

How Much Have Global Problems Cost the World?

There are often blanket claims that the world is facing more problems than ever but there is a lack of empirical data to show where things have deteriorated or in fact improved. In this book, some of the world's leading economists discuss ten problems that have blighted human development, ranging from malnutrition, education, and climate change, to trade barriers and armed conflicts. Costs of the problems are quantified in percent of GDP, giving readers a unique opportunity to understand the development of each problem over the past century and the likely development into the middle of this century, and to compare the size of the challenges. For example: How bad was air pollution in 1900? How has it deteriorated and what about the future? Did climate change cost more than malnutrition in 2010? This pioneering initiative to provide answers to many of these questions will undoubtedly spark debate amongst a wide readership.

BJØRN LOMBORG is Director of the Copenhagen Consensus Center and Adjunct Professor in the Department of Management, Politics and Philosophy at Copenhagen Business School. He is the author of the controversial bestseller *The Skeptical Environmentalist* (Cambridge University Press, 2001) and was named one of the "Top 100 Global Thinkers" by *Foreign Policy* magazine in 2010, 2011, and 2012, one of the world's "100 Most Influential People" by *Time*, and one of the "50 people who could save the planet" by The *Guardian*.

How Much Have Global Problems Cost the World?

A Scorecard from 1900 to 2050

Edited by BJØRN LOMBORG

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107679337

© Copenhagen Consensus Center 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printing in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

How much have global problems cost the world? : a scorecard from 1900 to 2050 / edited by Bjørn Lomborg.

pages cm Includes index.

ISBN 978-1-107-67933-7 ISBN 978-1-107-02733-6

 Social problems – Economic aspects – History. I. Lomborg, Bjørn, 1965– HN13.H676 2013

303.3'72-dc23

2013000579

ISBN 978-1-107-02733-6 Hardback ISBN 978-1-107-67933-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures vi List of tables xii List of contributors xvi Acknowledgments xviii

Introduction 1 Bjørn Lomborg

Summaries 26

- 1 Air Pollution: Global Damage Costs from 1900 to 2050 70 Guy Hutton
- Armed Conflicts: The Economic Welfare Costs of Conflict 99
 S. Brock Blomberg and Gregory D. Hess
- 3 Climate Change: The Economic Impact of Climate Change in the Twentieth and Twenty-First Centuries 117 Richard S. J. Tol
- 4 Ecosystems and Biodiversity: Economic Loss of Ecosystem Services from 1900 to 2050 131 Anil Markandya and Aline Chiabai
- Education: The Income and Equity Loss of not Having a Faster Rate of Human Capital Accumulation 170
 Harry Anthony Patrinos and George Psacharopoulos
- Gender Inequality: A Key Global
 Challenge Reducing Losses due to Gender
 Inequality 192
 Joyce P. Jacobsen

- 7 Human Health: The Twentieth-Century Transformation of Human Health – Its Magnitude and Value 207 Dean T. Jamison, Prabhat Jha, Varun Malhotra, and Stéphane Verguet
- 8 Malnutrition: Global Economic Losses Attributable to Malnutrition 1900–2000 and Projections to 2050 247 Sue Horton and Richard H. Steckel
- 9 Trade Barriers: Costing Global Trade Barriers, 1900 to 2050 273 Kym Anderson
- 10 Water and Sanitation: Economic Losses from Poor Water and Sanitation – Past, Present, and Future 303 Marc Jeuland, David Fuente, Semra Özdemir, Maura Allaire, and Dale Whittington

