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Chapter 1

Numbers, sets, and

functions

1.1. The natural numbers, integers, and rational numbers

We assume that you are familiar with the set of natural numbers

N = {1, 2, 3, . . . },

the set of integers

Z = {. . . ,−2,−1, 0, 1, 2, . . . },

and the set of rational numbers

Q = {p/q : p, q ∈ Z, q �= 0}.

We also assume that you are familiar with the important method of proof
known as the principle of induction. It says that if we have a property P (n)
that each natural number n may or may not have, such that:

(a) P (1) is true, and

(b) if k ∈ N and P (k) is true, it follows that P (k + 1) is true,

then P (n) is true for all n ∈ N. There is another way to state the principle of
induction that shows it to be a fundamental property of the natural numbers.

1.1. Theorem. The following are equivalent.

(1) The principle of induction.

(2) Every nonempty subset of N has a smallest element.

Property (2) is called the well-ordering property of N. We say that N is
well ordered.
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2 1. Numbers, sets, and functions

Proof. To show that the two statements are equivalent, we must prove that
each implies the other.

(1) ⇒ (2): Let S be a subset of N with no smallest element. Let P (n)
be the property that k /∈ S for all k ≤ n. Since S has no smallest element,
1 /∈ S, so P (1) is true. Also, if P (n) is true, P (n + 1) must be true as well,
for otherwise n + 1 would be the smallest element of S. Thus P (n) satisfies
(a) and (b), so by assumption, P (n) holds for all n ∈ N and S is empty.

(2) ⇒ (1): Let P (n) be a property of natural numbers satisfying (a)
and (b). Define S to be the set of those n ∈ N for which P (n) is false.
Then (a) says that 1 /∈ S, and (b) (or rather its contrapositive) says that
if k ∈ S, k > 1, then k − 1 ∈ S. Therefore S has no smallest element,
so by assumption S must be empty, which means that P (n) is true for all
n ∈ N. �

1.2. Remark. The contrapositive of an implication P ⇒ Q is the implica-
tion not-Q ⇒ not-P . These two implications are logically equivalent. Thus,
if we want to prove that P implies Q, then we can instead prove that not-Q
implies not-P . This is sometimes convenient. Do not confuse the contra-
positive with the converse of P ⇒ Q, which is the implication Q ⇒ P . An
implication and its converse are in general not equivalent.

We can think of Z as an extension of N that allows us to do subtraction
without any restrictions, and of Q as an extension of Z that allows us to do
division with the sole restriction that division by zero cannot be reasonably
defined. The set Q with addition and multiplication and all the familiar
rules satisfied by these operations is a mathematical structure called a field.

1.3. Definition. A field is a set F with two operations, addition, denoted
+, and multiplication, denoted ·, such that the following axioms are satisfied.

A1 Associativity: a + (b + c) = (a + b) + c, a · (b · c) = (a · b) · c for all
a, b, c ∈ F .

A2 Commutativity: a + b = b + a, a · b = b · a for all a, b ∈ F .

A3 Distributivity: a · (b + c) = a · b + a · c for all a, b, c ∈ F .

A4 Additive identity. There is an element called 0 in F such that
a + 0 = a for all a ∈ F .
Multiplicative identity. There is an element called 1 in F such that
1 �= 0 and a · 1 = a for all a ∈ F .

A5 Additive inverses. For every a ∈ F , there is an element called −a
in F such that a + (−a) = 0.
Multiplicative inverses. For every a ∈ F , a �= 0, there is an element
called a−1 in F such that a · a−1 = 1.

We usually write a · b as ab, a + (−b) as a− b, a−1 as 1/a, and ab−1 as a/b.
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1.1. The natural numbers, integers, and rational numbers 3

From the field axioms we can derive many familiar properties of fields.
It is a good exercise to work out careful proofs of some of these properties
based only on the axioms. Here are a few examples. If you prefer, you can
simply take F = Q.

1.4. Example. From A2 and A4 we see that 0 + a = a and 1 · a = a for all
a ∈ F .

1.5. Example. The additive identity 0 is unique. Namely, assume 0� is
another additive identity. By A4, a + 0 = a for all a ∈ F . In particular,
taking a = 0�, we see that 0� + 0 = 0�, so by A2, 0 + 0� = 0�. On the other
hand, by assumption, a + 0� = a for all a ∈ F , so taking a = 0, we see that
0 + 0� = 0. We conclude that 0� = 0 + 0� = 0. Similarly, the multiplicative
identity is unique.

