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Introduction

This volume offers an introduction to some recent developments in several active

topics at the interface between geometry, topology, number theory and quantum

field theory:

� new geometric structures, Poisson algebras and quantization,
� multizeta, polylogarithms and periods in quantum field theory,
� geometry of quantum fields and the standard model.

It is based on lectures and short communications delivered during a summer school

on “Geometric and Topological Methods for Quantum Field Theory” held in

Villa de Leyva, Colombia, in July 2009. This school was the sixth of a series

of summer schools to take place in Colombia, which have taken place every

other year since July 1999. The invited lectures, aimed at graduate students in

physics or mathematics, start with introductory material before presenting more

advanced results. Each lecture is self-contained and can be read independently of the

others.

The volume begins with the introductory lectures on the geometry of Dirac

structures by Henrique Bursztyn, in which the author provides the motivation, main

features and examples of these new geometric structures in theoretical physics

and their applications in Poisson geometry. These lectures are followed by an

introduction to the geometry of holomorphic vector bundles over Riemann surfaces

by Florent Schaffhauser, in which the author discusses the structure of spaces of

connections, the notion of stability and takes us to the celebrated classification

theorem of Donaldson for stable bundles. The third lecture, by Sylvie Paycha,

explores possible extensions of the theory of characteristic classes and Chern–Weil

theory to a class of infinite-dimensional bundles by means of pseudo-differential

techniques. After some geometric preliminaries, the author presents the analytic

tools (regularized traces and their properties) which are then used to extend the
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2 Introduction

finite-dimensional Chern–Weil calculus to certain infinite-rank vector bundles, with

a brief incursion in the Hamiltonian formalism in gauge theory.

The reader is led into the realm of perturbative quantum field theory with an intro-

ductory lecture by Stefan Weinzierl on the theory of Feynman integrals. Together

with practical algorithms for evaluating Feynman integrals, the author discusses

mathematical aspects of loop integrals related to periods, shuffle algebras and mul-

tiple polylogarithms. A further lecture by Francis Brown provides an introduction

to recent work on iterated integrals and polylogarithms, with emphasis on the case

of the thrice punctured Riemann sphere. The author also gives an overview of some

recent results connecting such iterated integrals and polylogarithms with Feynman

diagrams in perturbative quantum field theory.

In a subsequent lecture, Luis Boya discusses geometric structures that are rele-

vant in quantum field theory and string theory. After an introduction to the basics of

differential geometry aimed at physicists, the author discusses holonomy groups,

higher-dimensional models relevant for string theory, M-theory and F-theory, as

well as geometric aspects of compactification. The last lecture, by Florian Scheck,

presents a critical account of some of the more puzzling aspects of the standard

model, emphasizing phenomenological as well as geometric aspects. This includes

a presentation of the basic geometric structures underlying gauge theories, a dis-

cussion of mass matrices and state mixing, a geometric account of anomalies and a

review of the noncommutative geometry approach to the standard model. The lec-

ture finishes with a discussion of spontaneous symmetry breaking based on causal

gauge invariance.

The invited lectures are followed by four short communications on a wide spec-

trum of topics. In the first contribution, Leonardo Cano adapts some well-known

techniques of spectral analysis for Schrödinger operators to the study of Lapla-

cians on complete manifolds with corners of codimension 2. The author presents

results on the absence of a singular continuous spectrum for such operators,

as well as a description of the behavior of its pure point spectrum in terms

of the underlying geometry. The chapter by Iván Contreras gives a categorical

overview of the so-called formal groupoids and studies their associated Hopf alge-

broids, mentioning their relevance in the field of Poisson geometry as formal

realizations of Poisson manifolds. Andrés Vargas presents in his contribution a

detailed study of the Einstein condition on Riemannian manifolds with metrics of

Hölder regularity, introducing the use of harmonic coordinates and considering the

smoothness of the differentiable structure of the underlying manifold. Finally, in

the last contribution, Alexander Cardona and César Del Corral study the index of

Dirac-type operators associated to Atiyah–Patodi–Singer type boundary conditions

from the point of view of weighted (super-)traces. The authors show that both the

index of such an operator and the reduced eta-invariant term can be expressed in

www.cambridge.org/9781107026834
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-02683-4 — Geometric and Topological Methods for Quantum Field Theory
Alexander Cardona, Iván Contreras, Andrés F. Reyes-Lega
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction 3

terms of weighted (super-) traces of identity operators determined by the boundary

conditions.