Index 365

Figures

I.1	Population (billions)	page 3	I.16	Estimated trends in adult male height	
I.2	GDP 1900-2050; high growth			(in cm) by region, 1900–2010, and	
	scenario for 2010–2050 (trillion 199	projections 2010–2050	19		
	International Geary-Khamis		I.17	Estimated loss due to poor nutrition,	
	dollars)	4		geographic regions, 1900-2010, and	
I.3	Deaths from air pollution	8		projections 2010–2050, as percent	
I.4	Global damage costs of all-cause ai	r		of GNP	20
	pollution, as percent of GDP	8	I.18	Estimated loss due to poor nutrition,	
I.5	Risk of death from air pollution per			developed/developing regions and	
	year	9		world, 1900-2010, and projections	
I.6	Global damage costs from air			2010–2050, as percent of GNP	20
	pollution, outdoor versus indoor, as		I.19	Base case "economic losses"	
	percent of GDP	9		associated with WASH-related	
I.7	The global average economic impac	et		diseases as percent of GDP for all	
	of climate change in the twentieth ar	nd		developing regions	22
	twenty-first centuries	11	I.20	Relative annual economic benefits	
I.8	World-wide military expenditure as			and loss as percent of 2000 GDP over	
	percent of GDP 1900-2050, with the	ie		the period 1900–2000 of biodiversity	
	medium scenario from 2007	11		changes for various biomes	
I.9	World-wide military expenditure/			(mid-range estimates)	23
	GDP: 1980-2050 (three different		I.21	Relative annual economic benefits	
	scenarios)	12		and loss as percent of 2050 GDP over	
I.10	Cost of price-distorting trade barrier	rs,		the period 2000–2050 of biodiversity	
	as percent of GDP: world (top) and			changes for various biomes	
	developing and high-income			(mid-range estimates, using 2000 as	
	countries (bottom), 1900 to			starting point)	23
	2050	13	S.1	Total population exposed to air	
I.11	Global welfare loss from illiteracy,	as		pollution	27
	percent of GDP	15	S.2	Total global economic impact from	
I.12	Global welfare loss from gender			air pollution, as percent of GWP	29
	inequality, as percent of GDP	15	S.3	Worldwide military expenditure as	
I.13	Highest observed national female li	fe		percent of GDP, 1900-2007	32
	expectancies at a given moment in the	ne	S.4	"Guns" vs. "Butter": How much	
	world, 1750–2005	16		would you pay?	33
I.14	Factors accounting for decline in		S.5	Worldwide military expenditure as	
	child mortality, 1970–2000	17		percent of GDP, 1980–2050 (different	
I.15	Money metric value of years of life			conflict scenarios)	34
	lost (MMVYLL), selected regions,		S.6	The global average, minimum, and	
	1900–2050, as percent of GDP	18		maximum total economic impact of	

				List of figures	Vii
	climate change in the twentieth and		S.23	Predicted WASH-related deaths by	
	twenty-first centuries	37		region, 1950–2050	67
S.7	The global average economic impact		S.24	Base case "economic losses"	
	of climate change by sector, as			associated with WASH: (A) health	
	percent of GDP	37		losses, by region; (B) time costs, by	
S.8	Economic loss registered by ecosystem			region; and (C) aggregate global	
	services, 2000-2050, percent of total			losses	68
	loss (lower-bound scenario)	41	1.1	Methodology overview for baseline	
S.9	Economic loss registered by ecosystem			and temporal extrapolation	75
	services, 2000–2050, percent of total		1.2	Trends in emissions of nitrous oxides,	
	loss (upper-bound scenario)	42		carbon monoxide, sulfur dioxide, and	
S.10	Global welfare loss from the			volatile organic compounds in the USA	
	world's education challenge, as			from 1940 to 1998 (1940 = 100)	75
	percent of GDP	46	1.3	Exposure to outdoor air pollution,	
S.11	Global loss from gender inequality as			evolution from 1900 to 2050	
	percent of GDP in the given year,	40		(year 2010 = index 100)	76
G 10	1900 to 2050	49	1.4	Exposure to indoor air pollution:	
S.12	Highest observed national female			evolution of solid fuel use from 1900	
	life expectancies at a given moment in the world (1750–2005)	51		to 2050, as percent of households	77
S.13	Factors accounting for decline in child	31	1.5	Total population exposed to air	/ /
3.13	mortality, all low- and middle-income		1.3	pollution	77
	countries, 1970–2000	51	1.6	Uncertainty range tested in pollution	11
S.14	Life expectancy for Japanese	31	1.0	exposure in urban centers	84
5.17	newborns in 2050 and Mozambicans		1.7	Uncertainty range tested in solid	0-1
	in 1990	52	1.,	fuel use	84
S.15	Ratio <i>a</i> over the period	02	1.8	Global damage costs from air	
	1900–2050	53		pollution, outdoor versus indoor	
S.16	Money metric value of years of life			(US\$, 1990 prices)	85
	lost, selected regions, 1900–2050, as		1.9	Global damage costs from air	
	percent of GDP	55		pollution, outdoor versus indoor, as	
S.17	Estimated trends for adult male height			percent of GWP	86
	(in cm) by region, including		1.10	Global damage costs from air	
	projections to 2050	57		pollution (US\$, 1990 prices)	86
S.18	Estimated height trends (in cm) for		1.11	Global damage costs of all-cause	
	developed and developing			air pollution, as percent of GDP	
	countries	58		and GWP	87
S.19	Estimated percent of GNP lost due to		1.12	Damage costs of outdoor air	
	poor nutrition	59		pollution, as percent of GDP	88
S.20	The global economic effect of poor		1.13	Damage costs of indoor air pollution,	
	nutrition as percent loss of GNP	59		as percent of GDP	88
S.21	Annual under-5 deaths (millions)		1.14	Damage costs to developing countries	
	avoided due to nutrition	60		from air pollution (US\$, 1990	0.0
g 22	improvements, 1900–2000	60	1 15	prices)	88
S.22	Association between WASH-related		1.15	Damage costs of air pollution in developing countries, as percent	
	death rate and percent coverage with piped water in 2004	65		of GDP	89
	piped water iii 2004	65		טו טעו	07

