraduate geology major with perhaps just a 100-level introductory geology class and mineralogy as their background coursework. However, it is also rich in detail and thoroughly modern. In both the igneous and metamorphic sections, the authors first introduce the needed rock descriptive and theoretical backgrounds to pave the way for students to explore subsequent chapters. Igneous rocks are examined by their tectonic setting and metamorphic rocks by their protolith, which is exactly how I have taught the course for many years. Inserts in each chapter take students to other relevant areas of Earth science. The appendix includes a very useful review of mineralogy. I look forward to adopting this book!"

- Lawford Anderson, Department of Earth and Environment, Boston University

"An introductory textbook that presents the basic principles of the subject matter in a simple and concise manner. Frost and Frost do a good job of linking igneous and metamorphic petrology to basic chemistry and major tectonic processes. Well illustrated with a decent set of problem sets and a nice summary of mineral properties."

- Aley K. El-Shazly, Department of Geology, Marshall University

"Essentials of Igneous and Metamorphic Petrology by Frost and Frost succeeds in its stated objective: to convey the essential petrologic information that is needed by all geoscientists, no matter what their eventual specialization. The book meets this objective with a classical mix of fundamental phase relationships, basic geochemical concepts, and field examples, with the bonus of subject boxes that relate petrology to economic mineral deposits. Frost and Frost will provide students with a solid, clearly written, well-illustrated foundation for understanding igneous and metamorphic rocks. I look forward to using this text in my own undergraduate petrology class."

- Calvin G. Barnes, Department of Geosciences, Texas Tech University

Essentials of Igneous and Metamorphic Petrology

B. Ronald Frost

UNIVERSITY OF WYOMING

Carol D. Frost

UNIVERSITY OF WYOMING

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107696297

© B. Ronald Frost and Carol D. Frost 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Reprinted with corrections 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Frost, Bryce Ronald, 1947-

Essentials of igneous and metamorphic petrology / B. Ronald Frost, Carol D. Frost.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-107-02754-1 (hardback)

1. Igneous rocks. 2. Metamorphic rocks. I. Frost, Carol D.

(Carol Denison) II. Title.

QE461.F767 2014

552'.1-dc23 2013012168

ISBN 978-1-107-02754-1 Hardback

ISBN 978-1-107-69629-7 Paperback

 $Additional\ resources\ for\ this\ publication\ at\ www.cambridge.org/frostand frost$

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Preface	<i>page</i> xi	Questions and Problems	32
Acknowledgments	xiii	Further Reading	35
1		3	
Introduction to Igneous Petrology	1	Introduction to Silicate Melts	
1.1 Introduction	1	and Magmas	36
1.2 The Scope of Igneous Petrology	2	3.1 Introduction	36
1.3 Classification of Igneous Rocks	2	3.2 The Role of Volatiles	37
1.3.1 Preliminary Classification	3	3.2.1 Role of H_2O	37
1.3.2 IUGS Classification of Plutonic		3.2.2 Role of \overrightarrow{CO}_2	38
Rocks	3	3.3 Physical Properties of Magma	39
1.3.3 IUGS Classification of Volcanic ar	ıd	3.3.1 Temperature	39
Hypabyssal Rocks	5	3.3.2 Heat Capacity and Heat of Fusion	39
1.4 Igneous Textures	5	3.3.3 Viscosity	39
1.4.1 Crystal Size	6	3.3.4 Density	40
1.4.2 Crystal Shape	7	3.4 The Ascent of Magmas	40
1.5 Igneous Structures	8	3.5 Magmatic Differentiation	42
1.5.1 Structures in Volcanic Flows	8	3.5.1 Partial Melting	42
1.5.2 Structures in Pyroclastic Deposits	10	3.5.2 Crystallization Processes	42
1.5.3 Structures in Hypabyssal Rocks	12	3.5.3 Liquid-Liquid Fractionation	43
1.5.4 Structures in Plutonic Rocks	14	3.5.4 Assimilation	43
Summary	16	3.5.5 Magma Mixing	44
Questions and Problems	16	Summary	44
Further Reading	17	Questions and Problems	45
2		Further Reading	46
An Introduction to Igneous Phase		4	
Diagrams	18	The Chemistry of Igneous Rocks	47
2.1 Introduction	18	4.1 Introduction	47
2.2 The Phase Rule	19	4.2 Modal Mineralogy versus Normative	
2.3 The Lever Rule	20	Mineralogy	48
2.4 Two-Component Systems Involving Me		4.3 Variation Diagrams Based on Major	
2.4.1 Binary Systems with a Eutectic	21	Elements	48
2.4.2 Binary Systems with a Peritectic	24	4.4 Major Element Indices of Differentiation	51
2.4.3 Binary Systems with a Thermal		4.4.1 Modified Alkali-Lime Index	53
Barrier	26	4.4.2 Iron Enrichment Index	54
2.4.4 Binary Systems with Solid Solution		4.4.3 Aluminum Saturation Index	55
2.4.5 Binary Systems with Partial Solid		4.4.4 Alkalinity Index	56
Solution	29	4.4.5 Feldspathoid Silica Saturation Index	56
2.5 Phase Diagrams of Ternary Systems	29	4.5 Identification of Differentiation Processes	
2.5.1 The Ternary System Mg,SiO ₄ -		Using Trace Elements	56
$CaAl_2Si_2O_8 - CaMgSi_2O_6$	30	4.5.1 Use of Trace Elements to Model	
2.6 Implications for Petrology	31	Melting and Crystallization	
Summary	32	Processes	57

