

LITHIC TECHNOLOGICAL SYSTEMS AND EVOLUTIONARY THEORY

Stone tool analysis relies on a strong background in analytical and methodological techniques. However, lithic technological analysis has not been well integrated with a theoretical approach to understanding how humans procured, made, and used stone tools. Evolutionary theory has great potential to fill this gap. This collection of essays brings together several different evolutionary perspectives to demonstrate how lithic technological systems are a byproduct of human behavior. The essays cover a range of topics, including human behavioral ecology, cultural transmission, phylogenetic analysis, risk management, macroevolution, dual inheritance theory, cladistics, central place foraging, costly signaling, selection, drift, and various applications of evolutionary ecology.

Nathan Goodale is Assistant Professor of Anthropology at Hamilton College. He is the author of articles and book chapters dealing with lithic technology and evolutionary theory in several journals and edited volumes, including Evolution: Education and Outreach, American Antiquity, Journal of Archaeological Science, Complex Hunter-Gatherers (2004), and Lithic Technology (Cambridge University Press, 2008).

William Andrefsky, Jr., is Edward R. Meyer Distinguished Professor of Anthropology and Dean of the Graduate School at Washington State University. He is the author of several books dealing with stone analysis, including *Lithics* (Cambridge University Press, 1998 and 2004), *Lithic Debitage* (2001), and *Lithic Technology* (Cambridge University Press, 2008).

LITHIC
TECHNOLOGICAL
SYSTEMS AND
EVOLUTIONARY
THEORY

Edited by

NATHAN GOODALE

Hamilton College

WILLIAM ANDREFSKY, JR.

Washington State University

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107026469

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Lithic technological systems and evolutionary theory / [edited by] Nathan Goodale (Hamilton College), William Andrefsky, Jr. (Washington State University).

pages cm

"This volume is an outgrowth of a symposium organized for the 74th Annual Society for American Archaeology meeting in Atlanta, Georgia, titled Evolutionary Approaches to Understanding Stone Technologies as a Byproduct of Human Behavior"—Contents page.

Includes bibliographical references and index.

ISBN 978-1-107-02646-9 (hardback)

Stone implements – Analysis – Congresses.
 Tools, Prehistoric – Analysis.
 Human evolution – Philosophy.
 Social archaeology.
 Human behavior – History.
 Human ecology – History.
 Goodale, Nathan, 1977 – II. Andrefsky, William, 1955 – III. Society for American Archaeology.
 Annual Meeting (74th: 2009: Atlanta, Ga.)

CC79.5.S76L5775 2015 930.1–dc23 2014032390

ISBN 978-1-107-02646-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

CONTENTS

List of Figures and Tables	page vii
Contributors	xiii
Acknowledgments	xvii
Preface	xix
PART I LITHIC TECHNOLOGICAL SYSTEMS AND EVOLUTIONARY THEORY 1 INTERPRETING LITHIC TECHNOLOGY UNDER THE EVOLUTIONARY TENT William Andrefsky, Jr., and Nathan Goodale	3
PART II CULTURE HISTORY AND PHYLOGENETIC EVOLUTIO	N
2 GRAPHING EVOLUTIONARY PATTERN IN STONE TOOLS TO REVEAL EVOLUTIONARY PROCESS R. Lee Lyman	29
3 THEORY IN ARCHAEOLOGY: MORPHOMETRIC APPROACHES TO THE STUDY OF FLUTED POINTS Michael Shott	48
4 INNOVATION AND NATURAL SELECTION IN PALEOINDIAN PROJECTILE POINTS FROM THE AMERICAN SOUTHWEST Todd L. VanPool, Michael J. O'Brien, and R. Lee Lyman	61
PART III APPLICATIONS OF BEHAVIORAL ECOLOGY TO LITHIC STUDIES	
5 A CASE OF EXTINCTION IN PALEOINDIAN ARCHAEOLOGY Charlotte Beck and George T. Jones	83
6 THE NORTH CHINA NANOLITHIC Robert L. Bettinger, Christopher Morgan, and Loukas Barton	100 n