viii List of figures

1.16	Damage costs to developed countries from air pollution (US\$, 1990		2.10	Guns vs. Butter: How much would you pay?	108
1.17	prices) Damage costs of air pollution	89	2.11	Worldwide military expenditure as percent of GDP, 1980–2050, different	
	in developed countries, as percent of GDP	89	3.1	conflict scenarios The level of the (5-year running	114
1.18	Contribution to outdoor air pollution damage costs in developed countries	00		average) global mean surface air temperature and the rate of change in	
1.19	Contribution to outdoor air pollution	90	2.2	the twentieth and twenty-first centuries	120
1.20	damage costs in developing countries	90	3.2	The global average, minimum, and maximum total economic impact of	
1.20	Contribution to indoor air pollution damage costs in developed	0.1	2.2	climate change in the twentieth and twenty-first centuries	121
1.21	countries Contribution to indoor air pollution	91	3.3	The global average sectoral economic impact of climate change in the	
1 22	damage costs in developing countries	91	2.4	twentieth and twenty-first centuries as a function of time and temperature	122
1.22	Variation in pollution exposure and resulting impact on baseline estimates		3.4	The net total economic impact of climate change by nation averaged	
	of air pollution damage costs, developed and developing countries	02	2.5	over the twentieth century, ranked from highest to lowest	123
1.23	combined, as percent of GWP Variation in value of life and resulting	92	3.5	The national total economic impact of climate change in three selected	
	impact on baseline estimates of air pollution damage costs, developed			years, averaged over the twentieth century, and projected to 2050 and	124
	and developing countries combined, as percent of GWP	92	3.6	2100 The global average impact of	124
2.1	Growth in real world GDP per capita,			climate change on mortality by cause	
2.2	1000–present	102	2.7	of death	125
2.2	Growth in real world GDP per capita, estimate	103	3.7	The national total number of premature deaths due to climate	
2.3	Worldwide military expenditure as	105		change in three selected years,	
	percent of GDP, 1900-2007	104		averaged over the twentieth century,	
2.4	Worldwide military expenditure as			and projected to 2050 and 2100	126
	percent of GDP, 1980-2007	105	4.1	Gross economic loss by region,	
2.5	US military expenditure as percent			1900–2000 (lower-bound	
	of GDP, 1980–2007	105		scenario)	149
2.6	Military expenditure as percent	106	4.2	Gross economic loss by region,	
2.7	of GDP, by income group	106		1900–2000 (upper-bound	149
2.7	Military expenditure as percent of GDP, by governance	106	4.3	scenario) Gross economic loss by region,	149
2.8	Military expenditure as percent	100	4.5	2000–2050 (lower-bound	
2.0	of GDP, by region	107		scenario)	150
2.9	Military expenditure as percent of	,	4.4	Gross economic loss by region,	100
	GDP since 9/11, selected			2000–2050 (upper-bound	
	countries	107		scenario)	150