νi

	4.5.2 Graphical Representations of		7.2 Oceanic and Continental Arcs	89
	Trace Element Compositions	58	7.2.1 Island Arc Magmatism	89
	4.6 Application of Stable and Radioactive		7.2.2 Continental Arc Magmatism	89
	Isotopes in Igneous Petrology	59	7.2.3 Structure of Island and Continental	
	4.6.1 Geochronology	60	Arcs	91
	4.6.2 Isotopic Tracing of Magma Sources	60	7.2.4 Examples of Island and Continental	
	Summary	61	Arcs	92
	Questions and Problems	62	7.3 Petrographic Characteristics of Island	
	Further Reading	64	and Continental Arc Rocks	97
	e e e e e e e e e e e e e e e e e e e		7.3.1 Petrography of Island Arc Rocks	97
5			7.3.2 Petrography of Continental Arc	
	 B	65	Rocks	99
	Basalts and Mantle Structure	65	7.4 Geochemical Characteristics of	
	5.1 Introduction	65	Convergent Margin Magma Series	100
	5.2 Basalt Petrology	66	7.4.1 Comparison of Oceanic and Arc	
	5.2.1 Classification	66	Differentiation Trends	100
	5.2.2 Chemistry and Petrography	66	7.4.2 Comparison of Island and	
	5.3 Melt Generation from the Mantle	67	Continental Arc Magma Series	100
	5.3.1 Mantle Composition	67	7.4.3 Comparison of Oceanic and	
	5.3.2 Crust and Mantle Structure	67	Continental Arc (Cordilleran)	
	5.3.3 Mechanisms for Partial Melting		Plutonic Complexes	102
	of the Mantle	68	7.4.4 Geochemical Identification of	102
	5.3.4 The Process of Mantle Melting	68	Contrasting Processes Forming	
	5.3.5 Origin of Tholeiitic versus Alkali Basalts	69	Seguam and Mount Saint Helens	103
	5.4 Environments where Magmas Are		7.5 Magma Generation at Convergent	100
	Generated	70	Margins	104
	Summary	70	Summary	105
	Questions and Problems	71	Questions and Problems	106
	Further Reading	71	Further Reading	106
6			· ·	
6			3	
	Oceanic Magmatism	72	Intracontinental Volcanism	107
	6.1 Introduction	72	8.1 Introduction	107
	6.2 The Petrology and Structure of the		8.2 Continental Flood Basalt Provinces	108
	Ocean Crust	73	8.2.1 The Columbia Plateau–Snake	100
	6.2.1 Ophiolites as a Model of the Ocean		River Plain Province	109
	Crust	73	8.2.2 Petrography and Chemistry of	107
	6.2.2 Refinements of the Ophiolite Model	74	Continental Flood Basalts	111
	6.3 Petrography and Geochemistry		8.2.3 <i>Models for the Generation of</i>	111
	of Oceanic Magmatism	78	Continental Flood Basalts	111
	6.3.1 Mid-Ocean Ridge Basalt	78	8.3 Bimodal Volcanism	112
	6.3.2 Off-Ridge Magmatism	81	8.3.1 Bimodal Volcanism in the	112
	Summary	86	Yellowstone–Snake River Plain	
	Questions and Problems	86	Province	112
	Further Reading	87	8.3.2 Geochemistry of the Yellowstone–	112
			Snake River Plain Bimodal Suite	114
7			8.3.3 Models for the Generation of Bimodal	114
		00	Volcanism	115
	Convergent Margin Magmatism	88	8.4 Alkaline Volcanism	115
	7.1 Introduction	88	0.7 AMAIIIC VOICAIIISIII	115