vi CONTENTS

7	WHEN TO RETOUCH, HAFT, OR DISCARD? MODELING OPTIMAL USE/MAINTENANCE SCHEDULES IN LITHIC TOOL USE	117
8	Chris Clarkson, Michael Haslam, and Clair Harris PROCUREMENT COSTS AND TOOL PERFORMANCE REQUIREMENTS: DETERMINING CONSTRAINTS ON LITHIC TOOLSTONE SELECTION IN BAJA CALIFORNIA SUR Jennifer M. Ferris	139
9	A MODEL OF LITHIC RAW MATERIAL PROCUREMENT Raven Garvey	156
10	ARTIFACTS AS PATCHES: THE MARGINAL VALUE THEOREM AND STONE TOOL LIFE HISTORIES Steven L. Kuhn and D. Shane Miller	172
11	SIGNALS IN STONE: EXPLORING THE ROLE OF SOCIAL INFORMATION EXCHANGE, CONSPICUOUS CONSUMPTION, AND COSTLY SIGNALING THEORY IN LITHIC ANALYSIS Colin P. Quinn	198
PA	RT IV CULTURAL TRANSMISSION AND MORPHOLOGY	
12	AN ANALYSIS OF STYLISTIC VARIABILITY OF STEMMED OBSIDIAN TOOLS (MATA'A) ON RAPA NUI (EASTER ISLAND) Carl P. Lipo, Terry L. Hunt, and Brooke Hundtoft	225
13	CULTURAL TRANSMISSION AND THE PRODUCTION OF MATERIAL GOODS: EVOLUTIONARY PATTERN THROUGH MEASURING MORPHOLOGY Nathan Goodale, William Andrefsky, Jr., Curtis Osterhoudt, Lara Cueni, and Ian Kuijt	239
14	WHAT STEWARD GOT RIGHT: TECHNOLOGY, WORK ORGANIZATION, AND CULTURAL EVOLUTION Nathan E. Stevens	253
15	EVOLUTION OF THE SLATE TOOL INDUSTRY AT BRIDGE RIVER, BRITISH COLUMBIA Anna Marie Prentiss, Nathan Goodale, Lucille E. Harris, and Nicole Crossland	267
Ind		293

FIGURES AND TABLES

FIGURES

2.I.	The transformational model and the variational (Darwinian)	
	model of evolution	page 31
2.2.	Darwin's (1859) model of evolutionary pattern	32
2.3.	Fred Plog's (1973) "seriogram" graph of continuous cultural change	33
2.4.	Two illustrations of the relationship between projectile point forms	
	and the stratigraphy of Mummy Cave	36
2.5.	Percentage stratigraphy graph of 27 projectile point types across 9	
	stratigraphic units at Mummy Cave	37
2.6.	Clade-diversity graph for the Mummy Cave projectile points	38
2.7.	Measurement values for each of five variables for all individual	
	points regardless of type per stratigraphic unit at Mummy Cave	39
2.8.	Central-tendency graph of the mean for all points regardless of type	
	per stratigraphic unit at Mummy Cave	41
2.9.	Central-tendency graph of the mean (vertical line) and one standard	
	deviation (box) for all points regardless of type per stratigraphic unit	
	at Mummy Cave	42
2.10.	Coefficient of variation per attribute for all points regardless of type	
	per stratigraphic unit at Mummy Cave	43
3.1.	Regression residual of lnLength upon principal component 1,	
	plotted against reduction measure lnLT in Folsom replicas	57
4.1.	Models of stimulated variation resulting from (a) increased	
	interaction among members of two or more previously distinct	
	cultural systems and (b) a rapidly shifting selective environment	63
4.2.	The influence of stabilizing selection on variation of a culture trait	
	over time	64
4.3.	The influence of directional selection on variation of a culture trait	
	over time	64
4.4.	The influence of disruptive selection on variation of a culture trait	
	over time	65
4.5.	The influence of a shifting selective environment on variation of a	
	culture trait within a population	67
4.6.	Development of "adaptive peaks" resulting from selection operating	
	on increased variation associated with stimulated variation	68

