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Introduction

Whether we want to know the cause of a stock’s price movements (in
order to trade on this information), the key phrases that can alter public
opinion of a candidate (in order to optimize a politician’s speeches), or
which genes work together to regulate a disease causing process (in order
to intervene and disrupt it), many goals center on finding and using causes.
Causes tell us not only that two phenomena are related, but how they are
related. They allow us to make robust predictions about the future, explain
the relationship between and occurrence of events, and develop effective
policies for intervention.

While predictions are often made successfully on the basis of associ-
ations alone, these relationships can be unstable. If we do not know why
the resulting models work, we cannot foresee when they will stop working.
Lung cancer rates in an area may be correlated with match sales if many
smokers use matches to light their cigarettes, but match sales may also be
influenced by blackouts and seasonal trends (with many purchases around
holidays or in winter). A spike in match sales due to a blackout will not
result in the predicted spike in lung cancer rates, but without knowledge
of the underlying causes we would not be able to anticipate that failure.
Models based on associations can also lead to redundancies, since multiple
effects of the true cause may be included as they are correlated with its
occurrence. In applications to the biomedical domain, this can result in
unnecessary diagnostic tests that may be invasive and expensive.

In addition to making forecasts, we want to gain new knowledge of how
things work. Causes enable us to explain both the occurrence of events and
the connection between types of events. We do not want to know only that a
particular drug is associated with renal failure, but rather we want to distin-
guish between whether this association is due to an adverse drug reaction
or the disease being treated causing both renal failure and prescription of
the drug. Associations do not have this type of explanatory power, nor can
they help us with a second type of explanation, that of why a particular
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2 Introduction

event occurred. When attempting to explain why a patient developed a sec-
ondary brain injury after a stroke, the goal is to determine which factors are
responsible so that these can be treated to potentially prevent further brain
damage. Knowing only that a particular event is correlated with secondary
injury is insufficient to determine which factors made a difference to its
occurrence in a particular case.

Finally, knowledge of the underlying causes of a phenomenon is what
allows us to intervene successfully to prevent or produce particular out-
comes. Causal relationships (actual or hypothesized) prompt us to make
decisions such as taking vitamin supplements to reduce our risk of disease
or enacting policies decreasing sodium levels in food to prevent hyperten-
sion. If we did not at least believe that there is a causal connection between
these factors, we would have no basis for these interventions. Intervening
on a side effect of the underlying cause would be like banning the sale
of matches to reduce lung cancer rates. This is clearly ineffective, since
smokers can also use lighters, but banning smoking or reducing smoking
rates does have the ability to lower lung cancer rates. In general, to bring
about desired outcomes we must know that the factor being acted upon is
capable of preventing or producing the effect of interest.

However, causality alone is not enough. To use causes to effectively
predict, explain, or alter behavior, we must also know the time over which
a relationship takes place, the probability with which it will occur, and how
other factors interact to alter its efficacy.

When finding factors that affect stock prices, we need to know when the
effect starts and how long it persists to be able to trade on this information.
Individual phrases may positively influence voter perception of a politician,
but candidates must combine these into coherent speeches, and two phrases
that are positive individually may have a negative impact in combination.
With multiple targets for drug development, the likelihood of each being
effective must be weighed against its potential risks to determine which
candidates to pursue.

Few relationships are deterministic, so even if we know the details of a
cause that can produce the desired effect and how long it takes to do so,
we cannot be certain that this outcome will occur in all instances. In many
cases, this is due to the limits of our knowledge (as it is rare that all factors
relevant to the success of the cause can be enumerated) while in others
the relationship itself may be probabilistic. Knowing both the timing of
relationships and their probabilities is important for making decisions and
assessing risk, as there are often multiple effects of a cause and multiple
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Introduction 3

causes of a particular effect. Thus, we can rarely influence a cause in
isolation, and must also choose between potential candidates. For many
medical conditions, doctors have a choice of treatments where some may
be extremely effective, yet come with the potential for severe side effects,
while other less effective drugs may be desirable because of their limited
side effects. When choosing a target for interventions, one must evaluate
the strength of the relationship (likelihood of the cause producing the effect,
or the magnitude of influence) against potentially undesirable side effects.
This has been partly addressed by artificial intelligence work on planning,
which finds both direct and indirect effects (ramifications) of actions to
determine whether a strategy will achieve a goal. These methods assume
that we already have a model of how the system works, but in many cases
the first step of research is finding this model or creating it with the input of
domain experts. By starting with a set of causal facts (essentially, ways of
changing the truth value of formulas), these methods free themselves from
answering the most difficult question: what exactly is causality?