vii

	8.4.1 Sodic Alkaline Magmatism of the		Questions and Problems	156
	East African Rift	116	Further Reading	156
	8.4.2 Potassic Alkaline Volcanism	118		
	8.5 Origin of the Chemical Diversity of		11	
	Intracontinental Basaltic Magmas	121	Introduction to Metamorphic	
	Summary	122		157
	Questions and Problems	122	Petrology	
	Further Reading	123	11.1 Introduction	157
			11.2 The Scope of Metamorphism	158
9			11.3 Types of Metamorphism	158
••••	Intracontinental Plutonism	124	11.3.1 Regional Metamorphism	158
	9.1 Introduction	124	11.3.2 Contact Metamorphism	158
	9.2 Layered Mafic Intrusions	124	11.3.3 Burial Metamorphism	158
	9.2.1 The Bushveld Intrusion	128	11.3.4 Dynamic Metamorphism	159
	9.2.1 The Bushveld Intrusion 9.2.2 Mineralogical Variation in LMIs	128	11.3.5 Hydrothermal Metamorphism	159
	9.2.2 Interatogical variation in Livis 9.2.3 Granitic Rocks Associated with LMIs	128	11.4 Basic Goals of Metamorphic Petrology	159
			11.5 Identification of Protolith	159
	9.2.4 Tectonic Environments of LMIs9.3 Anorthosites and Related Rocks	130	11.5.1 Rocks of Clearly Sedimentary	150
	9.3.1 Archean Anorthosites	130 131	Parentage	159
			11.5.2 Rocks of Clearly Igneous Parentage	161
	9.3.2 <i>Massif Anorthosites</i> 9.4 Ferroan Granites	132	11.5.3 Rocks of Uncertain Parentage	161
	9.4.1 The Pikes Peak Batholith	134	11.6 Determination of Metamorphic Condition	
		135	11.6.1 Stability Range of Single Minerals	161
	9.4.2 The Composition of Ferroan Granites	136	11.6.2 Stability of Mineral Assemblages	162
	9.5 Alkaline Complexes	138	11.6.3 Metamorphic Facies	162
	9.5.1 Geology of the Ilimaussaq Intrusion	138	11.6.4 Thermobarometry	162
	Summary	141	11.7 Metamorphic Textures	162
	Questions and Problems	142	11.7.1 Primary Textures	162
	Further Reading	143	11.7.2 Metamorphic Textures	164
1 (11.8 Naming a Metamorphic Rock	166
1(J 		Summary	167
	Interpretation of Granitic Rocks	144	Questions and Problems	168
	10.1 Introduction	144	Further Reading	169
	10.2 Classification of Granitic Rocks	145	4.2	
	10.2.1 Mineralogical Classification	145	12	
	10.2.2 Classification Based on Opaque		Interpretation of Metamorphic	
	Oxides	145	Phase Diagrams	170
	10.2.3 Alphabetic Classification	145	12.1 Introduction	170
	10.2.4 Geochemical Classification	145	12.2 A Little History	171
	10.3 Peraluminous Leucogranites	146	12.3 Use of Chemographic Projections	171
	10.3.1 Himalayan Leucogranites	148	12.3.1 Chemographic Projections in a	1/1
	10.3.2 Geochemistry of Peraluminous		Two-Component System	172
	Leucogranites	148	12.3.2 Chemographic Projections in a	1/2
	10.4 Caledonian Granites	149	Three-Component System	173
	10.4.1 The Etive Granite	150	12.3.3 Chemographic Projections in System.	
	10.4.2 Geochemistry and Origin of Caledon		with Four and More Components	s 175
	Granites	151	Summary	175
	10.5 Review of the Four Main Granite Types	152	Questions and Problems	176
	Summary	156	Further Reading	179
	1	100	i ui uici icauiiig	1/9