List of figures 4.5 Economic loss registered by 6.1 US labor force participation rates by ecosystem services, 1900–2000, sex and percentage of labor force that percent of total loss (lower-bound is female, 1800-2010 193 161 6.2 US gender earnings ratios, scenario) 1815-2009 Economic loss registered by 4.6 195 ecosystem services, 1900-2000, 6.3 Global loss from gender inequality as percent of total loss (upper-bound percent of GDP in the given year, scenario) 161 1900-2050 203 Economic loss registered by Global loss from gender inequality 4.7 6.4 ecosystem services, 2000–2050, as percent of 1900 GDP, percent of total loss (lower-bound 1900-2050 203 scenario) 162 7.1 Highest observed national female life expectancies at a given moment in 4.8 Economic loss registered by ecosystem services, 2000–2050, the world (1750–2005) 208 percent of total loss (upper-bound 7.2 The rate of increase in highest female scenario) 162 life expectancy, years per decade 208 5.1 Progress in reduction of illiteracy in 7.3 Factors accounting for decline in selected countries 171 child mortality, 1970-2000 211 5.2 Historical progress in building human 7.4 Empirical and fitted survival curves capital stock (weighted average of (a), and hazard rates (b) as a function educational attainment by of age, for the Japanese population for geographical area) 173 the period 2005–2010 and for the 5.3 Educational progress by region, Mozambican population for the 1950-2010 174 year 1900 212 Out-of-school trend and projection to 5.4 7.5 Life expectancy as a function of age 175 for Japan 2050 and the Mozambican 2015 (millions of children) population in 1990 5.5 The relationship between years of 212 schooling and per capita income, 7.6 Hypothetical survival curves 1950-2010 (based on pooled for different values of the 179 213 country-year data) couplet (e_5, b) Actual and estimated data Empirical relationship between 5.6 7.7 periods 180 rectangularity of the survival curve Mean years of schooling of the adult age 5 onward, b, as a function of life 5.7 population, Korea and Pakistan 181 expectancy at age 5, e_5 214 5.8 Welfare loss associated with not 7.8 Years of life lost over the period having 1 additional year of schooling, 1900–2050 for the world, the less developed regions, and the more Pakistan (upper bound) 182 5.9 Actual and assumed years of developed regions 217 Ratio *a* over the period 1900–2050 schooling of world population 183 7.9 5.10 Trend over time of the returns to for: (a) countries, i.e. India, China, education 184 Japan, the United States; (b) country The relationship between years of 5.11 groupings, i.e the world, the less schooling and income inequality, developed regions, the more 1950-2010 (based on country-year developed regions, sub-Saharan pooled data) 187 220 Africa 5.12 Global welfare loss from the world's 7.10 Under-5 years of life lost per person education challenge (loss as percent (YLLs) as a percent of total YLLs, of GDP) 189 1990-2050 221

x List of figures

7.11	Mortality trends and specific diseases in British Guiana	225	8.8	Assumed GDP loss (percent) with height (cm)	259
7.12	Age-specific all-India malaria-attributed death rates	223	8.9	Estimated population-attributable risk due to child malnutrition	264
	estimated from a large mortality study and those estimated indirectly		8.10	Estimated percent of GNP lost due to poor nutrition, geographic regions,	20.
7.13	for WHO Number of countries reporting	225		1900–2010, and projections 2010–50	265
7.14	smallpox by region, 1920–1980 Trends in smallpox deaths	227	8.11	Estimated percent of GNP lost due to poor nutrition, developed/developing	
	and immunization, Finland, 1750–1935	227		regions and world, 1900–2010, and projections 2010–2050	265
7.15	France: smoking, tobacco prices, and male lung cancer rates at young ages,		8.12	Annual under-5 deaths (millions), all causes, by region, 1900–2000	266
A7.1	1980–2010 Money metric value of years of life lost, selected regions, 1900–2050,	231	8.13	Annual under-5 deaths (millions), all causes, and deaths avoided due to nutrition improvements	267
A7.2	percent of GDP Years of life lost per birth, reference	240	8.14	Annual under-5 deaths (millions) avoided due to nutrition	
	country is either frontier country or Japan 2050, less developed regions, 1900–2050	246	9.1	improvements, by region Cost of price-distorting trade barriers as a percent of GDP, developing	267
A7.3	Money metric value of years of life lost, selected regions, 1900–2050, per	246	0.2	and high-income countries, 1900 to 2050	296
8.1	cent of GDP Trends in adult male height (in cm), representative countries from North	246	9.2	Cost of price-distorting trade barriers as a percent of GDP, the world, 1900 to 2050	297
0.0	America and Northern, Southern, and Eastern Europe, 1900–2000	252	10.1	Association between piped water and average per capita GDP in	204
8.2	Trends in adult male height (in cm), representative countries from South America, 1900–2000	254	10.2	2008 Two scenarios for the relationships between coverage with piped water,	304
8.3	Trends in adult male height (in cm), representative countries from Asia,	23 1		WASH-related mortality rate, and income	311
8.4	1900–2000 Assumed trends in adult male height (in cm) for areas missing historical	254	10.3	Illustrations of possible relationships between the mortality rate, "economic losses" per death, and	
8.5	data, 1900–2000 Estimated trends in adult male height	256	10.4	income Illustrations of possible relationships	312
	(in cm) by region, 1900–2010, and projections 2010–2050	257		between DALYs, "economic losses" per capita, and income	313
8.6	Estimated trends in adult male height (in cm), developed and developing countries, 1900–2010, and		10.5	Illustrations of possible relationships between per capita "economic losses," total "economic losses,"	
8.7	projections 2010–2050 Scatter diagram and equation used for	257	10.6	population growth, and income Analytical framework for our	314
	height projections	258		calculations of economic losses	

