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Introduction

1.1 Random Walks

Random walks are fundamental models in probability theory that exhibit deep

mathematical properties and enjoy broad application across the sciences and

beyond. Generally speaking, a random walk is a stochastic process modelling

the random motion of a particle (or random walker) in space. The particle’s

trajectory is described by a series of random increments or jumps at discrete

instants in time. Central questions for these models involve the long-time

asymptotic behaviour of the walker.

Random walks have a rich history involving several disciplines. Classical

one-dimensional random walks were first studied several hundred years ago

as models for games of chance, such as the so-called gambler’s ruin problem.

Similar reasoning led to random walk models of stock prices described by

Jules Regnault in his 1863 book [265] and Louis Bachelier in his 1900

thesis [14]. Many-dimensional random walks were first studied at around the

same time, arising from the work of pioneers of science in diverse applications

such as acoustics (Lord Rayleigh’s theory of sound developed from about

1880 [264]), biology (Karl Pearson’s 1906 [254] theory of random migration

of species), and statistical physics (Einstein’s theory of Brownian motion

developed during 1905–8 [86]). The mathematical importance of the random

walk problem became clear after Pólya’s work in the 1920s, and over the last

60 years or so there have emerged beautiful connections linking random walk

theory and other influential areas of mathematics, such as harmonic analysis,

potential theory, combinatorics, and spectral theory. Random walk models

have continued to find new and important applications in many highly active

domains of modern science: see for example the wide range of articles in

[287]. Specific recent developments include modelling of microbe locomotion

in microbiology [23, 245], polymer conformation in molecular chemistry

[15, 202], and financial systems in economics.
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2 Introduction

Spatially homogeneous random walks are the subject of a substantial

literature, including [139, 195, 269, 293]. In many modelling applications, the

classical assumption of spatial homogeneity is not realistic: the behaviour of

the random walker may depend on the present location in space. Applications

thus motivate the study of non-homogeneous random walks. These models are

also motivated naturally from a mathematical perspective: non-homogeneous

random walks are the natural setting in which to probe near-critical behaviour

and obtain a finer understanding of phase transitions present in the classical

random walk models.

The main theme of this book is the analysis of near-critical stochastic

systems using the method of Lyapunov functions. The non-homogeneous

random walk serves as a prototypical near-critical system; the Lyapunov

function methodology is robust and powerful, and can be applied to many

other near-critical models, including those with applications across modern

probability and beyond, to areas such as queueing theory, interacting particle

systems, and random media. In this chapter we give an informal introduction

to non-homogeneous random walks, and how their behaviour differs from

classical random walks; we also describe some fundamental ideas of the

Lyapunov function technique. We state some theorems, but we often omit

technical details and generally omit proofs. All of the results that we mention

will be stated more precisely (and proved) later in the book, and also applied

to a wide variety of near-critical stochastic systems: the non-homogeneous

random walk serves as an expository bridge between well-known classical

results and the near-critical behaviour that is the subject of this book.

1.2 Simple Random Walk

The most intensively studied random walk model is the symmetric simple

random walk. Simple random walk is a discrete-time Markov process (Sn, n ≥
0) on the d-dimensional integer lattice Zd: Sn can be thought of as the location

(in the state space Z
d) of the random walker at time n (or after n steps). The

stochastic evolution of the process is as follows. Given Sn in Z
d, the next point

Sn+1 is chosen uniformly at random from among the 2d lattice points adjacent

to Sn, i.e., those points that differ from Sn by exactly ±1 in a single coordinate.

In other words, the transition probabilities of the Markov chain are given for

x, y ∈ Z
d by

P[Sn+1 = y | Sn = x] =
{

1
2d

if ‖x − y‖ = 1;

0 otherwise;

where ‖ · ‖ is the Euclidean norm on R
d.
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1.2 Simple Random Walk 3

For example, when d = 1 the one-dimensional simple random walk jumps

one unit to the left or right, each with probability 1/2, while when d = 2 the

two-dimensional simple random walk jumps to one of its four neighbours, with

probability 1/4 of each.

For definiteness, suppose that the walk starts at the origin of Zd: S0 = 0.