We hope that these contributions will give – as much as the school itself seems

to have given – young students the desire to pursue what might be their first

acquaintance with some of the problems on the edge of mathematics and physics

presented here. On the other hand, we hope that the more advanced reader will

find some pleasure in reading about different outlooks on related topics and seeing

how the well-known mathematical tools prove to be very useful in some areas of

quantum field theory.

We are indebted to various organizations for their financial support for this school.

Let us first of all thank Universidad de los Andes, which was our main source of

financial support in Colombia. Other organizations such as CLAF (Centro Latino

Americano de Fisica) in Brazil, and the International Mathematical Union, through

the CDE (Commission on Development and Exchanges) program, also contributed

in a substantial way to the financial support needed for this school.

Special thanks to Sergio Adarve (Universidad de los Andes) and Hernán Ocampo

(Universidad del Valle) and Sylvie Paycha (Universität Potsdam), coorganizers of

the school, who dedicated time and energy to make this school possible. We

are also very grateful to Marta Kovacsics who did a great job for the practi-

cal organization of the school, the quality of which was very much appreci-

ated by participants and lecturers. We are also very indebted to Diana Tarrifa,

Julie Pinzón, Luz Malely Gutiérrez, Mauricio Morales and Alexandra Parra for

their help in various essential tasks needed for the successful development of the

school.

We also would like to thank the administrative staff at Universidad de los

Andes, particularly José Luis Villaveces, Vice-rector; Carlos Montenegro, Dean

of the School of Sciences; René Meziat, Director of the Mathematics Department;

and Ferney Rodrı́guez, Director of the Physics Department, for their constant

encouragement and support.

Without the people named here, all of whom helped in the organization in some

way or another, before, during and after the school, this scientific event would not

have left such vivid memories in the lecturers’ and participants’ minds. Last but

not least, thanks to all the participants who gave us all, lecturers and editors, the

impulse to prepare this volume through the enthusiasm they showed during the

school, and thank you to all the contributors and referees for their participation in

the realization of these proceedings.

The editors:

Alexander Cardona, Iván Contreras and Andrés Reyes-Lega
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A brief introduction to Dirac manifolds

henrique bursztyn

Abstract

These lecture notes are based on a series of lectures given at the school

on “Geometric and Topological Methods for Quantum Field Theory”,

in Villa de Leyva, Colombia. We present a basic introduction to Dirac

manifolds, recalling the original context in which they were defined,

their main features, and briefly mentioning more recent developments.

1.1 Introduction

Phase spaces of classical mechanical systems are commonly modeled by symplectic

manifolds. It often happens that the dynamics governing the system’s evolution

are constrained to particular submanifolds of the phase space, e.g. level sets of

conserved quantities (typically associated with symmetries of the system, such

as momentum maps), or submanifolds resulting from constraints in the possible

configurations of the system, etc. Any submanifold C of a symplectic manifold M

inherits a presymplectic form (i.e. a closed 2-form, possibly degenerate), given by

the pullback of the ambient symplectic form to C. It may be desirable to treat C in

its own right, which makes presymplectic geometry the natural arena for the study

of constrained systems; see e.g. [23, 25].

In many situations, however, phase spaces are modeled by more general objects:

Poisson manifolds (see e.g. [35]). A Poisson structure on a manifold M is a bivec-

tor field Ã * "('2T M) such that the skew-symmetric bracket {f, g} := Ã (df, dg)

on C>(M) satisfies the Jacobi identity. Just as for symplectic phase spaces, there

are natural examples of systems on Poisson phase spaces which are constrained

Geometric and Topological Methods for Quantum Field Theory, ed. Alexander Cardona, Iván Contreras and
Andrés F. Reyes-Lega. Published by Cambridge University Press. © Cambridge University Press 2013.
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A brief introduction to Dirac manifolds 5

to submanifolds. The present notes address the following motivating questions:

what kind of geometric structure is inherited by a submanifold C of a Poisson

manifold M? Can one “pullback” the ambient Poisson structure on M to C, in a

similar way to what one does when M is symplectic? From another viewpoint,

recall that M carries a (possibly singular) symplectic foliation, which completely

characterizes its Poisson structure. Let us assume, for simplicity, that the inter-

section of C with each leaf O of M is a submanifold of C. Then O + C carries

a presymplectic form, given by the pullback of the symplectic form on O. So

the Poisson structure on M induces a decomposition of C into presymplectic

leaves. Just as Poisson structures define symplectic foliations, we can ask whether

there is a more general geometric object underlying foliations with presymplectic

leaves.