viii

13	3		14.4.3 Upper Pressure Limit of	
••••			Metamorphism	200
	Metamorphic Facies and the	400	Summary	201
	Metamorphism of Mafic Rocks	180	Questions and Problems	202
	13.1 Introduction	180	Further Reading	202
	13.2 Definition of Metamorphic Facies	181	•	
	13.3 Facies of Regional Metamorphism	181	15	
	13.3.1 Greenschist Facies	181		202
	13.3.2 Blueschist Facies	182	Metamorphism of Peridotitic Rocks	203
	13.3.3 Amphibolite Facies	183	15.1 Introduction	203
	13.3.4 Very Low-Temperature		15.2 The Process of Serpentinization	204
	Metamorphism	184	15.3 Prograde Metamorphism of Serpentinite:	
	13.3.5 Granulite Facies	185	Reactions in the System	
	13.3.6 Eclogite Facies	185	CaO-MgO-SiO ₂ -H ₂ O	204
	13.4 Facies of Contact Metamorphism	185	15.4 Role of Minor Components	208
	13.5 Textural Changes during		15.4.1 <i>Iron</i>	208
	Metamorphism	186	15.4.2 Aluminum	210
	13.6 Mafic Mineral Assemblages at Increasing		15.5 Metaperidotites and Metamorphic Facies	211
	Temperature and Pressure	187	15.6 Role of CO ₂ in Metamorphism of	
	13.6.1 Relations at Very Low Temperatures	187	Peridotites	212
	13.6.2 Relations at Low Pressure with		15.7 Metasomatism of Peridotites	214
	Increasing Temperature	188	15.8 Examples of Metaperidotites in the Field	215
	13.6.3 Relations at Low Temperature with		15.8.1 Malenco Serpentinite	215
	Increasing Pressure	189	15.8.2 Ingalls Peridotite	217
	Summary	189	Summary	218
	Questions and Problems	189	Questions and Problems	218
	Further Reading	190	Further Reading	219
14	1		16	
••••	Thermobarometry and the Conditions		Metamorphism of Pelitic Rocks	220
	of Metamorphism	191	16.1 Introduction	220
	14.1 Introduction	191	16.2 Chemographic Projections for Pelitic	
	14.2 Review of Thermodynamics	192	Systems	221
	14.2.1 Free Energy	192	16.2.1 Chemographic Projections for	
	14.2.1 Tree Energy 14.2.2 Effect of Changes in Pressure and	1/2	Continuous Reactions	221
	Temperature on ΔG	192	16.2.2 AMF Projections for Pelitic Rocks	223
	14.2.3 The Equilibrium Constant	192	16.3 Progressive Metamorphism of Pelitic Rock	s:
	14.2.4 Activity-Composition Relations	193	Barrovian Metamorphism	224
	14.3 Thermobarometers	194	16.3.1 The Protolith: The Mineralogy of	
	14.3.1 Geothermometry	194	Shale	224
	14.3.2 Geobarometry	195	16.3.2 Low-Grade Metamorphism of Pelitic	
	14.3.3 Thermobarometry	196	Rocks	224
	14.4 Conditions of Metamorphism	197	16.3.3 Barrovian Metamorphism of Pelitic	
	14.4.1 <i>The Pressure and Temperature</i>	177	Schists	225
	Conditions for the Metamorphic		16.4 P-T Conditions for Metamorphic	
	Facies	198	Assemblages in Metapelitic Rocks	229
	14.4.2 The Upper Temperature Limits to	170	16.4.1 Metapelitic Assemblages and	
	Metamorphism and Migmatites	199	Metamorphic Facies	229
	TITUMINOI DINSIII MIM TITITIMILLES	エノノ	1	