By the Markov property and spatial homogeneity, the increments (or jumps)

Sn+1−Sn of the walk are independent and identically distributed (i.i.d.) random

vectors. If {e1, . . . , ed} is the standard orthonormal basis on R
d, let

Ud := {±e1, . . . , ±ed}

for the possible values of the increments of the walk. Then we can write Sn =
∑n

k=1 Zk, where Z1, Z2, . . . are i.i.d. with

P[Z1 = e] =
1

2d
for e ∈ Ud.

(With the usual convention that an empty sum is zero, S0 = 0.) Thus we

may represent the random walk Sn via a sequence of partial sums of the

i.i.d. random increments Zn.

A fundamental question, addressed by Pólya [259], concerns the recurrence

or transience of the random walk: what is the probability that the walk

eventually returns to 0? If we write τd := min{n ≥ 1 : Sn = 0} for the

time of the first return to 0 (with the usual convention that min ∅ := ∞), the

recurrence question concerns

pd := P[τd < ∞].

The random walk is recurrent if pd = 1, in which case with probability one

the random walk will visit 0 infinitely often. On the other hand, if pd < 1 the

random walk is transient, and will, with probability one, visit 0 only finitely

many times, before eventually leaving, never to return.

The following fundamental result is due to Pólya [259].

Theorem 1.2.1 Simple random walk is recurrent in 1 or 2 dimensions, but

transient in 3 or more; i.e., p1 = p2 = 1 but pd < 1 for all d ≥ 3. �

The content of the theorem is nicely captured by an aphorism attributed to

Shizuo Kakutani: ‘A drunk man will eventually find his way home, but a drunk

bird may get lost forever’ (see [83, p. 191]).

Pólya’s theorem (Theorem 1.2.1) tells us that the walk returns to 0 eventually

when d = 1 or d = 2. But how long might we have to wait? The answer is,
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4 Introduction

potentially, a very long time, since τd has very heavy tails:

P[τ1 > n] ∼
1

√
πn

, and P[τ2 > n] ∼
π

log n
, as n → ∞;

see e.g. [259, p. 159] for the first expression and [84, pp. 356–7] for the second.

So in d = 1, E[τ 1/2
1 ] = ∞, while in d = 2, τ2 has no moments at all.

According to Hughes [139, p. 42],

the failure of certain moments of distributions or densities to

converge . . . is pregnant with physical meaning, and indicative of

connections to scaling laws, renormalization group methods, and

fractals.

The recurrence exhibited by the simple random walk for d ∈ {1, 2} is

null recurrence, meaning that E τd = ∞; more stable processes may exhibit

positive recurrence, meaning that the analogue of τd is integrable.

1.3 Lamperti’s Problem

There are several proofs of Theorem 1.2.1 in the literature, the most popular

being those that are largely combinatorial (such as Pólya’s original argument

[259]) and those based on potential theory and electrical networks (see

e.g. [81]). A drawback of each of these approaches is that they rapidly break

down when one tries to generalize Pólya’s theorem to other random walks. In

this section we describe a robust approach to proving Pólya’s theorem, due to

Lamperti, which enables very broad generalization. This approach is based on

the methodology of Lyapunov functions.

Again let Sn be the symmetric simple random walk on Z
d, starting at 0.

In the context of Pólya’s recurrence theorem, we are interested in the events

{Sn = 0}. We can reduce this d-dimensional problem to a one-dimensional

problem by considering a transformation of the process (a Lyapunov function)

given by

Xn := ‖Sn‖, (1.1)

i.e., Xn is the distance from the origin of the walker at time n. The stochastic

process (Xn, n ≥ 0) takes values in the countable set S = {‖x‖ : x ∈ Z
d},

a subset of the half-line R+, and Xn = 0 if and only if Sn = 0. So we can

study the recurrence or transience of Sn via the recurrence or transience of Xn,

a one-dimensional process.

