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Introduction

1.1 Motivation

The Ramsey theory starts with a classical result:

Fact 1.1 For every partition of pairs of natural numbers into two classes there

is a homogeneous infinite set: a set a ⊂ ω such that all pairs of natural

numbers from a belong to the same class.

It is not difficult to generalize this result for partitions into any finite number

of classes. An attempt to generalize further, for partitions into infinitely many

classes, hits an obvious snag: every pair of natural numbers could fall into its

own class, and then certainly no infinite homogeneous set can exist for such a

partition. Still, there seems to be a certain measure of regularity in partitions

of pairs even into infinitely many classes. This is the beginning of canonical

Ramsey theory.

Fact 1.2 (Erdős–Rado (Erdős and Rado 1950)) For every equivalence relation

E on pairs of natural numbers there is an infinite homogeneous set: a set

a ⊂ ω on which one of the following happens:

(i) p E q ↔ p = q for all pairs p, q ∈ [a]2;

(ii) p E q ↔ min(p) = min(q) for all pairs p, q ∈ [a]2;

(iii) p E q ↔ max(p) = max(q) for all pairs p, q ∈ [a]2;

(iv) p E q for all pairs p, q ∈ [a]2.

In other words, there are four equivalence relations on pairs of natural numbers

such that any other equivalence can be canonized: made equal to one of the four

equivalences on the set [a]2, where a ⊂ ω is judiciously chosen infinite set.

It is not difficult to see that the list of the four primal equivalence relations is

irredundant: it cannot be shortened for the purposes of this theorem. It is also
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2 Introduction

not difficult to see that the usual Ramsey theorems follow from the canonical

version.

Further generalizations of these results can be sought in several directions.

An exceptionally fruitful direction considers partitions and equivalences of

substructures of a given finite or countable structure, such as in Nešetřil (2005).

Another direction seeks to find homogeneous sets of larger cardinalities. In set

theory with the axiom of choice, the search for uncountable homogeneous sets

of arbitrary partitions leads to large cardinal axioms (Kanamori 1994), and this

is one of the central concerns of modern set theory. A different approach will

seek homogeneous sets for partitions that have a certain measure of regularity,

typically expressed in terms of their descriptive set theoretic complexity in the

context of Polish spaces (Todorcevic 2010). This is the path this book takes.

Consider the following classical results:

Fact 1.3 (Mycielski 1964) If R is a meager relation on a Polish space X, then

there is a perfect set consisting of pairwise non-R-related elements.

Fact 1.4 (Silver 1970) For every partition [ω]ℵ0 = B0 ∪ B1 into an analytic

and coanalytic piece, one of the pieces contains a set of the form [a]ℵ0 , where

a ⊂ ω is some infinite set.

Here, the space [ω]ℵ0 of all infinite subsets of natural numbers is considered

with the usual Polish topology which makes it homeomorphic to the space of

irrational numbers. This is the most influential example of a Ramsey theorem

on a Polish space. It deals with Borel partitions only as the Axiom of Choice

can be easily used to construct a partition with no homogeneous set of the

requested kind.

Are there any canonical Ramsey theorems on Polish spaces concerning sets

on which Borel equivalence relations can be canonized? A classical example

of such a theorem is the Silver dichotomy:

Fact 1.5 (Silver 1980) If E is a coanalytic equivalence relation on a Polish

space X, then either there is a perfect set consisting of pairwise E-related ele-

ments, or the space X decomposes into countably many E-equivalence classes.

As a consequence, a coanalytic equivalence relation must have perfect set

of pairwise inequivalent elements, or a perfect set of pairwise equivalent

elements. If one wishes to obtain sets on which the equivalence relation is

simple that are larger than just perfect, the situation becomes more compli-

cated. Another classical result starts with an identification of Borel equivalence

relations Eγ on the space [ω]ℵ0 for every function γ : [ω]<ℵ0 → 2 (the
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1.2 Basic concepts 3

exact statement and definitions are stated in Section 8.3) and then proves the

following:

Fact 1.6 (Prömel–Voigt, Mathias (Prömel and Voigt 1985; Mathias 1977)) If

f : [ω]ℵ0 → 2ω is a Borel function then there is γ and an infinite set a ⊂ ω

such that for all infinite sets b, c ⊂ a, f (b) = f (c) ↔ b Eγ c.