Exercise 1.1. Using only the axioms A1–A5, show that the additive inverse
of x ∈ F is unique, that is, if x+y = 0 and x+z = 0, then y = z (so talking
about the additive inverse of x is justified). Show also that the multiplicative
inverse of x ∈ F , x �= 0, is unique.

1.6. Example. From A2 and A5 we see that for x ∈ F , (−x) + x = 0. By
Exercise 1.1, we conclude that the additive inverse of −x must be x, that is,
−(−x) = x. Similarly, for x �= 0, (x−1)−1 = x.

1.7. Example. For every x ∈ F ,

0 · x
A4
= (0 + 0) · x

A2, A3
= 0 · x + 0 · x.

Adding the additive inverse −(0 · x) of 0 · x to both sides, we get 0 = 0 · x.
By A2, x · 0 = 0 as well.

Exercise 1.2. In A5, −x was introduced as a symbol for the additive inverse
of x ∈ F . Using Example 1.7, show that −x is in fact the product of x and
the additive inverse −1 of the multiplicative identity 1. In particular,

(−1)(−1) = −(−1) = 1.

If x ∈ F and n ∈ N, n ≥ 2, we write xn for the product of n factors of
x. By A1, it does not matter how we bracket the product. For example,
x3 = (x ·x) ·x = x · (x ·x). We set x0 = 1 and x1 = x. If x �= 0, we write x−n

for (x−1)n, which equals (xn)−1. Then xm+n = xmxn and (xm)n = xmn for
all m, n ∈ Z.

There is more to the rationals than addition and multiplication. The
rationals are also ordered in a way that interacts well with addition and
multiplication. This structure is called an ordered field.

1.8. Definition. An ordered field is a field F with a relation < (read ‘less
than’) such that the following axioms are satisfied.
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4 1. Numbers, sets, and functions

A6 For every a, b ∈ F , precisely one of the following holds: a < b,
b < a, or a = b.

A7 If a < b and b < c, then a < c (the order relation is transitive).

A8 If a < b, then a + c < b + c for all c ∈ F .

A9 If a < b and 0 < c, then ac < bc.

We take a ≤ b to mean that a < b or a = b; a > b to mean that b < a; and
a ≥ b to mean that b ≤ a. We say that a is positive if a > 0, and negative if
a < 0.

Again, the axioms imply many further properties.

1.9. Example. We claim that 1 is positive. Note that if 1 < 0, then adding
−1 to both sides gives 0 < −1 by A8, so multiplying both sides by −1 gives
0 = 0(−1) < (−1)(−1) = 1 by A9, Example 1.7, and Exercise 1.2, but
having both 1 < 0 and 0 < 1 contradicts A6.

Having derived a contradiction from the assumption that 1 < 0, we
must reject the assumption as false. Since 0 �= 1 by A4, the one remaining
possibility by A6 is 0 < 1.

Exercise 1.3. (a) Show that if x > 0, then −x < 0. Likewise, if x < 0,
then −x > 0. In particular, by Example 1.9, −1 < 0.

(b) Show that if x > 0, then x−1 > 0. Show that if x > 1, then x−1 < 1.

1.10. Definition. An interval in an ordered field F is a subset of F of one
of the following types, where a, b ∈ F .

(a, b) = {x : a < x < b}

[a, b] = {x : a ≤ x ≤ b}

(a, b] = {x : a < x ≤ b}

[a, b) = {x : a ≤ x < b}

(a,∞) = {x : x > a}

(−∞, a) = {x : x < a}

[a,∞) = {x : x ≥ a}

(−∞, a] = {x : x ≤ a}

(−∞,∞) = F

The intervals (a, b), (a,∞), (−∞, a), and F itself are said to be open. The
intervals [a, b], [a,∞), (−∞, a], and F itself are said to be closed. Taking
a > b, we see that the empty set is an interval which is both open and closed.
One-point sets [a, a] and the empty set are called degenerate intervals. Thus
an interval is nondegenerate if it contains at least two points.
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1.1. The natural numbers, integers, and rational numbers 5

Exercise 1.4. Show that a nondegenerate interval contains infinitely many
points.

