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Introduction

A plasma is an ionized gas consisting of positively and negatively charged particles

with approximately equal charge densities. Plasmas can be produced by heating

an ordinary gas to such a high temperature that the random kinetic energy of

the molecules exceeds the ionization energy. Collisions then strip some of the

electrons from the atoms, forming a mixture of electrons and ions. Because

the ionization process starts at a fairly well-defined temperature, usually a few

thousand K, a plasma is often referred to as the “fourth” state of matter. Plasmas

can also be produced by exposing an ordinary gas to energetic photons, such

as ultraviolet light or X-rays. The steady-state ionization density depends on a

balance between ionization and recombination. In order to maintain a high degree

of ionization, either the ionization source must be very strong, or the plasma must

be very tenuous so that the recombination rate is low.

The definition of a plasma requires that any deviation from charge neutrality

must be very small. For simplicity, unless stated otherwise, we will assume that

the ions are singly charged. The charge neutrality condition is then equivalent to

requiring that the electron and ion number densities be approximately the same.

In the absence of a loss mechanism, the overall charge neutrality assumption

is usually satisfied because all ionization processes produce equal amounts of

positive and negative charge. However, deviations from local charge neutrality can

occur. Usually these deviations are small, since as soon as a charge imbalance

develops, large electric fields are produced that act to restore charge neutrality.

Systems that display large deviations from charge neutrality, such as vacuum tubes

and various electronic devices, are not plasmas, even though some aspects of their

physics are similar.

In the most common type of plasma, the charged particles are in an unbound

gaseous state. This requirement can be made more specific by requiring that the

random kinetic energy be much greater than the average electrostatic energy,

and is imposed to provide a distinction between a plasma, in which the particles
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2 Introduction

move relatively freely, and condensed matter, such as metals, where electrostatic

forces play a dominant role. In such a plasma, long-range electrical forces are

much more important than short-range forces. Because many particles “feel” the

same long-range forces, a plasma is dominated by “collective” motions involving

correlated movements of large numbers of particles rather than uncorrelated

interactions between neighboring particles. Long-range forces lead to many

complex effects that do not occur in an ordinary gas.

Plasmas can be divided into two broad categories: natural and man-made.

It is an interesting fact that most of the material in the visible universe, over

99% according to some estimates, is in the plasma state. This includes the Sun,

most stars, and a significant fraction of the interstellar and intergalactic medium.

Thus, plasmas play a major role in the universe. Plasma physics is relevant to

the formation of planetary radiation belts, the development of sunspots and solar

flares, the acceleration of high velocity winds that flow outward from the Sun and

other stars, the generation of radio emissions from the Sun and other astrophysical

objects, and the acceleration of cosmic rays.

In Earth’s atmosphere, the low temperatures and high pressures that are

commonly present are not favorable for the formation of plasmas except under

unusual conditions. Probably the most common plasma phenomenon encountered

in Earth’s atmosphere is lightning. In a lightning discharge the atmospheric gas

is ionized and heated to a very high temperature by the electrical currents that

are present in the discharge. Because of the high recombination rate, the resulting

plasma exists for only a small fraction of a second. Less common is ball lightning,

which consists of a small ball of hot luminous plasma that lasts for up to a few

tens of seconds. Another terrestrial plasma phenomenon, readily observable at

high latitudes, is the aurora, which is produced by energetic electrons and ions

striking the atmosphere at altitudes of 80 to 100 km. At higher altitudes, from

one hundred to several hundred km, Earth is surrounded by a dense plasma called

the ionosphere. The ionospheric plasma is produced by ultraviolet radiation from

the Sun, and also exists on the nightside of Earth because the recombination rate

is very low at high altitudes. The ionosphere plays an important role in radio

communication by acting as a reflector for low-frequency radio waves. At even

higher altitudes, Earth is surrounded by a region of magnetized plasma called

the magnetosphere. Planetary magnetospheres have now been observed at all the

magnetized planets and exhibit many of the plasma processes that are believed to

occur at magnetized astronomical objects such as accretion disks and neutron stars.