List of figures associated with poor water and 10.21 Estimated base case simulation of one-way time to source water, by sanitation 315 10.7 337 Association between WASH-related region 10.22 Estimated base case simulation of death rate and percent coverage with piped water in 2004 317 total time spent collecting water, by 337 10.8 Association between WASH-related region 10.23 Average value of a statistical life, by death rate and percent coverage with 338 unimproved water in 2004 318 region 10.9 Association between time to water 10.24 Base case "economic losses" associated with WASH: (A) health and GDP per capita (GDP per capita losses, by region; (B) time costs, by on a log scale) 319 10.10 Piped water coverage in four large region; and (C) aggregate global countries 326 losses 339 10.25 Base case "economic losses" 10.11 WASH-related mortality in four large countries associated with WASH-related 327 diseases as percent of GDP for all 10.12 Predicted number of WASH-related 340 deaths (top panel) and "economic developing regions losses" due to WASH-related health 10.26 Ranking of factors influencing model problems (bottom panel) in four large projections of the aggregate economic losses over the simulation 328 countries 10.13 Predicted time to water (top) and period 1950-2050 341 "economic losses" due to time costs A10.1 VSL estimates derived from income (bottom) in four large countries 329 elasticities 356 10.14 Predicted aggregate "economic A10.2 Scatter plots of VSL estimates published since around 2000 for losses" due to poor access to water services in four large countries 330 industrialized and middle-income countries, with low- and high-10.15 Percent of population with piped income elasticity curves water and sewerage, by region, with 331 superimposed 357 base case coverage elasticities 10.16 Population not covered with piped A10.3 Hybrid S-shaped VSL curve, water and sewerage, with base case combining an exponential function fit to empirical VSL estimates and an coverage elasticities 332 income elasticity of 0.55 at higher 10.17 Percent of global population with various levels of water and sanitation incomes 358 services, assuming base case A10.4 Percent of population with improved elasticities of coverage 332 water, by region, assuming base case 10.18 The WASH-related mortality rate, by elasticities of coverage and using region, assuming base case 1950-2008 GDP growth for future elasticities of WASH-related projections 363 A10.5 Percent of population with improved mortality rate 334 10.19 Ranking of factors influencing model sanitation, by region, assuming base projections of the average WASHcase elasticities of coverage and using related mortality rate across 1950-2008 GDP growth for future developing regions in 2050 335 projections 363 A10.6 Base case total "economic losses" 10.20 Estimated number of deaths due to WASH-related disease for base case associated with WASH, by parameterization of the mortality rate, region 364 by region 336

Tables

I.1	Regions and income groups	page 4	4.5	MSA area by biome and world region,	
I.2	The low/high growth prospect is			year 2050 (1000 ha)	137
	based on the following GDP		4.6	Changes in MSA area by biome and	
	growth rates	4		world region, period 1900-2000	
S.1	Welfare loss due to low educational			(1000 ha)	137
	attainment	46	4.7	Changes in MSA area by biome and	
1.1	Damage costs included in this			world region, period 2000-2050	
	study	72		(1000 ha)	138
1.2	Regional classification and		4.8	Changes in MSA area by biome and	
	populations	73		world region, period 1900-2050	
1.3	Overview of data available for global			(1000 ha)	139
	damage cost study	74	4.9	Non-wood forest products	140
1.4	VSL estimates from selected		4.10	Present values for WFPs and NWFPs	
	meta-analyses	79		(2000 US\$/ha)	141
1.5	Ecological impacts with identifiable		4.11	Present values for carbon stocks in	
	human service flows	83		year 2000 (2000 US\$/ha)	142
1.6	Evolution of air pollution damage costs		4.12	Present values for carbon stocks in	
	over time: absolute (US\$ billion, 1990			year 2050 (2000 US\$/ha)	143
	prices) and as percent of GDP	85	4.13	Value-transfer results: present	
1.7	Per capita damage costs of air			values for passive use in year 2000	
	pollution (US\$, 1990 prices)	87		(2000 US\$/ha)	144
A1.1	Percent of population using solid		4.14	Value-transfer results: present	
	fuels, by country and WHO			values for passive use in year 2050	
	region	97		(2000 US\$/ha)	144
2.1	GDP growth and growth per capita		4.15	Value-transfer results: present	
	1950–2010: selected groupings	103		values for recreation in year 2000	
2.2	G/X(g) ratio in various years,			(2000 US\$/ha)	144
	grouped by region, income, and		4.16	Value-transfer results: present	
	governance	110		value for recreation in year 2050	
2.3	Tax, dividends, and present value of			(2000 US\$/ha)	144
	peace in various years grouped by		4.17	Value-transfer results for grassland	
	region, income, and governance	111		ecosystem services, stock values	
2.4	Summary of results in current and			in year 2000 (2000 US\$/ha)	145
	previous studies	115	4.18	Value-transfer results for	
4.1	Types of ecosystem services	132		grassland ecosystem services,	
4.2	World regions	134		stock values in year 2050	
4.3	MSA area by biome and world region,			(2000 US\$/ha)	145
	year 1900 (1000 ha)	136	4.19	Change in present values due to	
4.4	MSA area by biome and world region,			MSA area loss 1900–2000 (billion	
	year 2000 (1000 ha)	136		2000 US\$)	147