This reduction in dimensionality of the problem comes at a price: Xn is not

in general a Markov process. For instance, when d = 2, given one of the two
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Figure 1.1 Illustration of the non-Markovian nature of Xn in d = 2.

events {Sn = (5, 0)} and {Sn = (3, 4)} we have Xn = 5 in each case but Xn+1

has two different distributions; Xn+1 can take the value 6 (with probability 1/4)

in the first case, but this is impossible in the second case. See Figure 1.1. Thus

the tools that we use to study Xn must not rely too heavily on the Markov

property.

First we compute the expected increment of Xn given Sn = x, namely

E[Xn+1 − Xn | Sn = x] =
1

2d

d
∑

i=1

(‖x + ei‖ + ‖x − ei‖ − 2‖x‖) . (1.2)

To proceed we apply Taylor’s theorem in an elementary way. Using the Taylor

expansion

(1 + y)1/2 = 1 +
1

2
y −

1

8
y2 + O(y3), as y → 0,

we obtain that, for any e ∈ S
d−1,

‖x + e‖ − ‖x‖ =
√

(x + e) · (x + e) − ‖x‖

= ‖x‖
[

(

1 +
2e · x + 1

‖x‖2

)1/2

− 1

]

= ‖x‖
(

2e · x + 1

2‖x‖2
−

(e · x)2

2‖x‖4
+ O(‖x‖−3)

)

. (1.3)

It follows that

‖x + e‖ + ‖x − e‖ − 2‖x‖ =
1

‖x‖
−

(e · x)2

‖x‖3
+ O(‖x‖−2).
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6 Introduction

Thus from (1.2), using the fact that
∑d

i=1(ei · x)2 = ‖x‖2, we obtain

E[Xn+1 − Xn | Sn = x] =
1

2d

d
∑

i=1

(‖x + ei‖ + ‖x − ei‖ − 2‖x‖)

=
(

d − 1

2d

)

1

‖x‖
+ O(‖x‖−2). (1.4)

Similarly

E[X2
n+1 − X2

n | Sn = x] =
1

2d

d
∑

i=1

(

‖x + ei‖2 + ‖x − ei‖2 − 2‖x‖2
)

= 1.

Then, since (Xn+1 − Xn)
2 = X2

n+1 − X2
n − 2Xn(Xn+1 − Xn) we obtain

E[(Xn+1 − Xn)
2 | Sn = x] =

1

d
+ O(‖x‖−1). (1.5)

Informally speaking, (1.4) says that the mean increment of Xn at x ∈ S is
1
2x

(1 − 1
d
) + O(x−2), and similarly (1.5) says that the second moment of the

increment at x is 1
d

+ O(x−1); however, to formalize these statements we need

to be careful since Xn is not a Markov process, and we have to clarify what

we mean by the increment moments ‘at x’. We deal with these technicalities

later, since they complicate the notation (although they will not complicate the

proofs, which are based on martingale arguments). For now, for the purposes

of exposition, we switch to the case where Xn is a Markov process.

Suppose now that (Xn, n ≥ 0) is a time-homogeneous Markov process on an

unbounded subset S of R+. Consider the increment moment functions

μk(x) := E[(Xn+1 − Xn)
k | Xn = x].

For simplicity, suppose that Xn has uniformly bounded increments, so that

P[|Xn+1 − Xn| ≤ B] = 1 (1.6)

for some B ∈ R+; under condition (1.6), the μk are well-defined functions of

x ∈ S . The first moment function, μ1(x), is the one-step mean drift of Xn at x.

Lamperti [190, 191, 192] investigated the extent to which the asymptotic

behaviour of such a process is determined by the μk; essentially, μ1 and μ2

turn out to govern the asymptotic behaviour. For example, the following result

is a version Lamperti’s fundamental recurrence classification.

Theorem 1.3.1 Suppose that Xn is a Markov process on S satisfying (1.6).

Under mild conditions, the following recurrence classification holds. Let

ε > 0.
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1.4 General Random Walk 7

• If 2xμ1(x) + μ2(x) < −ε, then Xn is positive recurrent;

• If 2x|μ1(x)| ≤ μ2(x) + O(x−ε), then Xn is null recurrent;

• If 2xμ1(x) − μ2(x) > ε, then Xn is transient. �

The mild conditions mentioned in the statement of Theorem 1.3.1 are related

to issues of irreducibility; the exact nature of the conditions required depends

on the state space S and the notion of recurrence and transience desired. We

leave the technical details until later in the book.