vii

viii FIGURES AND TABLES

4.7.	subsequent reduction of variation applied to Paleoindian	
	projectile points	70
4.8.	Cumulative corrected coefficients of variation for point length and	, •
4	maximum width for Blackwater Draw projectile points	72
4.0	Illustration of the dimensions and attributes recorded for the points	/-
4.3.	in the Eichenberger cast collection	76
4 10	Cumulative corrected coefficients of variation for the eight metric	/0
4.10.	attributes recorded for Paleoindian points represented in the	
	Eichenberger cast collection	77
с т	Model of proposed movements of Western Stemmed (from west to	77
3.1.	east) and Clovis (south to west and north) populations	86
<i>c</i> 2	Measurements, attributes, and landmarks of Clovis blades	88
	Distribution of prismatic blades	89
	Distribution of Clovis caches	
	The relationship between the time spent in the manufacture of a	90
2.2.	tool and its utility	0.2
- 6	•	93
5.0.	Curve-estimate model for finding time thresholds at which an optimal forager will switch to a different technological alternative	0.2
		93
	Locations of high-quality toolstone sources on the Great Plains	95
	Relationship between two technologies	103
	Relationship between two mutually viable technologies	104
	Relationship between manufacturing time and return rate	105
0.4.	Location of the Dadiwan site in relation to the five early millet	
	farming complexes of North China	107
0.5.	Stratigraphic distribution of major Dadiwan technologies by density	
	per cubic meter	109
	Flake-and-shatter quartz technology	IIO
,	Microblades Microblades	III
	Microblade cores showing all specimens recovered from site	II2
0.9.	Height (platform to base) of complete cryptocrystalline microblade	
<i>(</i>	cores	113
0.10.	Relationships between size and cryptocrystalline fraction of lithic	
	assemblages	114
	Examples of the experimental tools used in the experiments	120
7.2.	Experimental results showing the asymptotic nature of the declining	
	gain curve over 10,000 strokes for all three experimental tool types	122
7.3.	Confidence intervals for gain rate for each tool type over the first	
	2000 strokes	123
7.4.	Relative performance declines for each tool type at 200-stroke	
	intervals	124
7.5.	Model showing the effect of different manufacturing time (<i>T</i>) on	
_	overall gain rate	125
7.6.	Model predictions for when to discard each tool type given	
	different known manufacturing times	126
7.7.	The effects of maintenance time as well as manufacturing time	
	on gain rate and overall efficiency as represented by the slope of the	
	tangent	127

FIGURES AND TABLES ix

7.8.	Mean cumulative weight of wood removed per 1000 strokes	
	(left y-axis), and mean cumulative weight lost from unretouched	
	flakes per 1000 strokes (right γ-axis)	130
7.9.	Mean cumulative rate of increase in step terminated scars for the	
	3 cm used edge (left y-axis) and mean edge rounding rank for the	
	utilized edge (right <i>y</i> -axis)	130
7.10.	Average increases in edge angle (in degrees) over the course of the	-
	experiment for retouched and unretouched edges	131
7.11.	Comparison of edge rounding (upper) and stepped scar formation	
	(lower) on unhafted (broken line) and hafted (solid line)	
	unretouched scrapers	132
8.1.	Map of Baja California peninsula	142
8.2.	Map of Espíritu Santo Island	143
	Bar chart displaying percentages of flake types for rhyolite	
	(type I) and chert/quartzite (type 2)	146
8.4.	Line graph of complete flake size grade percentages	147
8.5.	Line graph of complete flake reduction trajectory	148
8.6.	Line graph displaying proportions of edge damage patterns for	
	utilized flake tools by material type	150
8.7.	Line graph displaying microchip configuration proportions for edge	
	damage of utilized flake tools by material type	151
9.1.	Basic model for establishing the critical use time	163
9.2.	The Atuel River drainage, Mendoza Province, Argentina	164
IO.I.	The marginal value theorem in graphic form	175
10.2.	Range of hypothetical artifact utility trajectories	179
10.3.	Reformulated MVT	180
10.4.	Optimal number of uses after which an artifact should be	
	abandoned, as a function of maximum potential yield and	
	artifact cost. (a) Artifact cost = 10. (b) Artifact cost = 25. (c) Artifact cost =	
	50. Criterion value for abandonment = average potential yield over entire	
	potential lifetime of artifact (20 uses)-cost	182
10.5.	Optimal number of uses after which an artifact should be	
	abandoned, as a function of maximum potential yield and artifact	
	cost. (a) Artifact cost = 10. (b) Artifact cost = 25. (c) Artifact cost = 50.	
	Criterion value for abandonment = average potential yield over first 10 uses	
	of artifact-cost.	183
10.6.	Plots of length versus body width for complete fluted points from	
	Tennessee	188
II.I.	Signaling theory, the fitness continuum, and the relationship	_
	between costly and non-costly signals	206
11.2.	A general framework for studying costly signaling behavior with	0
	material culture	208
12.1.	The Pacific Islands, showing Rapa Nui on the remote southeastern	
	edge	226
	Examples of mata'a from Rapa Nui assemblages	227
	Location of mata'a assemblages on Rapa Nui used in this analysis	229
	Mata'a measurements and class divisions	230
12.5.	Mata'a class dimensions	231