				List of tables	xiii
4.20	Change in present values due to		A4.6	Change in present values for	
	MSA area loss 2000–2050 (billion			recreation 2000–2050 (billion	
	2000 US\$)	148		2000 US\$)	167
4.21	Change in annual values due to MSA		A4.7	Change in present values for	
	area loss 1900-2000, discount 3%			passive use 1900–2000 (billion	
	(billion 2000 US\$)	151		2000 US\$)	168
4.22	Change in annual values due to MSA		A4.8	Change in present values for	
	area loss 2000-2050, discount 3%			passive use 2000–2050 (billion	
	(billion 2000 US\$)	152		2000 US\$)	169
4.23	Change in annual values for carbon in		5.1	Mean years of schooling and illiteracy	
	forests 1900-2000, discount 3%			rates (percent), 1870–2000	172
	(billion 2000 US\$)	153	5.2	Mean years of schooling of	
4.24	Change in annual values for carbon in			the population by region,	
	forests 2000–2050, discount 3%			1950–2010	174
	(billion 2000 US\$)	154	5.3	Social returns to investment in	
4.25	Change in annual values for WFP and			education by level and per capita	
	NWFP 1900–2000, discount 3%			income group (percent)	176
	(billion 2000 US\$)	155	5.4	Macro-estimated returns to 1	
4.26	Change in annual values for WFP and			additional year of schooling	176
	NWFP 2000–2050, discount 3%		5.5	The contribution of education to	
	(billion 2000 US\$)	155		economic growth in the early	
4.27	Change in annual values for forest			literature	177
,	recreation 1900–2000, discount 3%		5.6	Comparison of Korea and	1,,
	(billion 2000 US\$)	156	5.0	Pakistan	180
4.28	Change in annual values for forest	150	5.7	Pakistan: Welfare loss as percent of	100
1.20	recreation 2000–2050, discount 3%		3.7	per capita income	181
	(billion 2000 US\$)	157	5.8	Alternative Pakistan simulation using	101
4.29	Change in annual values for forest	137	5.0	time-series	182
7.27	passive use 1900–2000, discount 3%		5.9	Welfare loss associated with not	102
	(billion 2000 US\$)	159	3.9	having 1 additional year of schooling,	
4.30	Change in annual values for forest	137		world	183
4.50	passive use 2000–2050, discount 3%		5.10	The welfare loss of not having 1	103
	(billion 2000 US\$)	160	3.10	additional year of schooling, by	
A4.1	Change in present values for	100		region, 1950–2010	183
A4.1	carbon 1900–2000		5.11	Trend over time of the returns to	103
	(billion 2000 US\$)	165	3.11	education	184
A4.2		103	5 12		104
A4.2	Change in present values for carbon	166	5.12	Growth accounting simulation of the welfare loss	105
	2000–2050 (billion 2000 US\$)	166	5 12		185
A4.3	Change in present values for		5.13	Welfare loss in terms of lower per	
	WFP and NWFP 1900–2000 (billion	1.67		capita income because of low	100
	2000 US\$)	167	<i>c</i> 1	educational attainment	188
A4.4	Change in present values for		6.1	Labor force participation rates by sex	
	WFP and NWFP 2000–2050 (billion	1.67		and proportion of labor force that is	
	2000 US\$)	167		female, countries grouped by income	102
A4.5	Change in present values for			level	193
	recreation 1900–2000 (billion	1.65	6.2	US ratio of females to males	
	2000 US\$)	167		among high-school graduates.	