Thus, this theorem deals with smooth equivalence relations on the space [ω]ℵ0 ,

i. e., those equivalences E for which there is a Borel function f : [ω]ℵ0 → 2ω

such that b E c ↔ f (b) = f (c), and shows that such equivalence relations

can be canonized to a prescribed form on a Ramsey cube. Other similar results

can be found in the work of Otmar Spinas (Spinas 2001a,b; Klein and Spinas

2005). In the realm of nonsmooth equivalence relations, we have, for example:

Fact 1.7 (Connes–Feldman–Weiss (Connes et al. 1981)) Suppose that X is a

Polish space with an amenable countable Borel equivalence relation E on it

and a quasi-invariant Borel probability measure μ. Then there is a Borel set

B ⊂ X of μ-mass 1 on which E is an orbit equivalence relation of a Borel

action of Z.

The principal aim of this book is to expand this line of research in two

directions. First, we consider canonization properties of equivalence relations

more complicated than smooth in the sense of the Borel reducibility complex-

ity rating of equivalence relations (Kanovei 2008; Gao 2009). It turns out that

distinct complexity classes of equivalence relations possess various canoniza-

tion properties, and most of the interest and difficulty lies in the nonsmooth

cases. Second, we consider the task of canonizing the equivalence relations on

Borel sets which are large from the point of view of various σ -ideals. Again,

it turns out that σ -ideals commonly used in mathematical analysis greatly dif-

fer in their canonization properties, and a close relationship with their forcing

properties, as described in Zapletal (2008), appears. Canonization theorems

can then be applied to obtain ergodicity results for classical Borel equivalence

relations such as E2 and F2.

1.2 Basic concepts

The central canonization notion of the book is the following:

Definition 1.8 A σ -ideal I on a Polish space X has total canonization for a

class of equivalence relations if for every Borel I -positive set B ⊂ X and

every equivalence relation E on B in this class there is a Borel I -positive set

C ⊂ B consisting only of pairwise E-inequivalent elements or only of pairwise

www.cambridge.org/9781107026858
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-02685-8 — Canonical Ramsey Theory on Polish Spaces
Vladimir Kanovei , Marcin Sabok , Jindřich Zapletal 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction

E-equivalent elements. Total canonization (without the class of equivalence

relations mentioned) means the total canonization for the class of all analytic

equivalence relations.

The classes of equivalence relations considered in this book are nearly

always closed under Borel reducibility; the broadest class would be that of

all analytic equivalence relations. The total canonization is closely related to

an ostensibly stronger notion:

Definition 1.9 A σ -ideal I on a Polish space X has the Silver property for a

class of equivalence relations if for every Borel I -positive set B ⊂ X and every

equivalence relation E on B in this class, either there is a Borel I -positive

set C ⊂ B consisting of pairwise E-inequivalent elements, or B decomposes

into a union of countably many E-equivalence classes and an I -small set. The

Silver property (without the class of equivalence relations mentioned) means

the Silver property for the class of all Borel equivalence relations.

Thus, the usual Silver theorem can be restated as the Silver property for coana-

lytic equivalence relations for the σ -ideal of countable sets. Unlike the total

canonization, the Silver property introduces a true dichotomy, as the two

options presented cannot coexist for σ -ideals containing all singletons: the

Borel I -positive set C from the first option would have to have a positive inter-

section with one of the countably many equivalence classes from the second

option, which is of course impossible. The Silver dichotomy also has conse-

quences for undefinable sets. If there is any I -positive set C ⊂ B consisting of

pairwise E-inequivalent elements, then there must be a Borel such set, simply

because the second option of the dichotomy is excluded by the same argument

as above.

The Silver property certainly implies total canonization within the same

class of equivalence relations: either there is a Borel I -positive set B ⊂ C

consisting of pairwise inequivalent elements, or one of the equivalence classes

from the second option of the dichotomy must be I -positive and provides the

second option of the total canonization. On the other hand, total canonization

does not imply the Silver property as shown in Section 8.1. In many common

cases, the various uniformization or game theoretic properties of the σ -ideal I

in question can be used to crank up the total canonization to the Silver prop-

erty. This procedure is described in Section 5.4 and it is the only way used to

argue for the Silver property in this book.

There are a number of tricks used to obtain total canonization for various

restricted classes of equivalence relations used in this book. However, the total
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canonization for all analytic equivalence relations is invariably proved via the

following notion originating in Ramsey theory:

Definition 1.10 A σ -ideal I on a Polish space X has the free set property if

for every I -positive analytic set B ⊂ X and every analytic set D ⊂ B × B

with all vertical sections in the ideal I there is a Borel I -positive set C ⊂ B

such that (C × C) ∩ D ⊆ id.