1.11. Remark. By A7, if I is an interval, x < y < z, and x, z ∈ I, then
y ∈ I. In other words, along with any two of its points, an interval contains
all the points in between. Conversely, when F is the field of real numbers,
a set satisfying this property is an interval (Exercise 2.12).

1.12. Definition. If a and b are elements of an ordered field and a ≤ b,
then we write min{a, b} = a for the minimum of a and b, and max{a, b} = b
for the maximum.

1.13. Definition. The absolute value of an element a in an ordered field is
the nonnegative element

|a| = max{a,−a} =

�

a if a ≥ 0,
−a if a < 0.

1.14. Theorem (triangle inequality). For all elements a and b in an ordered
field,

|a + b| ≤ |a| + |b|.

For all elements x, y, z in an ordered field,

|x − z| ≤ |x − y| + |y − z|.

Proof. Three cases need to be considered: a, b ≥ 0; a ≥ 0 and b < 0 (the
case when a < 0 and b ≥ 0 is analogous and does not need to be written out
in detail); and a, b < 0. Let us treat the second case and leave the others as
an exercise.

Since a ≥ 0, we have −a ≤ 0 ≤ a, so, adding −b, we get −(a + b) ≤

a − b = |a| + |b|. Since b < 0, we have b < 0 < −b, so, adding a, we get
a + b < a − b = |a| + |b|. These two inequalities together give

|a + b| = max{a + b,−(a + b)} ≤ |a| + |b|.

To get the second inequality, take a = x − y and b = y − z. �

Although the rational numbers have a rich structure, they suffer from
limitations that call for a larger number system. The following result is
attributed to Pythagoras and his associates some 2500 years ago.

1.15. Theorem. There is no rational number with square 2.

Proof. Suppose there are p, q ∈ N with (p/q)2 = 2. Choose q to be as small
as possible. Now q < p < 2q, so 0 < p − q < q and 2q − p > 0. It is easily

computed that

�

2q − p

p − q

�

2

= 2, contradicting the minimality of q. �
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6 1. Numbers, sets, and functions

1.16. Remark. Theorem 1.15 has many different proofs. Here is another
one. Suppose there was r ∈ Q with r2 = 2. We can write r = p/q, where p
and q are integers with no common factors. We will derive a contradiction
from this assumption.

Now 2 = r2 = p2/q2, so p2 = 2q2 and p2 is even. Hence p is even, say
p = 2k, where k is an integer. Then 2q2 = p2 = (2k)2 = 4k2, so q2 = 2k2

and q2 is even. Hence q is even, so p and q are both divisible by 2, contrary
to our assumption.

Exercise 1.5. Show that there is no rational number with square 3 by
modifying the proof of Theorem 1.15 given in Remark 1.16. Where does the
proof fail if you try to carry it out for 4? For which n ∈ N can you show by
the same method that there is no rational number with square n?

This deficiency of Q leads us to a larger and more sophisticated number
system. The real number system has a crucial property called completeness

which implies, among many other consequences, that every positive real
number has a real square root.

A small amount of set theory is essential for real analysis, so before
turning to the real numbers we will review some basic concepts to do with
sets and functions.

1.2. Sets

The notion of a set is a (many would say the) fundamental concept of modern
mathematics. It cannot be defined in terms of anything more fundamental.
Rather, the notion of a set is circumscribed by axioms (usually the so-
called Zermelo-Fraenkel axioms along with the axiom of choice) from which
virtually all of mathematics can be derived, at least in principle.

Our approach will be informal. We think of a set as any collection of
objects. The objects are called the elements of the set. If x is an element of
a set A, we write x ∈ A. A set is determined by its elements, that is, two
sets are the same if and only if they have the same elements. Thus the most
common way to show that sets A and B are equal is to prove, first, that if
x ∈ A, then x ∈ B, and second, that if x ∈ B, then x ∈ A.

1.17. Definition. Let A and B be sets. We say that A is a subset of B and
write A ⊂ B (some write A ⊆ B) if every element of A is also an element of
B. We say that A is a proper subset of B if A ⊂ B and A �= B. The union

of A and B is the set

A ∪ B = {x : x ∈ A or x ∈ B}.

•

•

•
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1.2. Sets 7

The intersection of A and B is the set

A ∩ B = {x : x ∈ A and x ∈ B}.

We say that A and B are disjoint if they have no elements in common. The
complement of A in B is the set

B \ A = {x ∈ B : x /∈ A}.