This question has plagued researchers in many areas, but it has been
a fundamental practical problem in medicine where doctors must always
act with incomplete information. Causality is at the center of every facet
of medicine, including diagnosis of patients (Rizzi, 1994), identification
of adverse drug events (Agbabiaka et al., 2008), comparative effective-
ness research (Johnson et al., 2009), and epidemiological studies linking
environmental factors and disease (Parascandola and Weed, 2001). Yet as
central as causality is to biomedical research, work on understanding what it
is and how to find it has primarily taken a pragmatic approach, disconnected
from the philosophical literature in this area. As a result, randomized con-
trolled trials (RCTs) have come to be treated as the gold standard for causal
inference, even though these can answer only a subset of the many causal
questions researchers and clinicians aim to answer and sidestep the question
of what causality actually is. The basic idea of an RCT is that a subset of a
population has been randomly assigned to a particular treatment while the
control group does not receive the treatment. Both are measured the same
way for the same time, and when there is a difference in outcomes between
the groups it is said that the therapy is responsible for it (as it is meant to be
the only difference between them). These methods have many well-known
limitations, in particular that the ideal of randomization to eliminate con-
founding may not always occur in practice (Schulz et al., 1995), and that the
internal validity of these studies (that they can answer the questions being
asked) often comes at the expense of external validity (generalizability to
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4 Introduction

other populations) (Dekkers et al., 2010; Rothwell, 2006). Similarly, due to
the difficulty and expense of enrolling patients, these studies follow fairly
small populations over fairly short time periods.

Instead, new large-scale observational datasets from electronic health
records (EHRs) may address some of these limitations (by studying the same
population being treated, following patients over a long timescale, and using
a large population). Columbia University Medical Center, for example, has
a database of 3 million patients over twenty years. In other systems with less
in and out-migration, these records can capture a patient’s health over nearly
their entire lifespan. Further, while many RCTs involve homogeneous sets
of patients with few comorbidities, EHRs contain a more realistic set of
patients (though they exclude those who have not sought or do not have
access to medical care). Despite the potential benefits of using EHRs for
research, they have been underused, as these observational data are outside
the traditional paradigm of RCTs (here we have no control over the data
gathered and patients may have many gaps in their records) and have been
difficult to analyze using prior computational methods for causal inference
(as few of their assumptions hold in these types of real-world datasets).

To address the challenge of causal inference from observational data,
though, we first need to understand what causality is in a domain-
independent way. Attempts have been made to create guidelines for evalu-
ating causality in specific scenarios, such as Hill’s viewpoints on causality
(Hill, 1965), but these are simply heuristics. Over time though they have
come to be treated as checklists, leading to a conflation of what causality
might be with the evidence needed to establish it and tools we can use to
recognize it. While I aim to develop practical inference methods, we must
be clear about what is being inferred and this requires us to engage with the
philosophical literature.

There is no single accepted theory of what it means for something to be
a cause, but understanding this distinction between the underlying fact of
causality and how inference algorithms identify causes (and which causes
they identify) is critical for successful inference and interpretation of results.
As will become clear in the later chapters, causality is far from a solved
problem, but philosophical theories have succeeded in capturing many more
aspects of it than are addressed in the computational literature. There is a
small set of cases on which all theories agree, with only partial overlaps in
others. Since there are generally no corresponding algorithms that can be
applied to test datasets, the primary method for evaluating and comparing
philosophical theories of causality has been by posing counterexamples to
each, following a battery of tests that have evolved over the years. As no one
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Introduction 5

theory addresses all potential challenges, this provides some idea of which
theories apply to which scenarios, but has also indicated that the search for
a unified theory may be unlikely to succeed.

