
Cambridge University Press & Assessment
978-1-107-02615-5 — Acta Numerica 2012
Edited by Arieh Iserles
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Acta Numerica (2012), pp. 1–87 c� Cambridge University Press, 2012

doi:10.1017/S0962492912000025 Printed in the United Kingdom

The heterogeneous multiscale method7

Assyr Abdulle

ANMC, Mathematics Section,

École Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland

E-mail: assyr.abdulle@epfl.ch

Weinan E

Beijing International Center for Mathematical Research,

Peking University,

Beijing, China

and

Department of Mathematics and PACM,

Princeton University,

Princeton, USA

E-mail: weinan@math.princeton.edu

Björn Engquist

Department of Mathematics,

University of Texas,

Austin, USA

E-mail: engquist@ices.utexas.edu

Eric Vanden-Eijnden

Courant Institute of Mathematical Sciences,

New York University,

New York, USA

E-mail: eve2@cims.nyu.edu

The heterogeneous multiscale method (HMM), a general framework for de-
signing multiscale algorithms, is reviewed. Emphasis is given to the error
analysis that comes naturally with the framework. Examples of finite ele-
ment and finite difference HMM are presented. Applications to dynamical
systems and stochastic simulation algorithms with multiple time scales, spall
fracture and heat conduction in microprocessors are discussed.

∗ Colour online for monochrome figures available at journals.cambridge.org/anu.

www.cambridge.org/9781107026155
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-02615-5 — Acta Numerica 2012
Edited by Arieh Iserles
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 A. Abdulle, Weinan E, B. Engquist and E. Vanden-Eijnden

CONTENTS

1 Introduction 2
2 The HMM framework 4
3 ODEs and dynamical systems 16
4 Finite element HMM 37
5 Finite volume methods 67
6 Conclusion 78
References 80

1. Introduction

The heterogeneous multiscale method (HMM) is a general framework for
designing multiscale algorithms for a wide variety of applications (E and
Engquist 2002, E and Engquist 2003, E et al. 2007a). The word ‘hetero-
geneous’ was used in order to emphasize the fact that the algorithm may
involve macro and micro models of very different natures: for example, the
micro model may come from molecular dynamics and the macro model may
come from continuum theory. In fact, at a very rough level, HMM can be
thought of as a way of blending together models of very heterogeneous types.

Most problems that we encounter in nature have a multiscale character.
The multiscale character can occur in a variety of ways. Take, for example,
problems from materials science, where many properties, such as conductiv-
ity, have a multiscale nature. This is the case for composites. It could also
be that the material can be viewed at different levels of detail: as a continu-
ous medium, in which case one naturally applies the principles of continuum
mechanics, or at the atomic scale, in which case one naturally applies var-
ious atomistic models of molecular dynamics or quantum mechanics. Each
viewpoint has its merits and drawbacks. Continuum models are quite effi-
cient but sometimes their accuracy is inadequate, particularly when defects
are involved. Atomic models are typically more accurate, but much less effi-
cient. This situation is not limited to materials science but is quite common
in most areas of science and engineering. One of the main motivations for
multiscale modelling is to develop models that have accuracy close to that
of microscopic models and efficiency close to that of macroscopic models.

From the viewpoint of numerical algorithms, we are interested in extract-
ing useful information from the microscopic model, which in principle has the
required accuracy. If we use the traditional viewpoint, then we would have
to solve the microscopic model in full detail, which is practically impossible
for engineering applications. In terms of computational complexity, the best
one can do with such an approach is to have linear scaling algorithms: the
complexity scales as the number of microscopic degrees of freedom. How-
ever, in many cases, we are not interested in the full microscopic solution or
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we cannot afford the cost of computing it. Instead, we are only interested in
the behaviour of some macroscopic variables, or the microscopic behaviour
in very small parts of the system, for example near defects. The question
is: Can we develop much more efficient algorithms, such as sublinear scal-
ing algorithms, that would give us such information? To develop these new
types of algorithms, we have to compress not only the operators, as has been
done in multigrid methods, but also the variables. We have to be content
with getting information about only a subset of the system variables. These
types of algorithms cannot be completely general: one has to explore special
features of the problem in order to construct such algorithms.