Sometimes B \ A is written as B − A, or as Ac if B is understood.

1.18. Remark. In mathematics, the conjunction or (as in the definition of
the union A∪B) is always understood in the inclusive sense: ‘p or q’ always
means ‘p or q or both’. If we want the exclusive or, then we must say so
explicitly by adding the phrase ‘but not both’.

1.19. Remark. The operations on sets in Definition 1.17 satisfy various
identities reminiscent of the laws of arithmetic. There are the associative
laws

A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,

the commutative laws

A ∪ B = B ∪ A, A ∩ B = B ∩ A,

the distributive laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

and De Morgan’s laws

A \ (B ∪ C) = (A \ B) ∩ (A \ C), A \ (B ∩ C) = (A \ B) ∪ (A \ C).

Let us prove the second De Morgan’s law. There are two implications to be
proved: first, the implication that if x ∈ A\(B∩C), then x ∈ (A\B)∪(A\C),
and second, the converse implication. So suppose that x ∈ A\(B∩C). This
means that x ∈ A but x /∈ B ∩ C. Now x /∈ B ∩ C means that x /∈ B or

x /∈ C, so we conclude that either x ∈ A and x /∈ B, or x ∈ A and x /∈ C
(either . . . or is still the inclusive or). Hence x ∈ A \ B or x ∈ A \ C, that
is, x ∈ (A \ B) ∪ (A \ C). We leave the converse implication to you.

Note that this proof required three things:

• knowing how to prove that two sets are equal,

• unravelling the definitions of the sets A\(B∩C) and (A\B)∪(A\C),

• being able to negate the statement x ∈ B∩C, that is, realising that
x /∈ B ∩ C means that x /∈ B or x /∈ C.

1.20. Definition. The empty set is the set with no elements, denoted ∅.

www.cambridge.org/9781107026780
www.cambridge.org


Cambridge University Press
978-1-107-02678-0 — Lectures on Real Analysis
Finnur Lárusson
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1. Numbers, sets, and functions

1.21. Remark. To say that A is a subset of B is to say that if x ∈ A, then
x ∈ B. Hence, to say that A is not a subset of B is to say that there is
x ∈ A with x /∈ B. It follows that the empty set ∅ is a subset of every set
B. Otherwise, there would be an element x ∈ ∅ with x /∈ B, but ∅ has no
elements at all.

Exercise 1.6. Prove that if A ⊂ B, then A \ B = ∅.

We can take unions and intersections not just of two sets, but of arbitrary
collections of sets.

1.22. Definition. Let (Ai)i∈I be a family of sets, that is, we have a set I
(called an index set), and associated to every i ∈ I, we have a set called Ai.
The union of the family is the set

�

i∈I

Ai = {x : x ∈ Ai for some i ∈ I}.

The intersection of the family is the set
�

i∈I

Ai = {x : x ∈ Ai for all i ∈ I}.

1.23. Example. Define a family (An)n∈N of sets by setting A1 = N, A2 =
{2, 3, 4, . . . }, A3 = {3, 4, 5, . . . }, and so on, that is, An = {n, n+1, n+2, . . . }
for each n ∈ N. Then A1 ⊃ A2 ⊃ A3 ⊃ · · · , so we have

�

n∈N

An = A1 ∪ A2 ∪ A3 ∪ · · · = A1 = N.

Also, �

n∈N

An = A1 ∩ A2 ∩ A3 ∩ · · · = ∅,

because there is no natural number that belongs to An for all n ∈ N. Indeed,
if k ∈ A1 = N, then k /∈ Ak+1.

1.24. Definition. The product of sets A and B, denoted A × B, is the set
of all ordered pairs (a, b) with a ∈ A and b ∈ B.

What is an ordered pair, you may ask. All you need to know is that
(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2. But you may be
interested to also know that we do not need to take an ordered pair as a
new fundamental notion. If we define (a, b) to be the set {{a}, {a, b}}, then
we can prove that (a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

It is unfortunate that the same notation is used for an ordered pair and
an open interval, but the intended meaning should always be clear from the
context.

•

•

•
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1.3. Functions 9

1.3. Functions

1.25. Definition. A function (or a map or a mapping—these are synonyms)
f consists of three things:

• a set A called the source or domain of f ,

• a set B called the target or codomain of f ,

• a rule that assigns to each element x of A a unique element of B.
This element is called the image of x by f or the value of f at x,
and denoted f(x).