X FIGURES AND TABLES

12.6.	Seriation solution for mata'a classes comprised of stem length/	
	width ratios and shoulder angle measures	232
12.7.	Seriation groups for mata'a classes comprised of stem length/width	
	ratios and shoulder angle measures	233
12.8.	Seriation solution for classes of mata'a constructed with measures	
	of stem length and width	233
12.9.	Seriation groups for classes of mata'a constructed with measures of	
	stem length and width	234
12.10.	Seriation solution for qualitative classes of mata'a consisting of stem	
	shape and shoulder shape dimensions	234
12.11.	Seriation groups for qualitative classes of mata'a consisting of stem	
	shape and shoulder shape dimensions	235
12.12.	Spatial distributions of the mata'a seriation groups on Rapa Nui	236
	Dalton point reduction through use, resharpening, and repair	241
	Map of the southern Levant and early Neolithic sites	242
	An example of an el-Khiam notched point	243
	Direct measurements taken for the NPMI	244
	Image J software plug-ins for NPMI programming	245
	Hierarchical cluster analysis results	246
	Several of the statistically significant clusters	247
	Projectile points made by Ishi	248
	Proposed relationships among behavior, technology, and tradition	257
	Locations of California Central Coast archaeological sites	258
	Proportions of multifunctional tools in California Central Coast	
	assemblages	258
14.4.	Changes in California Central Coast ground stone technology	
	throughout the Holocene	259
15.1.	Major archaeological sites in the Middle Fraser Canyon	272
15.2.	Bridge River site with excavation grid superimposed	273
15.3.	History of housepit occupations at the Bridge River site	274
15.4.	Stratigraphic profile of Area 1 in Housepit 54 (Stratum V = roofs,	
	III = rim, II = floors)	275
15.5.	Housepit 24 stratigraphic profile (V = roof, III = rim, II = floor)	275
15.6.	Three (left) and four (right)-sided slate tools from Bridge River	277
15.7.	Ratio of total slate tools (TST) to excavated volume (V)	
	(Table 15.2 volume/10,000)	281
15.8.	Percentages of sawed and chipped tools from BR 2 and 3 contexts	
	at Bridge River	281
15.9.	Percentages of ground (G) and not ground (NG) tools during BR	
	2 and 3 occupations at Bridge River	281
15.10.	Total sawed and ground slate tools (TSGST) by volume (V)	
	(Table 15.2 volume/10,000)	282
15.11.	Number of slate tools (N) per unit of excavated sediment	282
15.12.	Percentages of sawed and not sawed tools during BR 2 occupations	
	at Bridge River	283
15.13.	Ratio of total sawed edge (TSE) to total edge (TE) for all slate	
	tools in BR 2 occupations	283

FIGURES AND TABLES xi

15.14	Number of slate tools (N) per unit of excavated sediment (V) (Table 15.2 volume/10,000)	
15.15.	Percentage of sawed and not sawed tools from BR 3 occupations at	
	Bridge River	
15.10	. Percentages of ground (G) and not ground (NG) tools from BR 3 occupations	
15.17.	Ratio of sawed and ground slate tools (SGST) to total slate tools (TST) in BR 3 housepits	
15.18	. Ratio of sawed edge length (TSE) to number of tools (N) with sawed margins	
15.19	. Ratio of total sawed edge (TSE) to total edge (TE) for all slate tools in BR 3 housepits	
15.20	. Ratio of total sawed edge (TSE) to total edge of slate tools only (TEST)	
15.21.	Change in percentages of three- and four-sided tools across BR 2 and 3 occupations	
15.22	Percentages of three- and four-sided tools in BR 3 occupations at Bridge River	
TABL	ES	
2.1.	Frequencies of projectile points used in analyses and age per stratum at Mummy Cave	
4. I.	Summary information for point length and maximum width for Blackwater Draw projectile points	
4.2.	Cultural-historical types and provenience locations for Paleoindian points in the Eichenberger cast collection	
4.3.	Characters and character states used in the paradigmatic classification	
4.4.	Summary information for the metric attributes of Paleoindian	
	points in the Eichenberger cast collection	
6.1.	Dadiwan site components	
	Details of individual specimens used in the experiment	
	Proximal flake cortex frequency	
	Flake type frequency	
-	Tool categories included in the richness index	
IO.I.	Results of Pearson's correlations between length and body width	
	for six Paleoindian point types from Tennessee	
10.2.	Descriptive statistics for basic shape measurements for six	
	Paleoindian point types from Tennessee	
II.I.	Variables that archaeologists can study within the generalized	
	framework to identify and explain material culture-based costly	
	signaling behavior in the past	
	Slate tool data (counts based on manufacture attributes)	
15.2.	Slate tool data (summed margin length measurements [cm]) and	
	excavated volume (cubic cm)	

CONTRIBUTORS

William Andrefsky, Jr.