The questions posed in the previous paragraph naturally lead to Dirac structures

[16, 17], a notion that encompasses presymplectic and Poisson structures. A key

ingredient in the definition of a Dirac structure on a manifold M is the so-called

Courant bracket [16] (see also [21]), a bilinear operation on the space of sections

of T M · T 7M used to formulate a general integrability condition unifying the

requirements that a 2-form is closed and that a bivector field is Poisson. These notes

present the basics of Dirac structures, including their main geometric features and

key examples. Most of the material presented here goes back to Courant’s original

paper [16], perhaps the only exception being the discussion about morphisms in

the category of Dirac manifolds in Section 1.5.

Despite its original motivation in constrained mechanics,1 recent developments

in the theory of Dirac structures are related to a broad range of topics in mathemat-

ics and mathematical physics. Owing to space and time limitations, this chapter is

not intended as a comprehensive survey of this fast growing subject (which justi-

fies the omission of many worthy contributions from the references). A (biased)

selection of recent aspects of Dirac structures is briefly sketched at the end of the

chapter.

This chapter is structured as follows. In Section 1.2, we recall the main geo-

metric properties of presymplectic and Poisson manifolds. Section 1.3 presents the

definition of Dirac structures and their first examples. The main properties of Dirac

structures are presented in Section 1.4. Section 1.5 discusses morphisms between

Dirac manifolds. Section 1.6 explains how Dirac structures are inherited by sub-

manifolds of Poisson manifolds. Section 1.7 briefly mentions some more recent

developments and applications of Dirac structures.

1 Dirac structures are named after Dirac’s work on the theory of constraints in classical mechanics (see e.g.
[20, 41]), which included a classification of constraint surfaces (first class, second class...), the celebrated Dirac
bracket formula, as well as applications to quantization and field theory.
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6 Henrique Bursztyn

1.1.1 Notation, conventions, terminology

All manifolds, maps, vector bundles, etc. are smooth, i.e. in the C> category. Given

a smooth map × : M ³ N and a vector bundle A ³ N , we denote the pullback

of A to M by ×7A ³ M .

For a vector bundle E ³ M , a distribution D in E assigns to each x * M a

vector subspace Dx ¦ Ex . If the dimension of Dx , called the rank of D at x, is

independent of x, we call the distribution regular. A distribution D in E is smooth

if, for any x * M and v0 * Dx , there is a smooth local section v of E (defined

on a neighborhood of x) such that v(y) * Dy and v(x) = v0. A distribution that is

smooth and regular is a subbundle. The rank of a smooth distribution is a lower

semi-continuous function on M . For a vector bundle map � : E ³ A covering

the identity, the image �(E) is a smooth distribution of A; the kernel ker(�) is a

distribution of E whose rank is an upper semi-continuous function, so it is smooth

if and only if it has locally constant rank. A smooth distribution D in T M is

integrable if any x * M is contained in an integral submanifold, i.e. a connected

immersed submanifold O so that D|O = TO. An integrable distribution defines a

decomposition of M into leaves (which are the maximal integral submanifolds);

we generally refer to this decomposition of M as a singular foliation, or simply a

foliation; see e.g. [22, Sec. 1.5] for details. When D is smooth and has constant

rank, the classical Frobenius theorem asserts that D is integrable if and only if it is

involutive. We refer to the resulting foliation in this case as regular.

Throughout the chapter, the Einstein summation convention is consistently used.

1.2 Presymplectic and Poisson structures

A symplectic structure on a manifold can be defined in two equivalent ways: either

by a nondegenerate closed 2-form or by a nondegenerate Poisson bivector field. If

one drops the nondegeneracy assumption, the first viewpoint leads to the notion

of a presymplectic structure, while the second leads to Poisson structures. These

two types of “degenerate” symplectic structures have distinct features that will be

recalled in this section.

1.2.1 Two viewpoints on symplectic geometry

Let M be a smooth manifold. A 2-form Ë * �2(M) is called symplectic if it is

nondegenerate and dË = 0. The nondegeneracy assumption means that the bundle

map

Ë� : T M ³ T 7M, X �³ iXË, (1.1)
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A brief introduction to Dirac manifolds 7

is an isomorphism; in local coordinates, writing Ë = 1
2
Ëijdxi ' dxj , this amounts

to the pointwise invertibility of the matrix (Ëij ). The pair (M, Ë), where Ë is a

symplectic 2-form, is called a symplectic manifold.

