

Life Beyond Earth

The Search for Habitable Worlds in the Universe

With current missions to Mars and the Earth-like moon Titan, and many more missions planned, humankind stands on the verge of exciting progress and possible major discoveries in our quest for life in space.

What is life and where can it exist? What searches are being made to identify conditions for life on other worlds? If extraterrestrial inhabited worlds are found, how can we explore them? Could humans survive beyond the Earth?

In this book, two leading astrophysicists provide an engaging account of where we stand in our quest for habitable environments, in the Solar System and beyond. Starting from basic concepts, the narrative builds scientifically, including more in-depth material as boxed additions to the main text. The authors recount fascinating recent discoveries, from space missions and observations using ground-based telescopes, of possible life-related artefacts in Martian meteorites, of extrasolar planets, and of subsurface oceans on Europa, Titan and Enceladus. They also provide a forward look to exciting future missions, including the return to Venus, Mars and the Moon; further explorations of Pluto and Jupiter's icy moons; and placing giant planet-seeking telescopes in orbit beyond Jupiter, showing how we approach the question of finding out whether the life that teems on our own planet is unique.

This is an exciting, informative read for anyone interested in the search for habitable and inhabited planets, and makes an excellent primer for students keen to learn about astrobiology, habitability, planetary science and astronomy.

ATHENA COUSTENIS is Director of Research at the French National Research Center (CNRS), and an astrophysicist at the Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA) of Paris Observatory. She is Co-investigator of three of the instruments

(CIRS, HASI, DISR) aboard the Cassini–Huygens mission. Her expertise in space missions has allowed her to chair or to contribute to several advisory groups within ESA and NASA. Dr Coustenis is currently President of the International Association of Meteorology and Atmospheric Sciences, as well as Secretary of the Division for Planetary Sciences Committee. She is a member of several editorial boards and has received several NASA and ESA achievement awards.

THÉRÈSE ENCRENAZ is Emeritus Director of Research at CNRS, and an astrophysicist at LESIA, Paris Observatory. She has been involved in many planetary space missions, and has been a Mission Scientist of the European ISO (Infrared Space Observatory) mission. She has chaired the Science Advisory Committee of CNES for the exploration of the Universe. She is currently a member of the E-ELT Project Science Team. Dr Encrenaz is the author of more than 250 refereed articles, a few lecture books and a dozen popular books. She has received several awards including the Silver Medal of CNRS and the David Bates Medal of the European Geophysical Union.

Life Beyond Earth

The Search for Habitable Worlds in the Universe

ATHENA COUSTENIS

and

THÉRÈSE ENCRENAZ

Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Paris Observatory, France

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107026179

© Athena Coustenis and Thérèse Encrenaz 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printing in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-02617-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Pref	ace		page ix
1	Introduction			1
	1.1			
	1.2	The formation of planets		4
		1.2.1		6
		1.2.2	Migration in the Solar System	9
		1.2.3	Elemental and isotopic abundances as insights	
			to the formation of the Solar System	12
	1.3	Looki	ng for water	14
2	Wh	at is li	fe and where can it exist?	19
	2.1	The concept and conditions of life		20
		2.1.1	The building blocks of life	20
		2.1.2	Cells	25
		2.1.3	Origin of life on Earth	30
	Box 2.1 Stromatolites			34
		2.1.4	Experiments on life: laboratory synthesis	
			of amino acids	35
		2.1.5	Chirality and the specificities of human life	41
		Box 2	.2 Panspermia	42
		2.1.6	Another diagnostic for recognizing living matter	:
			isotopic ratios of carbon	47
	2.2	Defini	ition of life and how to look for it outside its usua	1
		environment		48
		2.2.1	Can we completely define life?	49
		2.2.2	Extreme conditions on Earth today	51
		2.2.3	Other possible forms of life	57

V

vi contents

	2.3	What is a habitable zone (a habitat)?		59	
		2.3.1 Classical concept of	the habitability zone	59	
		2.3.2 Extension of the hab	itable zone	64	
		2.3.3 Prebiotic chemistry		69	
	2.4	l life: from habitats to			
		civilizations		75	
		2.4.1 Could there be extra	terrestrial civilizations?	76	
		2.4.2 Searching for habitat	rs.	77	
		2.4.3 Searching with what	?	79	
3	Terrestrial planets and their diverging evolutions			85	
	3.1	Looking out from Mercury's desert			
	3.2	A past ocean on Venus?		87	
	Box 3.1 The sulfur cycle on Venus			90	
	3.3	Life on Mars? An old quest a	and a modern challenge	94	
		3.3.1 Schiaparelli's canali		95	
		3.3.2 The Viking mission,	or the search for life	97	
		3.3.3 'Follow the water!'		99	
		Box 3.2 Methane on Mars	?	106	
		3.3.4 The mystery of ALH	84001	107	
		Box 3.3 Details of the mys	tery of ALH84001	109	
	3.4	Between Venus and Mars, the Earth		110	
	3.5	Water on Earth: where did it come from?			
	3.6	Earth's companion, the Moon			
	3.7	Between terrestrial and giant planets, the asteroids		116	
4	Searching for habitable sites in the outer Solar System			121	
	4.1	The outer Solar System: a huge reservoir of frozen water			
	4.2 Jupiter's satellites			130	
		4.2.1 Europa		135	
		4.2.2 Ganymede		139	
		4.2.3 Future exploration of	f Jovian satellites	141	
	4.3	4.3 Saturn's satellites		144	
		4.3.1 Titan: organic factor	v and habitat	146	