xiv List of tables

	and bachelor and first-professional		A7.1	Years of life lost per person under 5	
	degree recipients, end of each school			(in years), selected countries and	
	year, 1870 to 1950	194		regions, 1900–2050	237
6.3	Education enrollment rates by sex,		A7.2	Years of life lost per person above 5	
	percent of relevant age group,			(in years), selected countries and	
	countries grouped by income			regions, 1900–2050	238
	level	194	A7.3	Total years of life lost per person,	
6.4	Non-agricultural hourly earnings			selected countries and regions,	
	ratios, women to men, selected			1900–2050	238
	countries	194	A7.4	Money metric value of years of life	
6.5	Global loss from gender inequality as			lost, selected countries and regions,	
	percent of GDP in the given year	202		1900–2050	239
6.6	Global loss from gender inequality as		A7.5	Ratio a of money metric value of	
	percentage/total in billions of 1900			years of life lost per lifetime	
	GDP	203		income per capita (no units), selected	
7.1	Input parameters – life expectancy at			countries and regions,	
	birth, life expectancy at age 5, under-5			1900–2050	240
	mortality rate, and births per year,		A7.6	Characteristics of countries on the life	
	selected countries and groupings,			expectancy frontier	241
	1900–2050	216	A7.7	Years of life lost per person under 5	
7.2	Years of life lost per birth, selected			(in years), selected countries and	2.42
	countries and groupings, over		4.7.0	regions, 1900–2050	242
	and under age 5, and total,	217	A7.8	Years of life lost per person above 5	
7.2	1900–2050	217		(in years), selected countries and	242
7.3	Years of life lost per person, major		470	regions, 1900–2050	242
	mortality shocks of the twentieth	218	A7.9	Total years of life lost per person,	
7.4	Value of statistical life years lost	218		selected countries and regions, 1900–2050	243
7.4	Value of statistical life years lost		A 7 10	Money metric value of years of life	243
	per birth, money metric value of years of life lost per birth, and ratio		A/.10	lost, selected countries and regions,	
	a (money metric value of years of			1900–2050	244
	life lost per birth over lifetime		Δ7 11	Ratio <i>a</i> of money metric value of	277
	income per capita), selected		11/.11	years of life lost per lifetime	
	countries and country groupings,			income per capita (no units), selected	
	1900–2050	219		countries and regions,	
7.5	Child mortality in Liverpool (1860s)	-17		1900–2050	245
,	and sub-Saharan Africa (2008)	221	8.1	Effect of increased height on wages,	
7.6	Key discoveries in disease			developed countries	249
	transmission and vaccines	222	8.2	Effect of increased height on wages,	
7.7	Examples of science contribution to			developing countries	250
	declines in infectious disease		8.3	Source of data to obtain trends for	
	mortality in the second half of the			representative countries	253
	twentieth century	223	8.4	Representative countries, associated	
7.8	Infectious diseases responsible for			population weights for modeling, and	
	mortality declines in less developed			regional nutrition groupings	255
	countries and related control		8.5	Construction of estimated proportion	
	measures	224		of child mortality attributable to	

List of tables malnutrition, at different levels of 10.3 Estimation of population coverage achieved mean adult male height 261 with piped water (robust standard Selected demographic variables, errors presented in parentheses, 8.6 323 by region, selected years clustered at the country level) 1900-2000 262 10.4 Elasticities and ranges used in projections of water and sanitation 8.7 Sensitivity analysis of effect of varying assumptions on estimates coverage, WASH-related mortality, and average time spent collecting of economic losses 266 325 9.1 Shares of world GDP and merchandise trade, by region, 10.5 Assumptions for valuation of changes in WASH-related mortality and time 1913-2050 278 331 9.2 Import tariffs (percent) on spent collecting water manufactures, key trading countries, 10.6 Ranges of projected coverage with different levels of water and sanitation 1902-1970 279 9.3 Import tariffs (percent) on food and services in 1950, 2008, and 2050 333 manufactures, Western and Central 10.7 Ranges of projected WASH-related mortality and deaths in 1950, 2004, European countries, 1913, 1927, 1931, and 1950 280 336 9.4 Import tariffs on manufactures, major 10.8 Ranges of aggregate "economic losses" associated with WASH, developing countries, 1870-1938, import duties as a percent of total summed over the time horizon 281 1900-2050 (in trillions of 1990 G-K\$ imports Nominal rates of assistance (percent) 9.5 and as percent of GDP) 340 to agricultural and non-agricultural A10.1 Summary of international studies reviewed for this annex 284 353 tradables, by region, 1955-2004 9.6 Assumed NRAs and their estimated A10.2 VSL income elasticities from 354 welfare cost to developing and meta-analyses A10.3 Region groupings of countries 360 high-income countries, 1900-2050 A10.4 OLS regression for mortality death 288 9.7 Summary of multipliers 296 rate (annual deaths per 1,000 people) due to inadequate WASH; alternative 10.1 OLS regression for WASH-related model specifications 361 mortality (annual deaths per 1,000 A10.5 Estimation of population coverage 320 OLS regression for average water with improved water and sanitation, basic model specification 362 collection time (in minutes per oneway trip) 321