From the viewpoint of analysis, many analytical techniques have been
developed in order to derive simplified models. Examples include averag-
ing methods, homogenization methods, matched asymptotics, WKB meth-
ods, geometric optics approximations, and renormalization group methods
(E 2011). The principles of such techniques are quite general, but in practice
they only give us explicit analytical models in very limited situations. In
other situations, it is natural to ask whether one can devise efficient compu-
tational techniques based on these principles. This is the case that we are
interested in, and it was one of the main motivations for developing HMM.

This was the background against which HMM was proposed. Of course,
prior to HMM, there were already many techniques of a similar spirit in
many different fields. Well-known examples include:

" Car–Parrinello molecular dynamics, in which electronic structure mod-
els are used together with molecular dynamics to predict the dynamics
of nuclei (Car and Parrinello 1985),

" the quasicontinuum method, in which atomistic models are used to
analyse the mechanical deformation of crystalline solids (Tadmor, Ortiz
and Phillips 1996),

" superparametrization models, in which cloud-resolving models are used
to capture large-scale tropical dynamics of the atmosphere (Grabow-
ski 2001, Xing, Grabowski and Majda 2009).

HMM was proposed as a general framework that can be used for a variety of
problems. It was not the only attempt. Other notable examples include the
extended multigrid method and the equation-free approach (Brandt 2002,
Kevrekidis et al. 2003). A common theme of these approaches is that the
microscopic models are used throughout the computational process. These
should be contrasted with techniques such as model reduction methods,
wavelet-based homogenization and variational multiscale methods, in which
the microscale model is only used at the beginning of the computation to
obtain compressed effective operators.

In spite of competing efforts, HMM was the only general attempt based
on a top-down philosophy, which at the time was not the most popular
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viewpoint. In fact, in the early days of multiscale modelling, most efforts
were devoted to a bottom-up approach, seeking strategies that would give us
the information needed by working only with the microscale model, without
any prior information about the system at the macroscale. This certainly
sounds very attractive, and may at first sight seem the only correct approach.
In one way, a key insight of HMM was the recognition that the bottom-up
approach is bound to have technical difficulties, and will for some time be
limited to rather simple applications. One can appreciate such difficulties
by noticing the fact that, even if the effective macroscale model is explic-
itly available, designing stable and accurate numerical algorithms for such
macroscale models is still a non-trivial task. Important constraints, such
as conservation properties or upwinding, have to be implemented in order
to guarantee that the algorithms give rise to the correct numerical solu-
tions. Implementing such constraints at the level of microscale models, in
the absence of any explicit knowledge about the macroscale model, seems
to be next to impossible. Therefore compromises are necessary: for many
problems we have to guess the form of the macroscale model to start from.
Fortunately, in many cases we do have some prior knowledge of the macro-
scale behaviour of the system under consideration, and this knowledge is
often sufficient for us to make an adequate guess.

Since multiscale modelling is a vast subject, touching almost all aspects of
modelling, we will not be able to do justice to all the work that has been done
on this subject. Instead we will focus on HMM. For a general introduction
to multiscale modelling, we refer to the monograph by E (2011).

2. The HMM framework

2.1. The main components of HMM

We will use U to describe the set of macroscopic variables, and u the set of
microscopic variables. They are related by

U = Q(u), (2.1)

where Q is called the compression operator. Any operator that reconstructs
u from U is called a reconstruction operator:

u = R(U). (2.2)

For consistency, Q and R should satisfy the relation

Q(R(U)) = U. (2.3)

In HMM, we assume that we have an incomplete macroscale model to
begin with:

F (U,D) = 0. (2.4)

www.cambridge.org/9781107026155
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-02615-5 — Acta Numerica 2012
Edited by Arieh Iserles
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

The heterogeneous multiscale method 5

reco
n
stru

ctio
n co

m
p
re

ss
io

n

co
n
strain

ts

d
at

a 
es

ti
m

at
io

n

U

u f(u, d) = 0

F (U,D) = 0

Figure 2.1. Schematics of the HMM framework.