The free set property immediately implies the total canonization for analytic

equivalence relations. If E is an analytic equivalence relation on an I -positive

Borel set B ⊂ X , then either there is an I -positive E-equivalence class, which

immediately yields the second option of total canonization, or, the relation E ⊂

B × B has I -small vertical sections, and the E-free I -positive set postulated

by the free set property yields the first option of total canonization. It is not at

all clear how one would argue for the opposite implication though, and we are

coming to the first open question of this book.

Question 1.11 Is there a σ -ideal on a Polish space that has total canonization

for analytic equivalence relations, but not the free set property?

The free set property is typically verified through fusion arguments as in

Theorem 6.8, or through some version of the mutual generics property. This

is the first place in this book where forcing makes explicit appearance through

the following notion:

Definition 1.12 (Zapletal 2008) If I is a σ -ideal on a Polish space X , then the

symbol PI denotes the partial order of I -positive Borel subsets of X , ordered

by inclusion.

Definition 1.13 A σ -ideal I on a Polish space X has the mutual generics

property if for every Borel I -positive set B and every countable elementary

submodel M of a large enough structure containing I and B there is a Borel I -

positive subset C ⊂ B such that its points are pairwise generic for the product

forcing PI × PI .

The mutual generics property is a strengthening of properness of the poset PI ,

as the characterization of properness (Fact 2.50) shows. It implies the free set

property by Proposition 2.57, but it is not implied by it by Theorem 8.1. It is

somewhat ad hoc in that in many cases, the arguments demand that the product

forcing is replaced by various reduced product forcings, see Sections 7.1 or 8.1.

The resulting tools are very powerful and flexible, and where we cannot find

them, we spend some effort proving that no version of mutual generics property

can hold. The concept used to rule out all its versions is of independent interest:
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6 Introduction

Definition 1.14 A σ -ideal I on a Polish space X has a square coding function

if there are a Borel I -positive set B ⊂ X and a Borel function f : B × B → 2ω

such that for every analytic I -positive set C ⊂ B, we have f ′′(C × C) = 2ω.

The σ -ideal I has a rectangular coding function if there are Borel I -positive

sets B0, B1 ⊂ X and a Borel function g : B0 × B1 → 2ω such that, for every

analytic I -positive sets C0 ⊂ B0 and C1 ⊂ B1, we have g′′(C0 × C1) = 2ω.

Clearly, if a σ -ideal has a square coding function then no I -positive Borel set

below the critical set B (which is always equal to the whole space in this book)

can consist of points pairwise generic over a given countable model M , since

some pairs in this set code via the function f , for example a transitive structure

isomorphic to M . We will show that many σ -ideals have a square or rectangu-

lar coding function (Theorem 6.11 or 6.22) and that coding functions can be

abstractly obtained from the failure of canonization of equivalence relations in

many cases (Corollaries 7.35, 7.51, and 10.30).

In the cases where total canonization is unavailable, we can still provide

a number of good canonization results. In the spirit of traditional Ramsey-

theoretic notation, we introduce an arrow to record them. This is the central

definition of the book:

Definition 1.15 Let E, F be two classes of equivalence relations, and let I be

a σ -ideal on a Polish space X . E →I F denotes the statement that for every

I -positive Borel set B ⊂ X and an equivalence E ∈ E on B there is a Borel

I -positive set C ⊂ B such that E ↾ C ∈ F.

The strongest anti-canonization results we can achieve will be cast in terms

of a spectrum of a σ -ideal. Note that it has no obvious counterpart in the

canonical Ramsey theory on finite structures.

Definition 1.16 An analytic equivalence relation E is in the spectrum of a σ -

ideal I on a Polish space X if there is an I-positive Borel set B ⊂ X and an

equivalence relation F on B which is Borel bireducible with E , and also for

every I -positive Borel set C ⊂ B, F ↾ C remains bireducible with E .

For example, the equivalence relations such as E0 and F2 are in the spec-

trum of the meager ideal, and EKσ is in the spectrum of the ideals associated

with Silver forcing and Laver forcing. From the point of view of Ramsey

theory, finding a nontrivial equivalence relation in the spectrum amounts to

a strong negative result. However, results of this sort may be quite precious in

themselves and have further applications.
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1.3 Outline of results

For a good number of σ -ideals, we prove the strongest canonization results

possible. As a motivational example, we include:

Theorem 1.17 (Corollary 6.16) The σ -ideal on ωω σ -generated by compact

sets has the Silver property. Restated, for every Borel equivalence relation E

on ωω, exactly one of the following holds:

(i) there is a closed set C ⊂ ωω homeomorphic to ωω consisting of pairwise

inequivalent points;

(ii) ωω is covered by countably many E-classes and countably many com-

pact sets.