In this book, I will not attempt to provide a unifying theory of causality,
but rather aim to make clear where there are areas of disagreement and
controversy and where certain assumptions are generally accepted. The
book begins with a review of philosophical approaches to causality, because
these works give us a vocabulary for talking about it and they provide the
foundation for the computational literature. In particular, philosophy is
one of the few fields that has extensively studied both type-level causality
(general relationships such as that between an environmental factor and a
disease) and token causality (specific relationships instantiated at particular
times and places, such as the cause of a particular patient’s hypertension),
as well as the link between these levels. While philosophical approaches
have attempted to find one theory that accounts for all instances of causality
(arguing against any approach that does not act as expected in at least one
case), this has so far not succeeded but has yielded a rich set of competing
theories. Given the lack of a unified solution after centuries of effort, some
philosophers have recently argued for causal pluralism (with a plurality
of things one might be plural about, including methodologies, causality
itself, and so on). On the other hand, computational work has honed in
on a few inference methods, primarily based on graphical models (where
edges between nodes indicate causal dependence), but these may not be
appropriate for all cases. Instead, we may once again take inspiration from
the philosophical literature to guide development of a set of complementary
methods for causal inference.

One of the most critical pieces of information about causality, though –
the time it takes for the cause to produce its effect – has been largely
ignored by both philosophical theories and computational methods. If we
do not know when the effect will occur, we have little hope of being able to
act successfully using the causal relationship. We need to know the timing
of biological processes to disrupt them to prevent disease. We need to know
how long it takes for conditions to trigger political instability if we want to
react quickly to it. We need to know a patient’s sequence of symptoms and
medical history to determine her diagnosis. Further, personal and policy
decisions may vary considerably with the length of time between cause and
effect (and how this relates to the relationship’s probability). The warning
that “smoking causes lung cancer” tells us nothing about how long it will
take for lung cancer to develop nor how likely this is to occur. We often see
people who smoke and do not develop lung cancer, so we immediately know
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6 Introduction

that either this must occur on such a long timescale that other causes of
death occur first, or that the relationship must be probabilistic. Without these
details though, an individual cannot adequately assess their risk to make a
decision about whether or not to smoke. While a deterministic relationship
that takes 80 years may not affect a person’s behavior, a relationship with a
significantly lower probability at a timescale of only 10–15 years might be
significantly more alarming.

To successfully make and use causal inferences we need to understand
not only what causality is, but how to represent and infer it in all of its
complexity.

I argue that it is futile to insist on a single theory that can handle all pos-
sible counterexamples and applications, and instead focus on developing
an approach that is best equipped for inferring complex causal relation-
ships (and their timing) from temporal data. While this method builds on
philosophical work, the goal is not to develop a theory of causality itself,
but rather a method for causal inference and explanation that aims to be
philosophically sound, computationally feasible, and statistically rigorous.
Since the goal is to use these methods in many areas – such as biology, pol-
itics, and finance – the definitions must be domain independent and should
be compatible with the types of data that are realistically encountered in
practice. This method needs to capture the probabilistic nature of the rela-
tionships being inferred, and be able to reason about potentially complex
relationships as well as the time between cause and effect. I will discuss
why previous methods for causal inference (those that result in the creation
of networks or graphs, and those allowing simple lags between cause and
effect but not windows of time) do not achieve these goals. Instead, I present
an alternative approach based on the idea of causal relationships as logical
statements, building on philosophical theories of probabilistic causality and
extending probabilistic temporal logics to meet the representation needs of
the complex domains discussed.