We write f : A → B to indicate that f is a function with source A and
target B, that is, a function from A to B.

1.26. Remark. Note that the source and the target of the function must
be specified for the function to be well defined. Also, the rule does not have
to be a formula. Any unambiguous description will do.

1.27. Definition. The identity function of a set A is the function idA : A →

A with idA(x) = x for all x ∈ A.

1.28. Definition. Let f : A → B� and g : B → C be functions such that
B�

⊂ B. The composition of f and g is the function g ◦ f : A → C with
(g ◦ f)(x) = g(f(x)) for all x ∈ A (‘first apply f , then g’).

1.29. Definition. Let f : A → B be a function. The image by f of a subset
C ⊂ A is the subset

f(C) = {f(x) : x ∈ C}

of B. The image or range of f is the set f(A). The preimage or inverse

image by f of a subset D ⊂ B is the subset

f−1(D) = {x ∈ A : f(x) ∈ D}

of A, that is, the set of elements of A that f maps into D. If D consists
of only one element, say D = {y} for some y ∈ B, then, for simplicity, we
write f−1(y) for f−1({y}), and call f−1(y) the fibre of f over y.

1.30. Example. Assuming for the purposes of this example that we know
about the real numbers, consider the function f : R → R defined by the
formula f(x) = x2. Instead of f(x) = x2, we can write f : x �→ x2 (the
arrow �→ is read ‘maps to’). The range of f consists of all the nonnegative
real numbers, that is, f(R) = [0,∞). We have

f−1(0) = {0}, f−1(1) = {1,−1}, f−1({1, 4}) = {1,−1, 2,−2}.

The function g : R → [0,∞), x �→ x2, is not the same function as f because
its target is different. And the function h : [0,∞) → [0,∞), x �→ x2, is
different still, because its source is different. All three functions are defined
by the same formula and have the same range [0,∞).
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10 1. Numbers, sets, and functions

Images and preimages interact with unions, intersections, and comple-
ments to a certain extent. Note that preimages are better behaved than
images.

1.31. Theorem. Let f : A → B be a function. For subsets K, L ⊂ A and
M,N ⊂ B, the following hold.

(1) f(K ∪ L) = f(K) ∪ f(L).

(2) f−1(M ∪ N) = f−1(M) ∪ f−1(N).

(3) f−1(M ∩ N) = f−1(M) ∩ f−1(N).

(4) f−1(M \ N) = f−1(M) \ f−1(N).

Proof. We shall prove (4) and leave the other parts as an exercise. Normally
we prove the equality of two sets as two separate implications, but here
things are simple enough that we can prove both implications at the same
time. Namely, we have x ∈ f−1(M \ N) if and only if f(x) ∈ M \ N if and
only if f(x) ∈ M and f(x) /∈ N if and only if x ∈ f−1(M) and x /∈ f−1(N)
if and only if x ∈ f−1(M) \ f−1(N). �

Exercise 1.7. Finish the proof of Theorem 1.31.

1.32. Remark. It is not true in general that f(K ∩ L) = f(K) ∩ f(L) or
f(K \L) = f(K) \ f(L). For example, take f as in Example 1.30, K = {1},
and L = {−1}. Then f(K∩L) = f(∅) = ∅, but f(K)∩f(L) = {1}∩{1} =
{1}. Also, f(K \ L) = f({1}) = {1}, but f(K) \ f(L) = {1} \ {1} = ∅.

1.33. Definition. A function f : A → B is called:

• injective (or one-to-one) if it takes distinct elements to distinct
elements, that is, if x, y ∈ A and f(x) = f(y), then x = y;

• surjective (or onto) if f(A) = B, that is, every element of B is the
image by f of some element of A;

• bijective if f is both injective and surjective.

An injective function is also called an injection, a surjective function is called
a surjection, and a bijective function is called a bijection.

1.34. Remark. Note that a function f : A → B is:

• injective if and only if the fibre f−1(y) contains at most one element
for every y ∈ B,

• surjective if and only if the fibre f−1(y) contains at least one element
for every y ∈ B,

• bijective if and only if the fibre f−1(y) contains precisely one ele-
ment for every y ∈ B.

www.cambridge.org/9781107026780
www.cambridge.org