One satisfactory general theorem in this direction proved in this book states

the following:

Theorem 1.18 (Theorem 6.8 and Corollary 6.9) Let I be a σ -ideal on a

compact space, σ -generated by a coanalytic family of compact sets. If I is

calibrated, then it has the free set property, total canonization for analytic

equivalence relations, and the Silver property.

The class of calibrated σ -ideals introduced by Kechris and Louveau (1989)

contains many σ -ideals commonly studied in abstract analysis: the σ -ideal on

the unit interval σ -generated by closed sets of measure zero, the σ -ideal on

the unit circle σ -generated by closed sets of uniqueness, or (up to a technical

detail) the σ -ideal on the Hilbert cube σ -generated by compact sets of finite

dimension.

In most cases, such a strong canonization result either is not available or

we do not know how to prove it. Situations where the total canonization

fails because there are clearly identifiable obstacles to it are of great interest.

Therefore, we strive to canonize up to the known obstacles:

Theorem 1.19 (Theorem 9.3) Let n ∈ ω, let {Ii : i ∈ n} be σ -ideals on

respective compact spaces {X i : i ∈ n}, σ -generated by coanalytic collection

of compact sets and such that every Ii -positive analytic set has an Ii -positive

compact subset. If {Bi : i ∈ n} are Borel Ii -positive sets and E is an analytic

equivalence relation on
∏

i Bi , there is a set a ⊂ n and Borel I -positive sets

{Ci ⊂ Bi : i ∈ n} such that E ↾
∏

i Ci = ida , where ida is the equality

on indices in the set a. In other words, writing I for the σ -ideal of those Borel

subsets of
∏

i X i that do not contain a product of Ii -positive Borel sets, we have

analytic →I {ida : a ⊂ n}.
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8 Introduction

Theorem 1.20 (Theorem 7.1) Let I be the σ -ideal on 2ω generated by Borel

sets on which the equivalence relation E0 is smooth. If B is a Borel I -positive

set and E is an analytic equivalence relation, then there is a Borel I -positive

set C ⊂ B such that either C consists of pairwise inequivalent elements, or C

consists of pairwise equivalent elements, or E ↾ C = E0. In other words,

analytic →I {id, ev, E0}.

Theorem 1.21 (Corollary 7.7) Let I be the σ -ideal on (2ω)ω generated by

Borel sets on which the equivalence relation E1 is Borel reducible to E0. If

B is a Borel I -positive set and E is an a hypersmooth equivalence relation

on B, then there is a Borel I -positive set C ⊂ B such that either C consists

of pairwise E-inequivalent elements, or C consists of pairwise E-equivalent

elements, or E ↾ C = E1. In other words,

hypersmooth →I {id, ev, E1}.

Theorem 1.22 (Theorem 7.36) Let I be the σ -ideal on 2ω generated by Borel

sets on which the equivalence relation E2 is essentially countable. If B is a

Borel I -positive set and E is an an equivalence relation on B Borel reducible

to =J for an Fσ P-ideal J on ω, then there is a Borel I -positive set C ⊂ B

such that either C consists of pairwise E-inequivalent elements, or C consists

of pairwise E-equivalent elements, or E ↾ C = E2. In particular,

ℓp equivalences →I {id, ev, E2}.

In a similar vein, we apply the canonization techniques to achieve a number

of ergodicity results for certain classical Borel equivalence relations.

Definition 1.23 If E, F are equivalence relations on Polish spaces X and Y ,

we say that E is F-generically ergodic if for every Borel homomorphism

from E to F there is a comeager subset of X that is mapped into a single

F-equivalence class. Similarly, if μ is a Borel probability measure on X , we

say that E is μ, F-ergodic if for every homomorphism from E to F , there is a

subset of X of full μ-mass that is mapped into a single F-equivalence class.

Hjorth and Kechris (Kanovei 2008, theorem 13.5.3) showed that E2 is F-

generically ergodic for every equivalence relation F classifiable by countable

structures. We replace their turbulence techniques with Ramsey theory and

prove a similar result.