In this approach, cause, effect, and the conditions for causality are
described in terms of logical formulas. This allows the method to capture
relationships such as: “smoking and asbestos exposure until a particular
genetic mutation occurs causes lung cancer with probability 0.6 in between
1 and 3 years.” While I focus on the case of temporal data, the working
definitions developed allow us to correctly handle many of the difficult
cases commonly posed to theories of causality. Further, the use of temporal
logic, with clearly defined syntax and semantics, allows us to efficiently
test any relationship that can be described in the logic. The approach is
based on probabilistic theories of causality, but probability raising alone
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Introduction 7

is insufficient for identifying causal relationships since many non-causes
may precede and seem to raise the probability of other events. Instead,
to determine which relationships are significant, I introduce a new mea-
sure for the significance of a cause for its effect that assesses the average
impact a cause makes to an effect’s probability. Using the properties of
this measure we are also able to determine the timing of relationships with
minimal prior knowledge. Similarly, the distribution of this measure allows
standard statistical methods to be applied to find which causal significance
values should be considered statistically significant. The inference methods
here build on philosophical theories of probabilistic causality, but intro-
duce new computationally feasible methods for representing and inferring
relationships.

In addition to inferring general relationships such as that smothering
someone causes their death, we also aim to find causes for specific events,
such as that Othello smothering Desdemona caused her death. These sin-
gular, token-level, relationships need not correspond exactly to type-level
relationships. For example, seatbelts may prevent death in the majority of
accidents, but can cause it in others by preventing escape from vehicles
submerged under water. However, methods that make use of type-level
relationships without being constrained by them can enable us to automate
this type of reasoning. Finding the causes of particular events is a significant
practical problem in biomedicine, where clinicians aim to diagnose patients
based on their symptoms and understand their individual disease etiology.
Algorithms that can do this without human input can have a particularly
large impact in critical care medicine, where doctors face an enormous
volume of streaming data that is too complex for humans to analyze, yet
knowing not only what is happening but why is essential to treatment.
Since treatments can come with potential risks, doctors must be sure they
are treating the underlying cause of a patient’s illness and not simply symp-
toms that indicate their level of health. Timing is critical for automating
this type of explanation, since it allows objective determination of whether
an observed sequence can be considered an instance of the known general
relationship and provides information on when a cause is capable of pro-
ducing its effect. This must also be done with incomplete data (as we may
not observe all variables and may have gaps in their recording), and must
allow for deviations in timing (as we do not usually have continuous data
streams at an arbitrarily fine level of granularity). There are many reasons
inferred timings may differ from particular timings even though the par-
ticular events are still instances of the general relationship. Inferring, for
instance, that a factor causes decreased potassium levels in 60–120 minutes
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8 Introduction

does not necessarily mean that it is not possible for this to occur in 59 to 121
minutes. The need for this type of reasoning is not limited to biomedicine,
but may also apply to finding causes of stock market crashes and software
failures. In this book, I aim to close the loop from data to inference to
explanation, developing methods for assessing potential token causes for
an effect while allowing for incomplete and uncertain information.

1.1. Structure of the Book

This book is written primarily for computer scientists and philosophers
of science, but it is intended to be accessible to biomedical scientists and
researchers in finance among other areas. For that reason, the book is mostly
self-contained, and assumes very minimal background in statistics, logic, or
philosophy. Chapters 2 and 3 contain all needed background on causality,
probability, and logic. Before discussing methods for inferring causes, one
needs to understand what is being inferred. Thus, chapter 2 begins with
a short introduction to philosophical theories of causality, beginning with
historical foundations and then continuing with a critical discussion of prob-
abilistic and counterfactual theories. This discussion covers the problem of
defining and recognizing causal relationships, which is necessary before we
can discuss how to find these in an automated way. The goal of this section
is to make readers from all backgrounds familiar with potential problems
in defining causality, providing a framework for evaluating other methods.
Finally, I review recent approaches to inference, including graphical mod-
els and Granger causality. Chapter 3 is a gentle introduction to probability
(covering what is needed for the later examples and algorithms) and tempo-
ral logic, concluding with a discussion of the probabilistic temporal logic
that the approach builds on.