Numerous applications of basic plasma physics can be found in man-made

devices. One of the most important of these is the attempt to achieve controlled

thermonuclear fusion. Because fusion requires temperatures of 107 K or more to

overcome the Coulomb repulsion between nuclei, controlled fusion necessarily
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involves very high temperatures. Since a fusion plasma would be quickly cooled

by the walls of any ordinary container, considerable effort has gone into attempts to

contain plasmas by magnetic fields, using a so-called “magnetic bottle.” Although

the principles of such magnetic confinement may appear at first glance to be

straightforward, attempts to achieve controlled fusion using magnetic confinement

have been complicated by collective effects that develop when large numbers

of particles are introduced into the machine. In another approach, known as

“inertial confinement,” one attempts to use extremely powerful lasers to compress

and heat fusion fuel to very high densities for short periods of time so as

to enable self-sustaining fusion reactions. The effort to find a technologically

and economically attractive configuration for confining a dense, hot plasma

remains one of the main challenges of fusion research. Besides fusion, numerous

other devices involving plasmas also exist. Fluorescent lights and various other

devices involving plasma discharges, such as electric arc welders and plasma

etching machines, are in common daily use. More advanced devices include

magnetohydrodynamic generators for producing electricity from high-temperature

gas jets, ion engines for spacecraft propulsion, various surface treatment processes

that involve the injection of ions into metal surfaces, and high-frequency electronic

devices such as traveling wave tubes and magnetrons.

The purpose of this book is to provide the basic principles needed to analyze

a broad range of plasma phenomena. Since both natural and man-made plasmas

are of potential interest, a special effort has been made in this book to provide

examples from space, laboratory, and astrophysical applications.
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Characteristic Parameters of a Plasma

Before starting with a detailed discussion of the processes that occur in a plasma,

it is useful to identify certain fundamental parameters that are relevant to the

description of essentially all plasma phenomena.

2.1 Number Density and Temperature

In an ordinary material there are usually three parameters, pressure, density, and

temperature, that must be specified to determine the state of the material, any two

of which can be selected as the independent variables. A plasma almost always

involves considerably more parameters. For a plasma consisting of electrons and

various types of ions, it is necessary to define a number density for each species,

denoted by ns, where the subscript s stands for the sth species. Since the electrons

and ions respond differently to electromagnetic forces, the number densities of the

various species must be regarded as independent variables. In general, a plasma

cannot be characterized by a single density. Certain types of plasmas, called

non-neutral plasmas (Davidson, 2001), in which the plasma does not have overall

charge neutrality, are not within the scope of this book.

The temperature of particles of type s is directly proportional to their average

random kinetic energy. In thermal equilibrium, the distribution of velocities for

particles of type s is given by the Maxwellian distribution

fs(v) = ns

(

ms

2πκTs

)3/2

e
−msυ

2

2κTs , (2.1.1)

where fs(v) is the distribution function, v is the velocity, υ is the magnitude of the

velocity, υ2
= υ2

x + υ
2
y + υ

2
z , ms is the mass of the particles, κ is Boltzmann’s

constant, and Ts is the temperature. The distribution function is normalized such

that fs (v) integrated over all velocities gives the number density of particles of
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υx–Cs Cs

fs(υx)

Figure 2.1 The Maxwellian velocity distribution.

type s:
∫ ∞

−∞
fs(v) dυx dυy dυz = ns . (2.1.2)

A plot of the Maxwellian distribution as a function of υx is shown in Figure 2.1

(for υy = υz = 0). It is a relatively simple matter to show that the root–mean–square

velocity is given by
√

3Cs, where

Cs =

√

κTs

ms

. (2.1.3)

Hereafter, Cs will be referred to as the thermal speed. The average kinetic energy

is given by
〈

1

2
msυ

2

〉

=
3

2
κTs , (2.1.4)

where the angle brackets indicate an average. The above equation shows that the

temperature is directly proportional to the average kinetic energy of the particles.

According to a general principle of statistical mechanics called the H-theorem,

the Maxwellian distribution is the unique distribution function that arises when a

gas is in thermal equilibrium (Huang, 1963). For a plasma in thermal equilibrium,

not only should the distribution function for each species be a Maxwellian, but

the temperature of all species must be equal. However, because collisions occur

very infrequently in a tenuous plasma, the approach to thermal equilibrium is

often very slow. Therefore, non-equilibrium effects are quite common in plasmas.