Dean of the Graduate School Department of Anthropology Washington State University Pullman.WA

Loukas Barton

Department of Anthropology University of Pittsburgh Pittsburgh, PA

Charlotte Beck

Anthropology Department Hamilton College Clinton, NY

Robert L. Bettinger

Department of Anthropology University of California, Davis Davis, CA

Chris Clarkson

School of Social Science The University of Queensland Brisbane, Qld

Nicole Crossland

Independent Researcher Wenatchee, WA

Lara Cueni

Anthropology Department Hamilton College Clinton, NY

Jennifer M. Ferris

Cardno Entrix Seattle, WA

Raven Garvey

Department of Anthropology University of Michigan Ann Arbor, MI

xiii

xiv CONTRIBUTORS

Nathan Goodale

Anthropology Department Hamilton College Clinton, NY

Clair Harris

School of Social Science The University of Queensland Brisbane, Qld

Lucille E. Harris

Applied Archaeological Research, Inc. Portland, OR

Michael Haslam

Research Laboratory for Archaeology and the History of Art University of Oxford Oxford, UK

Brooke Hundtoft

Pima County Community College, East Campus Department of Humanities, Arts, and Fitness Tucson, AZ

Terry L. Hunt

Dean of the Robert D. Clark Honors College University of Oregon Eugene, OR

George T. Jones

Anthropology Department Hamilton College Clinton, NY

Steven L. Kuhn

School of Anthropology University of Arizona Tucson, AZ

Ian Kuijt

Department of Anthropology University of Notre Dame Notre Dame, IN

Carl P. Lipo

Department of Anthropology and the Institute for Integrated Research on Materials, Environments and Society (IIRMES) California State University, Long Beach Long Beach, CA

R. Lee Lyman

Department of Anthropology University of Missouri Columbia, MO

CONTRIBUTORS xv

D. Shane Miller

Department of Anthropology and Middle Eastern Cultures Mississippi State University Mississippi State, MS

Christopher Morgan

Department of Anthropology University of Nevada, Reno Reno, NV

Michael J. O'Brien

Arts and Science Dean's Office University of Missouri Columbia, MO

Curtis Osterhoudt

Independent Researcher Anchorage, AK

Anna Marie Prentiss

Department of Anthropology The University of Montana Missoula, MT

Colin P. Quinn

Museum of Anthropological Archaeology University of Michigan Ann Arbor, MI

Michael Shott

Department of Anthropology and Classical Studies The University of Akron Akron, OH

Nathan E. Stevens

Far Western Anthropological Research Group, Inc. Davis, CA

Todd L. VanPool

Department of Anthropology University of Missouri Columbia, MO

ACKNOWLEDGMENTS

This volume has had a long gestation period. We appreciate all the contributors to this volume for sticking with this effort. We are grateful to the editors, production staff, and copy editor at Cambridge University Press, as well as those at their affiliates who guided this project to publication. Thanks go to three anonymous peer reviewers whose comments greatly improved drafts of the chapters included in this volume.

The editors would like to acknowledge and thank the late George H. Odell, an old friend and inspiration to researchers studying lithic technological systems around the globe.

xvii

PREFACE

This volume is an outgrowth of a symposium organized for the 74th Annual Society for American Archaeology meeting in Atlanta, Georgia, titled Evolutionary Approaches to Understanding Stone Technologies as a Bybroduct of Human Behavior. The purpose of the symposium and this volume is to demonstrate the connection between lithic analysis and a body of theory to guide interpretations of past human behavior in studies of lithic technological systems. The hope we had for this volume stemmed from the original symposium and to capture the state of the field of lithic technological organization incorporating a body of theory for guiding interpretation. We view evolutionary theory very broadly and understand that others may have a much narrower view. With this in mind we invited scholars with diverse perspectives on evolutionary thought who also used lithic technological systems as a medium of analysis. Our vision was to begin a conversation about interpreting past human behavior derived from lithic artifacts interpreted through a very wide variety of evolutionary approaches. In doing so we hope that the diverse perspectives on evolutionary thought might be viewed as compatible or complementary rather than exclusionary.

The authors of the various chapters in this volume represent some of the most respected scholars as well as many young contributors to the field of lithic analysis and evolutionary archaeology. We selected this field of scholars in hopes of bringing different perspectives from existing researchers together under one cover and simultaneously adding new opinions on lithics and evolution from an up-and-coming generation of archaeologists.

This book contains many of the same papers that were presented in the original symposium. Although we lost a few authors along the way, we also gained new participants during the journey toward publication. We would like to thank all of the participants in that session and especially those who contributed their ideas, methodologies, and interpretations to be included in this volume.