A version of Theorem 1.3.1 applies to non-Markov processes Xn when

formulated correctly, using appropriate versions of the μk. In particular, we

can use such results to study the process Xn defined by (1.1): in this case, the

analogue of 2xμ1(x) is, by (1.4),

1 −
1

d
+ O(x−1)

and the analogue of μ2(x) is, by (1.5),

1

d
+ O(x−1).

An application of the generalized version of Theorem 1.3.1 shows that Xn is

transient if and only if

1 −
1

d
>

1

d
,

or, in other words, d > 2. This gives a very robust strategy for proving Pólya’s

theorem (Theorem 1.2.1) and its generalizations, based on computations

of increment moments for Xn defined by (1.1). These computations use

elementary Taylor’s theorem ideas, and do not rely at all on special structure

of the original process Sn.

1.4 General Random Walk

Simple random walk is an attractive model and can be studied using

combinatorial methods based on counting sample paths, for example; it is,

however, a very specific model. Naturally, it is of interest to study a much

broader class of random walks. In particular, for what class of models does

a result similar to Theorem 1.2.1 hold? To put the question in another way,

what are the essential properties possessed by simple random walk that imply

Theorem 1.2.1? To answer such questions, we start by describing a much more

general model of a random walk.

By a random walk we mean a discrete-time Markov process (ξn, n ≥ 0) on

an unbounded state space 
 ⊆ R
d. We assume that the random walk is time
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8 Introduction

homogeneous. This means that the distribution of ξn+1 given (ξ0, ξ1, . . . , ξn)

depends only on ξn (and not on n). We also need some form of irreducibility

to ensure that the random walk cannot get ‘trapped’ in some part of the state

space: it is simplest to take 
 to be a locally finite set (such as Z
d) to avoid

technical issues at this point.

We are thus using the term random walk in a rather general sense, requiring

that the Markov process inhabit Euclidean space. We also want to impose some

regularity assumptions on the increments of the process, to rule out very long

jumps for the random walk. For this chapter, for convenience we often suppose

that the increments of the walk are uniformly bounded, so that there exists

B ∈ R+ for which, almost surely (a.s.),

P[‖ξn+1 − ξn‖ ≤ B | ξn = x] = 1, for all x ∈ 
. (1.7)

In many cases this assumption can be replaced by a weaker assumption on

the existence of higher moments for the increments, without producing funda-

mentally new behaviour. On the other hand, the case of genuinely heavy-tailed

increments leads to different phenomena, as discussed in Chapter 5.

Under the assumption (1.7), the random vectors ξn+1 − ξn have well-defined

moments, which may depend on ξn. In particular, an important quantity is the

one-step mean drift vector

μ(x) := E[ξn+1 − ξn | ξn = x],

which is the average change in position in a single step starting from x ∈

. (Note that the definition via the conditional expectation on {ξn = x} is

clear in the case of a countable state space 
, and makes sense when correctly

interpreted for uncountable 
 as well.)

An important and well-studied subclass of random walks are spatially

homogeneous, for which the distribution of the increment ξn+1 − ξn does not

depend on the current location ξn. Writing θn := ξn+1−ξn, spatial homogeneity

implies that θ0, θ1, . . . are i.i.d. random vectors. Then the representation

ξn =
n−1
∑

k=0

θk (1.8)

as a sum of i.i.d. random vectors enables classical tools of probability theory,

such as Fourier methods, to be brought to bear in the analysis of the random

walk in the spatially homogeneous case.

Example 1.4.1 (Simple random walk) Using e1, . . . , ed to denote the

standard orthonormal basis vectors of R
d, simple random walk is spa-
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1.5 Recurrence and Transience 9

tially homogeneous with θn uniformly distributed on the set Ud = {±
e1, . . . , ±ed}. △

Example 1.4.2 (Pearson–Rayleigh random walk) Take θn to be uniformly

distributed on the unit-radius sphere S
d−1 ⊂ R

d. The corresponding

d-dimensional random walk, which proceeds via a sequence of unit-length

steps, each in an independent and uniformly random direction, is sometimes

called a Pearson–Rayleigh random walk: see the bibliographical notes at the

end of this chapter. △

Spatially homogeneous random walks have been extensively studied in

classical probability theory. Non-homogeneous random walks, on the other

hand, require new techniques and, just as importantly, new intuitions.