Since the electron and ion masses are very different, the rate of energy transfer

between electrons and ions is much slower than between electrons or between

ions. Therefore, when a plasma is heated, substantial temperature differences often

develop between the electrons and ions. Non-equilibrium distributions also occur

when an electron beam or an ion beam is injected into a plasma. Under these

circumstances, the velocity distribution function of the beam usually cannot be

represented by a Maxwellian distribution. Such non-thermal distributions produce

many interesting effects that will be discussed later.
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6 Characteristic Parameters of a Plasma

2.2 Debye Length

All plasmas are characterized by a fundamental length-scale determined by the

temperature and number density of the charged particles. To demonstrate the

existence of this length-scale, consider what happens when a negative test charge

Q is placed in an otherwise homogeneous plasma. Immediately after the charge is

introduced, the electrons are repelled and the ions are attracted. Very quickly, the

resulting displacement of the electrons and ions produces a polarization charge that

acts to shield the plasma from the test charge. This shielding effect is called Debye

shielding, after Debye and Hückel (1923) who first studied the effect in dielectric

fluids. The characteristic length over which shielding occurs is called the Debye

length.

To obtain an expression for the Debye length, it is useful to consider a

homogeneous plasma of electrons of number density ne and temperature Te, and

a fixed background of positive ions of number density n0. After the negative test

charge Q has been inserted and equilibrium has been established, the electrostatic

potential Φ is given by Poisson’s equation

∇
2
Φ = −

ρq

ǫ0
= −

e

ǫ0
(n0 − ne) , (2.2.1)

where ρq is the charge density, ǫ0 is the permittivity of free space, and e is the

electronic charge. To obtain a solution for the electrostatic potential, it is necessary

to specify the electron density as a function of the electrostatic potential. We

assume that at infinity, where Φ = 0, the electrons have a Maxwellian velocity

distribution with a number density n0. From general principles of kinetic theory it

can be shown that the velocity distribution function for the electrons is given by

fe(υ) = n0

(

me

2πκTe

)3/2

e
−

( 1
2
meυ

2
+ qΦ)

κTe , (2.2.2)

where q = −e. This equation is like the Maxwellian distribution discussed

previously, but has an additional factor exp[−qΦ/κT ]. This factor comes from

a principle of statistical mechanics that states that the number of particles with

velocity v is proportional to exp[−W/κT ], where W is the total energy (Huang,

1963). The total energy is given by the sum of the kinetic energy and the potential

energy, W = (1/2)meυ
2
+qΦ. By integrating the distribution function over velocity

space, it is easy to show that the electron density is given by

ne = n0 e
eΦ
κTe . (2.2.3)
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2.2 Debye Length 7

Substituting the above expression into Poisson’s equation (2.2.1), one obtains the

nonlinear differential equation

∇
2
Φ = −

n0e

ǫ0

(

1− e
eΦ
κTe

)

. (2.2.4)

This differential equation can be solved analytically if we assume that eΦ/κTe≪ 1.

Expanding the exponential in a Taylor series and keeping only the first-order term,

one obtains the linear differential equation

∇
2
Φ =

n0e2

ǫ0κTe

Φ . (2.2.5)

Since the plasma is isotropic, the electrostatic potential can be assumed to be

spherically symmetric. The above equation then simplifies to

∂2

∂r2
(rΦ)−

n0e2

ǫ0κTe

(rΦ) = 0 , (2.2.6)

which has the general solution

Φ =
A

r
e−r/λD , (2.2.7)

where r is the radius and A is a constant. The factor λD is the Debye length and is

given by

λ
2
D =
ǫ0κTe

n0e2
. (2.2.8)

The constant A is determined by requiring that the solution reduce to the Coulomb

potential as the radius goes to zero. The complete solution is then given by

Φ =
1

4πǫ0

Q

r
e−r/λD , (2.2.9)

and is called the Debye–Hückel potential. A plot of the Debye–Hückel potential

(for negative Q) is shown in Figure 2.2. As can be seen, the potential decays

exponentially, with a length-scale given by the Debye length, λD. A simple,

practical formula for the Debye length is

λD = 6.9
√

Te/n0 cm , (2.2.10)

where Te is in K and n0 is in cm−3.

The derivation of the Debye length given above is deceptively simple and hides

some subtleties inherent in the concept, especially in collisionless plasmas for
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8 Characteristic Parameters of a Plasma
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Figure 2.2 A comparison of the Debye–Hückel potential (dashed line) with the
Coulomb potential (solid line) for a negative test charge.

which the assumption of a Maxwellian distribution (2.2.2) is open to question.

For instance, consider the following interesting paradox involving the role of ions.