The basic ingredients of the Hamiltonian formalism on a symplectic manifold

(M, Ë) are as follows. For any function f * C>(M), there is an associated Hamil-

tonian vector field Xf * X (M), uniquely defined by the condition

iXf
Ë = df. (1.2)

In other words, Xf = (Ë�)21(df ). There is an induced bilinear operation

{·, ·} : C>(M) × C>(M) ³ C>(M),

known as the Poisson bracket, that measures the rate of change of a function g

along the Hamiltonian flow of a function f ,

{f, g} := Ë(Xg, Xf ) = LXf
g. (1.3)

The Poisson bracket is skew-symmetric, and one verifies from its definition that

dË(Xf , Xg, Xh) = {f, {g, h}} + {h, {f, g}} + {g, {h, f }}; (1.4)

it follows that the Poisson bracket satisfies the Jacobi identity, since Ë is closed.

The pair (C>(M), {·, ·}) is a Poisson algebra, i.e. {·, ·} is a Lie bracket on C>(M)

that is compatible with the associative commutative product on C>(M) via the

Leibniz rule:

{f, gh} = {f, g}h + {f, h}g.

It follows from the Leibniz rule that the Poisson bracket is defined by a bivector

field Ã * "('2T M), uniquely determined by

Ã (df, dg) = {f, g} = Ë(Xg, Xf ); (1.5)

we write this locally as

Ã =
1

2
Ã ij "

"xi
'

"

"xj
. (1.6)

The bivector field Ã defines a bundle map

Ã � : T 7M ³ T M, ³ �³ i³Ã, (1.7)

in such a way that Xf = Ã �(df ). Since df = Ë�(Xf ) = Ë�(Ã �(df )), we see that

Ë and Ã are related by

Ë� = (Ã �)21 and (Ëij ) = (Ã ij )21. (1.8)
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8 Henrique Bursztyn

The whole discussion so far can be turned around, in that one can take the

bivector field Ã * "('2T M), rather than the 2-form Ë, as the starting point to

define a symplectic structure. Given a bivector field Ã * "('2T M), we call it

nondegenerate if the bundle map (1.7) is an isomorphism or, equivalently, if the

local matrices (Ã ij ) in (1.6) are invertible at each point. We say that Ã is Poisson if

the skew-symmetric bilinear bracket {f, g} = Ã (df, dg), f, g * C>(M), satisfies

the Jacobi identity:

JacÃ (f, g, h) := {f, {g, h}} + {h, {f, g}} + {g, {h, f }} = 0, (1.9)

for all f, g, h * C>(M).

The relation

Ã (df, dg) = Ë(Xg, Xf )

establishes a 1–1 correspondence between nondegenerate bivector fields and non-

degenerate 2-forms on M , in such a way that the bivector field is Poisson if and

only if the corresponding 2-form is closed (see (1.4)). So a symplectic manifold can

be equivalently defined as a manifold M equipped with a nondegenerate bivector

field Ã that is Poisson.

The two alternative viewpoints to symplectic structures are summarized in the

following table:

Nondegenerate Ã * "('2T M) Nondegenerate Ë * �2(M)
JacÃ = 0 dË = 0

Xf = Ã �(df ) iXf
Ë = df

{f, g} = Ã (df, dg) {f, g} = Ë(Xg, Xf )

Although the viewpoints are interchangeable, one may turn out to be more

convenient than the other in specific situations, as illustrated next.

1.2.2 Going degenerate

There are natural geometric constructions in symplectic geometry that may spoil

the nondegeneracy condition of the symplectic structure, and hence take us out of

the symplectic world. We mention two examples.

Consider the problem of passing from a symplectic manifold M to a submanifold

» : C �³ M . To describe the geometry that C inherits from M , it is more natural to

represent the symplectic structure on M by a 2-form Ë, which can then be pulled

back to C. The resulting 2-form »7Ë on C is always closed, but generally fails to

be nondegenerate.
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A brief introduction to Dirac manifolds 9

As a second example, suppose that a Lie group G acts on a symplectic manifold

M by symmetries, i.e. preserving the symplectic structure, and consider the geome-

try inherited by the quotient M/G (we assume, for simplicity, that the action is free

and proper, so the orbit space M/G is a smooth manifold). In this case, it is more

convenient to think of the symplectic structure on M as a Poisson bivector field

Ã , which can then be projected, or pushed forward, to M/G since Ã is assumed

to be G-invariant. The resulting bivector field on M/G always satisfies (1.9), but

generally fails to be nondegenerate.