1.5 Recurrence and Transience

For our general random walks, we need a more general definition of recurrence

and transience. In the absence of any structural assumptions, our basic use of

the terminology is as follows. Note that, in general, the two behaviours are not

a priori exhaustive.

Definition 1.5.1 A stochastic process (ξn, n ≥ 0) taking values in 
 ⊆ R
d

is transient if limn→∞ ‖ξn‖ = ∞, a.s. The process is recurrent if, for some

constant r0 ∈ R+, lim infn→∞ ‖ξn‖ ≤ r0, a.s.

If ξn is an irreducible time-homogeneous Markov chain whose state space

is a locally finite subset of Rd (such as Zd), then recurrence and transience in

the sense of Definition 1.5.1 coincide with the usual Markov chain definition

in terms of returns to any given state. Definition 1.5.1 allows more general

processes, and is the most convenient definition in the context of Lamperti’s

problem outlined in Section 1.3.

First we return to the classical spatially homogeneous random walk

described in Section 1.4, in which case the increments θn in (1.8) are i.i.d.

In this case, when defined, E[ξn+1 − ξn | ξn = x] = E θ0 = μ does not depend

on x.

If μ �= 0, then the strong law of large numbers shows that the walk is

transient, and limn→∞ n−1ξn = μ, a.s., so the walk escapes to infinity at

positive speed. The most subtle case is that of zero drift when μ = 0. Here,

under mild conditions, Pólya’s theorem (Theorem 1.2.1) for simple symmetric

random walk extends to the case of general spatially homogeneous random

walks with zero drift. Recall that we view θ0 and other d-dimensional vectors

as column vectors throughout.
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10 Introduction

Theorem 1.5.2 For a spatially homogeneous random walk ξn on R
d, suppose

that E[‖θ0‖2] < ∞, E θ0 = 0, and E[θ0θ
⊤
0 ] is positive definite. Then ξn is

recurrent for d ∈ {1, 2} and transient for d ≥ 3. �

The positive-definite covariance condition ensures that the increments are

not supported on a lower-dimensional subspace.

How does the situation change if the walk is allowed to be spatially

non-homogeneous? In the general, non-homogeneous case, μ(x) = E[θn |
ξn = x] will depend on x. Even if μ(x) = 0 for all x, however, the

non-homogeneous zero-drift walk can behave completely differently to the

homogeneous zero-drift walk.

Theorem 1.5.3 Let ξn be a spatially non-homogeneous random walk on R
d

with zero drift, so that μ(x) = 0 for all x.

• If d = 2, then we can exhibit such a walk that is transient.

• If d ≥ 3, then we can exhibit such a walk that is recurrent.

In all cases, we may take these examples to have uniformly bounded

increments, as at (1.7). �

We emphasize that, for example, in two dimensions, zero drift does not

imply recurrence for a non-homogeneous random walk with bounded jumps.

This fact is contrary to intuition built from homogeneous random walks, but

should not be surprising to readers who have encountered random walks in

random environments: for example, Zeitouni [319, pp. 90–91] discusses an

example of a transient walk in d = 2 with symmetric increments; see also the

examples in Chapter 4.

So non-homogeneous random walks can show anomalous (non-classical)

recurrence behaviour. We can reassert some control by imposing additional

regularity structure on the second moments of the increments θn = ξn+1 − ξn.

Assuming (1.7), then the matrix function

M(x) = E[θnθ
⊤
n | ξn = x] (1.9)

is well defined, since for any e ∈ S
d−1, |e⊤θnθ

⊤
n e| = (e · θn)

2 ≤ ‖θ2
n ‖; for

each x, M(x) is a symmetric, non-negative-definite matrix. We refer to M(x)

defined at (1.9) as the increment covariance matrix; this is a slight abuse of
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