Contents

ix

	16.4.2 Pressure Information from		18.7.3 Tectonic Interpretation of Archean	
	Metapelitic Rocks	230	Metamorphic Belts	259
	Summary	233	Summary	259
	Questions and Problems	234	Questions and Problems	260
	Further Reading	236	Further Reading	261
17			Appendix: Review of Mineralogy	263
•••••	Motamorphism of Calcaroous Pocks		A.1 Introduction	263
	Metamorphism of Calcareous Rocks		A.2 Leucocratic Rock-Forming Minerals	263
	and the Role of Fluids in	227	A.2.1 Quartz	263
	Metamorphism	237	A.2.2 Feldspars and Feldspathoids	263
	17.1 Introduction	237	A.2.3 Carbonates	268
	17.2 Metamorphism of Impure Dolomitic		A.3 Ferromagnesian Minerals	268
	Marble	238	A.3.1 Olivine	268
	17.2.1 Stability of Metamorphic		A.3.2 Pyroxenes	269
	Assemblages in T-X Space	239	A.3.3 Amphiboles	272
	17.2.2 Examples of How Mineral		A.3.4 Phyllosilicates	275
	Assemblages Can Monitor Fluid		A.4 Aluminum-Excess Minerals	277
	Flow in Aureoles	240	A.4.1 Aluminosilicates (Andalusite, Kyanite,	
	17.3 Buffering of Other Fluid Components	242	and Sillimanite)	277
	17.4 Buffering of pH	244	A.4.2 Garnets	278
	Summary	246	A.4.3 Staurolite	278
	Questions and Problems	247	A.4.4 Cordierite	278
	Further Reading	248	A.4.5 Chloritoid	279
			A.5 Ca-Al Silicates	279
18			A.5.1 Clinozoisite-Epidote	279
•••••	Regional Occurrence and Tectonic		A.5.2 Prehnite	279
	Significance of Metamorphic Rocks	249	A.5.3 Pumpellyite	280
	18.1 Introduction	249	A.5.4 Lawsonite	280
		249	A.5.5 Laumontite	280
	18.2 Metamorphism along Convergent Plate	250	A.6 Oxide, Sulfide, and Other Nominally Opaque	5
	Margins	250	Phases	280
	18.2.1 Characteristics of Low-Temperature,	250	A.6.1 Fe-Ti Oxides (Magnetite and Ilmenite)	280
	High-Pressure Belts	250	A.6.2 Other Spinel Minerals	280
	18.2.2 Characteristics of Low-Pressure,	250	A.6.3 Fe Sulfides	281
	High-Temperature Belts	250	A.6.4 Graphite	281
	18.2.3 Tectonic Interpretation	250	A.6.5 Rutile	281
	18.3 Metamorphism in Continental Collisions	251	A.7 Accessory Minerals	281
	18.3.1 Examples of Continental Collisions	252	A.7.1 Zircon	281
		252	A.7.2 Sphene (or Titanite)	281
	18.4 Metamorphism in Rifting Terrains	253	A.7.3 Apatite	281
	18.5 Sea Floor Metamorphism	254	A.7.4 Monazite	282
	18.6 Granulite Terrains	255	Summary	282
	18.7 Metamorphism in Archean Terrains 18.7.1 <i>Greenstone Belts</i>	257	References	283
	18.7.1 Greenstone Betts 18.7.2 Gneiss Terrains	258 258	Index	297
	10./.2 Grieiss Terrairis	430		