Here D represents the missing part of the model. For example, if this is a
model in continuum mechanics, then D might be the constitutive relation
for the stress. If it is a model for molecular dynamics, then D might be
the inter-atomic forces. If it is a model for heat conduction in composite
materials, then D might be the macroscale effective conductivity tensor.

HMM proceeds by estimating the missing data on the fly using the micro-
scale model, at each location where some missing data is needed. To do
this, the microscale model has to be constrained so that its macrostate is
the same as the macrostate we are interested in, that is,

f(u, d(U)) = 0. (2.5)

Here d(U) represents the constraint for the microscale model. For example,
if the microscale model is the canonical ensemble of molecular dynamics, d
might be the average density, momentum and energy.

If we use H and h to denote the macro and micro numerical parameters,
such as mesh size, one can write HMM abstractly in the following form:

FH(UH , DH(uh)) = 0,

fh(uh, dh(UH)) = 0.
(2.6)

In practical terms, the basic components of HMM are as follows.

1 A macroscopic solver. Based on knowledge of the macroscale behaviour
of the system, we make an assumption about the form of the macroscale
model, for which we select a suitable macroscale solver. For example, if
we are dealing with a variational problem, we may use a finite element
method as the macroscale solver.

2 A procedure for estimating the missing macroscale data D using the

microscale model. This is typically done in two steps.

(a) Constrained microscale simulation. At each point where macroscale
data are needed, perform a series of microscopic simulations which
are constrained so that they are consistent with the local value of
the macro variable.
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(b) Data processing. Use the results from the microscopic simulations to
extract the macroscale data needed in the macroscale solver.

For dynamical problems, we can state the HMM procedure formally as
follows. At each macro time step:

1 Given the current state of the macro variables Un, re-initialize the micro
variables:

un,0 = RUn. (2.7)

2 Evolve the micro variables for some micro time steps:

un,m+1 = Sδt(u
n,m;Un), m = 0, . . . ,M 2 1. (2.8)

3 Estimate D:

Dn = DM (un,0, un,1, . . . , un,M ). (2.9)

4 Evolve the macro variables for one macro time step using the macro
solver:

Un+1 = S∆t(U
n;Dn). (2.10)

Here R is some reconstruction operator which plays the same role as the
interpolation or prolongation operators in the multigrid method; Sδt is the
micro solver, which also depends on Un through the constraints, as indi-
cated; and DM is some data processing operator, which in general involves
spatial/temporal/ensemble averaging. This is sometimes referred to as the
data estimator. Finally, S∆t is the macro solver.

For static problems, the procedure is very similar, particularly in the
context of iterative algorithms: we simply replace macro time step by macro
iteration step.

For dynamic problems, there are two important time scales that we need
to consider. The first, denoted by tM , is the time scale for the dynamics of
the macro variables. The second, denoted by τε, is the relaxation time for
the microscopic model. We will need to distinguish between two different
cases. The first is when the two time scales are comparable, that is, τε > tM .
In this case, from the viewpoint of numerical efficiency, there is not much
room to play with as far as time scales are concerned. We just have to evolve
the microscale model along with the macroscale model. The second case is
when τε " tM . This is the case we will focus on. The general guideline in
this case is as follows.

1 Choose ∆t to accurately resolve the tM time scale.

2 Choose M so that Mδt covers the τε time scale sufficiently to allow
equilibration to take place in the micro model.
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2.2. Simple examples

Examples of this set-up include the following.

" ODEs with disparate time scales, where U is a complete set of slow
variables and u is the full set of variables. In this case, the macroscale
model could just be an ODE system for U , and the missing data could
just be the force. If we know that the macroscale system has additional
structure, then we can take that into account when selecting the macro
solver. For example, if the macroscale system is a Hamiltonian system,
then we can use a symplectic integrator as the macro solver.

" Elliptic equations with multiscale coefficients, such as those arising in
the modelling of the behaviour of composite materials, where U is the
averaged displacement field and u is the microscale displacement field.
In this case, the macroscale model is still an elliptic equation, and the
missing data could be the coefficients in the macroscale model. If we
use the finite element method as the macro solver, then the missing
data could just be the stiffness matrix, which has to be evaluated with
the help of the full microscale model.