If the ions were mobile, then by a simple extension of the treatment used for the

electrons it would appear that the ion number density should be given by

n i = n0e
− eΦ
κTi . (2.2.11)

However, this equation does not provide a correct representation of the ion

density. This is because the ions are accelerated by the negative charge Q, and

particle flux conservation dictates that as the ion velocity increases, the ion density

should decrease. This suggests that the mobility of the ions actually decreases the

positive charge density, in contrast with Eq. (2.2.11) which implies that the ion

density should increase as r decreases. This effect is called anti-shielding, since it

decreases the charge density in the shielding region. The resolution of this paradox

requires a more sophisticated understanding of distribution functions than we have

at the moment, and is postponed until Chapter 11.

2.2.1 Plasma Sheaths

When an object of finite size is placed in a plasma with approximately equal

electron and ion temperatures, it acquires a net negative charge because the

electron thermal speed, Ce =
√
κTe/me , is much greater than the ion thermal

speed, Ci =
√
κTi/m i , thereby causing more electrons than ions to hit the object.

As the object charges negatively, the electrons start to be repelled, just as when

a negative test charge is introduced into the plasma. Equilibrium occurs when

the electron current collected by the object balances the incident ion current. An

electrically polarized region is thereby formed around the object. This polarized

region is called a plasma sheath, or sometimes a positive ion sheath, because the

electrons are largely excluded from the sheath. The exact form of the electrostatic
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2.3 Plasma Frequency 9

potential distribution is a complicated boundary value problem and can only be

solved analytically for certain simple geometries such as a sphere, a cylinder, or

a planar surface. If the radius of curvature is much larger than the Debye length,

so that the surface can be regarded as locally planar, then the potential decays

exponentially with a characteristic length-scale given by the Debye length. In these

simple cases it is easy to show, by equating the incident electron and ion currents,

that the equilibrium potential of the surface is given to a good approximation by

V = −
κTe

2e

[

ln

(

m i

me

)

+ ln

(

Te

Ti

)]

. (2.2.12)

Note that for a given ion-to-electron mass ratio the equilibrium potential is con-

trolled dominantly by the electron temperature. Because of the weak logarithmic

dependence, this potential is typically only a few times the electron thermal

energy. For a proton–electron plasma with equal electron and ion temperatures

V = −3.75κTe/e.

If the object is exposed to ultraviolet radiation, as in the case of a spacecraft

exposed to sunlight, then the emitted photoelectron current must be added to

the equilibrium current balance condition. Under these conditions the object can

charge to a positive potential if the emitted photoelectron flux exceeds the incident

electron flux. Modifications to the equilibrium potential can also occur if secondary

electrons are produced by energetic particles striking the surface.

2.3 Plasma Frequency

If the electrons in a uniform, homogeneous plasma are displaced from their

equilibrium position, an electric field arises because of charge separation. This

electric field produces a restoring force on the displaced electrons. Since the

magnitude of the charge imbalance is directly proportional to the displacement, the

restoring force is given by Hooke’s law, F = −k∆x, where ∆x is the displacement

and k is the effective “spring constant.” Since the electrons have inertia, the system

behaves as a harmonic oscillator. The resulting oscillations are called electron

plasma oscillations or Langmuir oscillations, after Tonks and Langmuir (1929)

who first discovered these oscillations.

To compute the oscillation frequency, let us assume that the plasma consists of a

uniform slab of electrons of number density n0 and a fixed background of positive

ions of the same density. Suppose we now displace the slab of electrons to the

right by a small distance ∆x, as shown in Figure 2.3. The slab can be divided into

three regions. Region 1 has a net positive charge, region 2 has no net charge, and

region 3 has a net negative charge. The electric field in region 2 can be computed
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Figure 2.3 A simple slab model that illustrates electron plasma oscillations.

using Gauss’ law and is given by

E =
n0e∆x

ǫ0
. (2.3.1)

If the slab of electrons is then released, the equation of motion for the electrons is

given by

me

d2
∆x

dt2
= (−e)E = −

n0e2

ǫ0
∆x , (2.3.2)

which simplifies to

d2
∆x

dt2
+

(

n0e2

ǫ0me

)

∆x = 0 . (2.3.3)

The above equation is just the harmonic oscillator equation. The oscillation

frequency ωpe is determined by the term in parentheses via the equation

ω2
pe =

n0e2

ǫ0me

, (2.3.4)

and is called the electron plasma frequency. Note that the electron plasma

frequency is proportional to the square root of the electron density and inversely

proportional to the square root of the electron mass. A simple formula for the

electron plasma frequency (in hertz) is given by

fpe = 8980
√

n0 Hz , (2.3.5)

where the number density n0 is in electrons cm−3. Note that the electron plasma

frequency is determined solely by the number density of the electrons.
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