CONTENTS vii

		4.3.2	Enceladus: water pockets far from the Sun	162		
		4.3.3	Future exploration of Kronian satellites	164		
	4.4	Comets				
		4.4.1	Comets: back to the origins	168		
		4.4.2	Origin of comets: two distinct reservoirs	170		
		4.4.3	What are comets made of?	172		
		4.4.4	Isotopic ratios and ortho/para ratios	176		
		4.4.5	Comets and the origin of life	179		
	4.5	At the	orbit of Neptune and beyond	180		
		4.5.1	Cryovolcanic Triton	181		
		4.5.2	Trans-Neptunian objects	184		
5	A revolution in astronomy: the exploration					
	of e		lar planets	187		
	5.1	From o	dream to reality	187		
		5.1.1	The key to success: velocimetry	188		
		Box 5.	1 The velocimetry (or radial velocity) technique	189		
		5.1.2	Giant exoplanets close to their stars	194		
		5.1.3	Formation and migration in planetary systems	196		
		5.1.4	How to detect exoplanets from planetary transits	199		
		Box 5.	2 The method of planetary transits	200		
		5.1.5	Gravitational microlensing	206		
		5.1.6	Indirect methods: what do they tell us?	207		
		5.1.7	Imaging exoplanets at last	209		
		Box 5.	3 The radiation of stars and planets	210		
		5.1.8	Detecting exoplanets through their radio emission	213		
	5.2	The ex	xoplanetary zoo	215		
		Box 5.4 The metallicity of the stars		215		
		5.2.1	The brown dwarf desert	216		
		5.2.2	Exoplanets close to their stars	218		
		5.2.3	Exoplanets on eccentric orbits	218		
		5.2.4	Many exotic objects	219		
		5.2.5	A large number of multiple systems	220		
		5.2.6	Planets around multiple stars	222		

viii contents

	5.2.7	Which candidates are most likely to be habitable?	222
5.3	From	detection to characterization	227
	5.3.1	Primary transits	228
	5.3.2	Secondary transits	230
	5.3.3	How to search for life in exoplanetary atmospheres	232
Ext	traterre	estrial habitable sites in the future	235
6.1	Future	e exploration of possible habitats	235
	6.1.1	Exploring the Solar System remotely and in situ	235
	6.1.2	Exploring exoplanets from the habitability point	
		of view	238
6.2	Protec	cting possible habitats	241
	6.2.1	International treaties and organizations with	
		relevance to planetary protection	241
	6.2.2	Requirements for protecting life on other bodies	242
6.3	Fate o	of the Solar System and evolution of the habitability	
	zone		245
6.4	Huma	ans in space	247
	6.4.1	Manned exploration: should we privilege it?	249
	6.4.2	International Space Station: taking humans into	
		space	250
	6.4.3	Space cities	254
6.5 Transforming ('terraforming') possible habitats		forming ('terraforming') possible habitats	260
	6.5.1	Runaway greenhouse scenarios for terraforming	
		Mars	262
	6.5.2	Terraforming in the outer Solar System: icy	
		satellites and asteroids	265
6.6	Hello	to other lifeforms?	269
6.7	Concl	lusions from a planetologist's point of view	272
Fui	ther red	ading	275
Inc	Index		

Colour plates section can be found between pages 150 and 151.

Preface

Life in space, whether strange beings on distant worlds, or an expansion of our own species into the Solar System and beyond, is a very exciting idea. Humankind may currently stand on the verge of major discoveries and exciting progress in both areas. The discoveries of possibly life-related artefacts in a Martian meteorite, in a subsurface ocean on Europa, Titan or Enceladus, and in the atmospheres of extrasolar planets, for example, show how close we are to finding out at last whether the life that teems on our own planet is unique. Some increasingly sophisticated space missions are currently under way, such as Cassini, which has been exploring the Saturnian system and Titan, the Earth-like moon, since 2004; others are in preparation, such as the Mars Sample Return and the Jupiter Icy Moons Explorer missions. Plans to return to Venus, Mars, the Moon and Titan, to orbit Europa and to place giant planet-seeking telescopes in space are thus on the table. These and other advances promise rapid progress in the coming years.

This is a book that deals with possible habitats in our Solar System and beyond. We will define which places might be harbouring past, present or future life, or can be considered as 'habitable' in the sense that human life could survive, adapt or continue to evolve therein. The book will include a necessarily brief but pertinent definition of life as we know it on Earth and review it as a phenomenon, considering its origins, properties and potential; we will combine a discussion of present knowledge with informed speculation, bounded by scientific realism but using non-technical language. We will briefly review the origin of life in the Universe, the reasons for thinking it may be unique and reasons, in contrast, for believing it could be commonplace. We will also offer some thoughts on its destiny and

ix

X PREFACE

on scientific discoveries yet to be made in areas we can barely apprehend at present. The main goal is to update the reader on the current situation in our Solar System and beyond, in terms of exploration for traces of past or present life and of the existence of conditions for habitable worlds. We also aim to provide and provoke thoughts about our distant horizons in this respect.

The format of the book is such as to address a large audience (lay persons, students and others). The purpose is not to give an exhaustive description from the biological, geological or philosophical point of view, but rather to excite the imagination of the reader, by including up-to-date illustrations and clear, relevant and accurate text that only astrophysicists can provide on recent discoveries and future projects. As astronomers, we will offer a personal, inside view of space exploration, using our own knowledge and interests to describe the most interesting places outside Earth, as well as the vanguard techniques that we use to investigate them. We would like to thank here all of our colleagues (experts in various fields of astronomy) who assisted us with information, discussions and re-reading, and the artists who gracefully provided us with figures and photographs.