In the remaining chapters, we turn our attention to a new approach to
causal inference. In chapter 4, I begin by defining the types of causes we will
aim to identify. Rather than partitioning relationships into causal and non-
causal, I focus on calculating the significance of relationships, introducing a
new measure for this purpose that is computationally feasible, but based on
the philosophical theories discussed in chapter 2. I relate the definitions to
probabilistic temporal logic formulas and discuss how they deal with com-
mon counterexamples posed to theories of causality. By representing causal
relationships as temporal logic formulas (and later extending this logic for
use with data), this approach can address the previously ignored problem
of representing and inferring complex, temporal, causal relationships. This
will allow us to find relationships and their timing (how long it takes for a
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1.1. Structure of the Book 9

cause to produce its effect) while allowing this process to be automated in a
computationally feasible way. Prior philosophical and computational work
has left it to the end user to define variables in arbitrarily complex ways, but
constructing these instead as logical formulas means that any relationship
that can be represented in this manner can be efficiently tested. Further, this
method will enable inference of relationships such as feedback loops that
have previously eluded other approaches.

In chapter 5, I develop the algorithms needed for testing these causal
relationships in data, discuss how to determine their causal and statisti-
cal significance, and finally develop algorithms for finding the timing of
causal relationships without prior knowledge. First, I discuss how to check
logical formulas in time series data (traces), and augment probabilistic com-
putation tree logic (PCTL) to allow specification of formulas true within a
window of time (rather than with only an upper bound on timing), develop-
ing a new trace-based semantics. I then discuss how the measure of causal
significance developed in the previous chapter is calculated relative to data.
This measure is the average difference a cause makes to the probability of
its effect. We then need to determine which values of the measure are sta-
tistically significant. Since we are primarily interested in applications that
involve a large number of relationships being tested simultaneously, we can
relate the determination of a threshold for the level at which something is
statistically significant to the problem of false discovery control, aiming to
control how often a spurious cause is erroneously called genuine. Finally, See

appendix A
for an
introduction
to multiple
hypothesis
testing and
false
discovery
control.

while we need to understand not only why things will happen but when they
will occur, this is one of the largest remaining gaps in methods for causal
inference. One can search exhaustively over a set of possible timings, but
this is computationally inefficient and dependent on the initial times pro-
posed. Prior methods have been limited by their inability to suggest and
evaluate new relationships, refining rather than only accepting or rejecting
hypotheses. What is needed is a way to take user input as a starting point and
modify it during inference as new information is revealed. In this section,
we show that with a few assumptions (that the significant relationships are
a small proportion of the overall set tested, and that a relationship will be
significant in at least one window overlapping its true timing) the problem
can be solved efficiently, allowing us to generate a set of hypotheses and
candidate time windows, such as “a causes b in 1–2 weeks,” and eventually
infer “a causes b in 7–10 days.”

In chapter 6, I discuss the problem of token causality in depth. The goal
here is to take a sequence of observations (such as a patient’s history) and
a set of inferred type-level relationships and assess the relative significance
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10 Introduction

of each type-level cause for a particular, actually occurring, event (such as
a patient’s seizure). This will allow for uncertainty in the timing of events
by incorporating deviations from the known (type-level) timing into a mea-
sure of significance for a token-level explanation, ensuring that a case that
differs slightly from a known relationship will not be immediately excluded
while one that deviates significantly will be penalized (though can still be
considered possible). I begin by discussing why we need a separate treat-
ment of this type of causality and how, building on philosophical theories,
we can use prior type-level inferences (made using the method developed
in the previous chapters) as initial hypotheses, before developing a practical
measure for token-level significance. I then examine several difficult cases
found in the philosophical literature, showing that the approach can handle
these in a manner consistent with intuition about the problems.

Finally, in chapter 7, the methods are applied to data from biological
and financial applications. Here the approach is first validated on simulated
neural spike train data, showing that it can recover both the underlying rela-
tionships and their timing. Through comparison to other methods (specifi-
cally graphical models and Granger causality), it is shown that the approach
advanced here is able to make fewer false discoveries while retaining the
power to make many correct discoveries. In fact, its error rates are an order
of magnitude lower than for the competing methods. The approaches devel-
oped are then applied to a second domain, finance, using both simulated
and actual market data. First, data is simulated using a factor model, with
causality embedded in a series of randomly generated networks (some with
randomly generated time lags between portfolios). Once again the method
developed in this book outperforms Granger causality, a method commonly
applied to financial time series. Finally, application to actual market data
shows that over the long run, relationships may not persist while at a
timescale of a year, causal relationships can be identified between stocks.
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