These two situations illustrate why one may be led to generalize the notion of

a symplectic structure by dropping the nondegeneracy condition, and how there

are two natural ways to do it. Each way leads to a different kind of geometry:

a manifold equipped with a closed 2-form, possibly degenerate, is referred to as

presymplectic, while a Poisson manifold is a manifold equipped with a Poisson

bivector field, not necessarily nondegenerate. The main features of presymplectic

and Poisson manifolds are summarized below.

Presymplectic manifolds

On a presymplectic manifold (M, Ë), there is a natural null distribution K ¦ T M ,

defined at each point x * M by the kernel of Ë:

Kx := ker(Ë)x = {X * TxM | Ë(X, Y ) = 0 " Y * TxM}.

This distribution is not necessarily regular or smooth. In fact, K is a smooth

distribution if and only if it has locally constant rank (see Section 1.1.1). For

X, Y * "(K), note that

i[X,Y ]Ë = LXiY Ë 2 iYLXË = LXiY Ë 2 iY (iXd + diX)Ë = 0;

it follows that, when K is regular, it is integrable by Frobenius’ theorem. We refer

to the resulting regular foliation tangent to K as the null foliation of M .

One may still define Hamiltonian vector fields on (M, Ë) via (1.2), but, without

the nondegeneracy assumption on Ë, there might be functions admitting no Hamil-

tonian vector fields (e.g. if df lies outside the image of (1.1) at some point). We say

that a function f * C>(M) is admissible if there exists a vector field Xf such that

(1.2) holds. In this case, Xf is generally not uniquely defined, as we may change it

by the addition of any vector field tangent to K . Still, the Poisson bracket formula

{f, g} = LXf
g (1.10)

is well defined (i.e. independent of the choice of Xf ) when f and g are admissible.

Hence the space of admissible functions, denoted by

C>
adm(M) ¦ C>(M),

is a Poisson algebra.
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10 Henrique Bursztyn

When K is regular, a function is admissible if and only if df (K) = 0, i.e. f

is constant along the leaves of the null foliation; in particular, depending on how

complicated this foliation is, there may be very few admissible functions (e.g. if

there is a dense leaf, only the constant functions are admissible). When K is regular

and the associated null foliation is simple, i.e. the leaf space M/K is smooth and

the quotient map q : M ³ M/K is a submersion, then M/K inherits a symplectic

form Ëred, uniquely characterized by the property that q7Ëred = Ë; in this case,

the Poisson algebra of admissible functions on M is naturally identified with the

Poisson algebra of the symplectic manifold (M/K, Ëred) via

q7 : C>(M/K)
>
³ C>

adm(M)

(see e.g. [37, Sec. 6.1] and references therein).

Poisson manifolds

If (M, Ã ) is a Poisson manifold, then any function f * C>(M) defines a (unique)

Hamiltonian vector field Xf = Ã �(df ), and the whole algebra of smooth functions

C>(M) is a Poisson algebra with bracket {f, g} = Ã (df, dg).

The image of the bundle map Ã � in (1.7) defines a distribution on M ,

R := Ã �(T 7M) ¦ T M, (1.11)

not necessarily regular, but always smooth and integrable. (The integrability of

the distribution R may be seen as a consequence of Weinstein’s splitting theorem

[43].) So it determines a singular foliation of M , in such a way that two points in

M lie in the same leaf if and only if one is accessible from the other through a

composition of local Hamiltonian flows. One may verify that the bivector field Ã

is “tangent to the leaves”, in the sense that, if f * C>(M) satisfies »7f c 0 for a

leaf » : O �³ M , then Xf ç » c 0. So there is an induced Poisson bracket {·, ·}O

on O determined by

{f ç », g ç »}O := {f, g} ç », f, g * C>(M),

which is nondegenerate; in particular, each leaf carries a symplectic form, and one

refers to this foliation as the symplectic foliation of Ã . The symplectic foliation of

a Poisson manifold uniquely characterizes the Poisson structure. For more details

and examples, see e.g. [11, 22, 35].

Remark 1 The integrability of the distribution (1.11) may be also seen as resulting

from the existence of a Lie algebroid structure on T 7M , with anchor Ã � : T 7M ³

T M and Lie bracket on "(T 7M) = �1(M) uniquely characterized by

[df, dg] = d{f, g},

see e.g. [11, 15]; we will return to Lie algebroids in Section 1.4.
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