Theorem 1.24 (Theorem 6.66) Let E be an equivalence relation on 2ω; the

space 2ω is equipped with the usual Borel probability measure μ. If E2 ⊆ E
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and E is classifiable by countable structures then E has a co-null class.

Restated, E2 is μ, F-ergodic for every equivalence relation F classifiable by

countable structures.

Theorem 1.25 (Theorems 6.24 and 6.67) Let E be an analytic equivalence

relation on (2ω)ω; the space (2ω)ω is equipped with the usual product topol-

ogy and the product Borel probability measure μ. If F2 ⊆ E and F2 is

not Borel reducible to E, then E has a comeager class as well as a co-null

class. Restated, for every analytic equivalence relation F exactly one of the

following holds:

(i) F2 ≤B F;

(ii) F2 is F-generically ergodic and F2 is μ, F-ergodic.

The weakest canonization results we obtain reduce the Borel reducibility

complexity of equivalence relations to a specified class. It should be noted

that no parallel to results of this kind exists in the realm of finite or countable

canonization results.

Theorem 1.26 (Theorems 9.26 and 9.27) Let E be an equivalence relation

on (2ω)ω which is classifiable by countable structures or Borel reducible to

equality modulo an analytic P-ideal on ω. Then there are nonempty perfect

sets 〈Pn : n ∈ ω〉 such that E ↾
∏

n Pn is smooth. In other words, writing I for

the σ -ideal of Borel subsets of (2ω)ω which do not contain an infinite product

of nonempty perfect sets,

classifiable by countable structures →I smooth,

(≤B=J ) →I smooth

whenever J is an analytic P-ideal on ω.

Theorem 1.27 (Theorem 8.17, originally by Mathias) Let E be an essentially

countable Borel equivalence relation on [ω]ℵ0 . Then there is an infinite set

a ⊂ ω such that E ↾ [a]ℵ0 is Borel reducible to E0.

There is a number of anticanonization results. Again, the classification of

analytic equivalence relations via their Borel reducibility complexity allows us

to prove theorems that have no immediate counterpart in the finite or countable

realm:

Theorem 1.28 (Corollary 6.55) Whenever I is a σ -ideal such that PI is proper

and adds a dominating real, then EKσ is in the spectrum of I .
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Many results in the book either connect canonization properties of σ -ideals

with the forcing properties of the associated quotient forcing PI of Borel I -

positive sets ordered by inclusion as studied in Zapletal (2008), or use that

connection in their proofs. This allows us to tap a wealth of information

amassed about such forcings by people otherwise not interested in descrip-

tive set theory. Of special note is the connection between analytic equivalence

relations and intermediate forcing extensions, explained in Chapter 3. It leads

to the following general results:

Definition 1.29 Let E be an equivalence relation on a Polish space X , let I be

a σ -ideal on X , and let B ⊂ X be a set. We say that E ↾ B is I -ergodic (or just

ergodic if the σ -ideal is clear from the context) if for all Borel I -positive sets

C, D ⊂ B there are E-equivalent points x ∈ C , y ∈ D. The relation E ↾ B is

nontrivially I -ergodic any two Borel I -positive sets C, D ⊂ B contain points

x ∈ C and y ∈ D which are E-related and also points x ′ ∈ C and y′ ∈ D that

are E-unrelated.

Theorem 1.30 Let I be a σ -ideal on a Polish space X such that the quotient

poset PI is proper.

(i) (Theorem 3.1) If PI adds a minimal forcing extension, then for every I -

positive Borel set B ⊂ X and every analytic equivalence relation E on

B there is a Borel I -positive C ⊂ B such that E ↾ C = id or E ↾ C is

ergodic.

(ii) (Corollary 4.10) If PI is nowhere c.c.c. (countable chain condition)

and adds a minimal forcing extension then it has total canonization for

equivalence relations classifiable by countable structures.

(iii) (Theorem 4.9) If PI adds only finitely many real degrees then every

equivalence relation classifiable by countable structures simplifies to an

essentially countable equivalence relation on a Borel I -positive set.

1.4 Navigation

Chapter 2 contains background material which at first glance has nothing to

do with the canonization of equivalence relations. Most results are standard

and stated without proofs, although there are exceptions such as the proof of

canonical interpretation of �
1
1 on �

1
1 classes of analytic sets in generic exten-

sions (Theorem 2.44). Section 2.6 describes the basic treatment of quotient

posets as explored in Zapletal (2008). For a σ -ideal I on a Polish space X we

write PI for the poset of Borel I -positive subsets of X ordered by inclusion,

and outline its basic forcing properties.
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