Preface

Petrology, from the Greek words petra, meaning rock, and logos, system of understanding, is the study of rocks and the conditions in which they form. It includes igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together because both disciplines depend on the use of chemistry and phase diagrams. In contrast, sedimentary petrology is often combined with stratigraphy because both of these sciences depend on understanding the physical processes that accompany the deposition of sediments. Igneous and metamorphic petrology share common foundations; for example, both use phase diagrams to understand the conditions that control the crystallization of various minerals. However, there are important differences between the disciplines. In igneous petrology, the bulk composition of the rock is important because it gives clues to the tectonic environment in which it formed. Metamorphic petrology is not so much concerned with the bulk chemistry of the rocks as with the use of mineral assemblages to determine the conditions under which the rock crystallized. Because igneous rocks may later be transformed into metamorphic rocks, this book begins with igneous petrology and takes up metamorphic petrology second.

In contrast to many petrology textbooks, which are written for the upper-level undergraduate and graduate student audience, this book is accessible to introductory-level geology students who may have taken few earth science courses beyond physical geology and mineralogy. It aims to convey the essential petrologic information that is needed by all geoscientists no matter what their eventual specialization, be it geophysics, geochemistry, economic geology, geohydrology, or indeed any aspect of the Earth system.

This book focuses on the fundamental principles that govern the mineralogy of igneous and metamorphic rocks. For igneous petrology, this involves an understanding of how the mineralogy of igneous rocks reflects the equilibria that govern the crystallization of minerals from magma and how the geochemistry of a rock reflects its magmatic differentiation. The book uses several major element discrimination diagrams, including Fe-index, modified alkali-lime index, and aluminum saturation index, to compare and contrast magmatic suites that form in different tectonic environments. These simple geochemical parameters effectively highlight the different magmatic processes that create magmatic suites formed at oceanic and continental divergent plate boundaries, in arcs formed at oceanic and continental convergent margins, and in oceanic and continental intraplate tectonic settings.

In metamorphic petrology, the mineral assemblages in metamorphic rocks depend fundamentally upon the protolith of the rock as well as on the mineral reactions that take place at successively higher temperatures and pressures. Starting with mafic and ultramafic protoliths, which are the simplest, the text describes how pressure, temperature, and fluid composition affect the mineral assemblages in progressively more complex systems, including pelitic and calcareous protoliths. This book emphasizes chemographic projections as a way to determine the metamorphic mineral assemblages that occur together at specific metamorphic conditions. In addition, the text discusses the environments where various types of metamorphism are found and the tectonic significance of different types of metamorphic belts.

Throughout the textbook the authors have provided examples of how petrology relates to other areas of geology, including economic geology, geologic hazards, and geophysics. These short vignettes help students make connections between the study of igneous and metamorphic rocks and other fields of geology and illustrate the value of a fundamental understanding of petrology.

Acknowledgments

This textbook is the result of several decades of experience teaching igneous and metamorphic petrology at the University of Wyoming. The authors began writing this material when what had been two separate, semester-long courses in igneous and metamorphic petrology were combined into one and the existing textbooks were more exhaustive than the new course format could accommodate. They would like to acknowledge the hundreds of students who used successive versions of the igneous and metamorphic petrology course packet and provided edits and suggestions. They are especially grateful to those former students who went on to become geoscience faculty members and who have encouraged the authors to convert the course packet into a commercially published textbook.

The authors also wish to thank the external reviewers for their helpful suggestions and the editors and staff at Cambridge University Press for their expertise and patience in seeing the book through to publication. Too, they warmly acknowledge their colleagues at the University of Wyoming and elsewhere for providing a stimulating and rewarding environment in which to pursue petrologic teaching and research. Last, Carol Frost acknowledges with gratitude her family's forbearance while this textbook underwent repeated revision over many evenings, weekends, and holidays.