Contributors

Editor

Bjørn Lomborg is the Director of the Copenhagen Consensus Center and Adjunct Professor at Copenhagen Business School

Authors

Maura Allaire is a Ph.D. student in the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC

Kym Anderson is the George Gollin Professor of Economics, in the School of Economics, University of Adelaide, Australia and Professor of Economics, Crawford School of Public Policy, Australian National University

S. Brock Blomberg is the Robin and Peter Barker Professor of Economics, at Claremont McKenna College, Clarement, CA

Aline Chiabai is an Associate Researcher at the Basque Centre for Climate Change in the Basque Country, Bilbao, Spain

David Fuente is a Ph.D. student in the Department of City and Regional Planning, University of North Carolina at Chapel Hill, NC

Gregory D. Hess is Vice President for Academic Affairs, Dean of the Faculty, James G. Boswell Professor of Economics and George R. Roberts Fellow at Claremont McKenna College, Claremont, CA

Sue Horton holds the CIGI Chair in Global Health Economics in the Balsillie School of the University of Waterloo, Ontario Guy Hutton is an international development economist

Joyce P. Jacobsen is the Andrews Professor of Economics at Wesleyan University, Middletown, CT

Dean T. Jamison is Professor of Global Health at the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, Seattle, WA

Marc Jeuland is an Assistant Professor in the Sanford School of Public Policy, Duke University, Durham, NC

Prabhat Jha is Professor of Economics, Canada Research Chair of Health and Development at the University of Toronto, founding Director of the Centre for Global Health Research, St. Michael's Hospital, Associate Professor in the Department of Public Health Sciences, University of Toronto, research scholar at the McLaughlin Centre for Molecular Medicine, University of Toronto, and professeur extraordinaire at the University of Lausanne, Switzerland

Varun Malhotra is a Researcher at the Centre for Global Health Research, St. Michael's Hospital and Dalla Lana School of Public Health, University of Toronto

Anil Markandya is Professor of Economics at the University of Bath, UK and Scientific Director of the Basque Centre for Climate Change in the Basque Country, Bilbao, Spain

Semra Özdemir is a Ph.D. student in the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC

List of contributors xvii

Harry Anthony Patrinos is a Senior Education Economist with the World Bank

George Psacharopoulos is an economist, formerly at the London School of Economics and the World Bank

Richard H. Steckel is SBS Distinguished Professor of Economics, Anthropology and History, Ohio State University, Columbus, OH and Research Associate, National Bureau of Economic Research, Cambrige, MA

Richard S.J. Tol is Professor of Economics at the University of Sussex, Brighton, UK and Professor of the Economics of Climate Change, Institute for Environmental Studies and Department of Spatial Economics, Vrije Universiteit, Amsterdam

Stéphane Verguet is a Researcher at the Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA

Dale Whittington is Professor at the Departments of Environmental Sciences and Engineering and of City and Regional Planning, University of North Carolina at Chapel Hill, NC and at the Manchester Business School, UK

Acknowledgments

This book was made possible because of the efforts of many dedicated people.

I would like to start by thanking our advisory board; Nobel Laureates Finn Kydland, Douglass North, Vernon Smith, and renowned economist Nancy Stokey, for their invaluable advice and assistance.

I am grateful for the commitment of staff members at the Copenhagen Consensus Center: Henrik Meyer, David Young, Ulrik Larsen, Sasha Beckmann, Sibylle Aebi, Sandra Andresen, and Zsuzsa Horvath. I would particularly like to thank the project manager, Kasper Thede Anderskov, for his exceptional dedication and enthusiasm.

And I would like to express my deep and sincere appreciation to each of the authors of the outstanding research in this volume, and to the 28 excellent reviewers connected to this project.