" Molecular dynamics models of complex fluids such as polymer fluids.
Here U is the set of hydrodynamic variables, which in the simplest case
would be the field of mass, momentum and energy densities, and u is
the set of microscopic variables, that is, the position and momentum of
all of the participating particles in a molecular dynamics model. The
macroscale model might be the set of local conservation laws for U .
The missing data might be the fluxes in these conservation laws.

" Microscopic pore-scale models of the pressure distribution in a porous
medium. Here U is the macroscale pressure distribution and u is the
set of variables in the pore-scale model, which could be a network-based
model. The macroscale model is of Darcy law type. The missing data
are the coefficients in this model.

" Microscale models of the moving contact line. Here U is the set of
macroscopic variables (velocity and pressure fields, position of the in-
terface between the fluid phases), and u is the set of variables in the
microscopic description, say using molecular dynamics, of the contact
line region. The macroscale model might just be the standard model in
two-phase flows. The missing data might be the boundary conditions
at the contact line.

Example 1: Stiff ODEs. Consider

dx

dt
= f(x, y),

dy

dt
= 2

1

ε
(y 2 ϕ(x)).

(2.11)
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Here U = x, u = (x, y). The macroscale should of course be an ODE, which
can be written as

dx

dt
= F (x) = f(x, ϕ(x)). (2.12)

The missing data are implicitly given by F .
Let us choose the simplest solver for (2.12), the forward Euler method.

HMM would then proceed as follows.

1 Initialize the micro solver, e.g., yn,0 = yn−1,M .

2 Apply the micro solver for M micro steps:

yn,m+1 = yn,m 2
δt

ε
(yn,m 2 ϕ(xn)), (2.13)

for m = 0, 1, . . . ,M 2 1.

3 Estimate F (x):

Fn = f(xn, yn,m). (2.14)

4 Apply the macro solver:

xn+1 = xn +∆t Fn. (2.15)

Example 2: Stiff stochastic ODEs. Consider the stochastic ODE

dx

dt
= f(x, y),

dy

dt
= 2

1

ε
(y 2 ϕ(x)) +

�

2

ε
ẇ,

(2.16)

where ẇ(t) is standard white noise. Averaging theorems suggest that the
effective macroscale equation should again be an ODE:

dx

dt
= F (x). (2.17)

HMM with forward Euler as the macro solver proceeds as follows.

1 Initialize the micro solver, e.g., yn,0 = yn−1,M .

2 Apply the micro solver for M micro steps:

yn,m+1 = yn,m 2
δt

ε
(yn,m 2 ϕ(xn)) +

�

2δt

ε
ξn,m, (2.18)

for m = 0, 1, . . . ,M21. Here the {ξn,m} are independent normal random
variables with mean 0 and variance 1.

3 Estimate F (x):

Fn =
1

M

M
�

m=1

f(xn, yn,m). (2.19)
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4 Apply the macro solver:

xn+1 = xn +∆t Fn. (2.20)

Example 3: Elliptic PDEs with multiscale coefficients. Consider

2' · (aε(x)')uε(x) = f(x). (2.21)

Abstract homogenization theory tells us that the macroscale model should
be of the form

2' · (a0(x)')U(x) = f(x). (2.22)

The missing data are the coefficients a0(x). Naturally, for the macroscale
solver we choose standard finite element methods, for example the piecewise
linear finite element method over a coarse mesh. The data that need to
be estimated form the stiffness matrix for the finite element method. If
a0 = a0(x) were known, we would simply follow standard practice and use
numerical quadrature to compute the elements in the stiffness matrix. Since
a0 is not known, we set up a microscale simulation around each quadrature
point in order to estimate the function value needed at that quadrature
point. The details of this procedure will be discussed later.

Example 4: The parabolic homogenization problem. Consider

∂tu
ε = ∂x ·

�

a

�

x,
x

ε
, t

�

∂xu
ε

�

, (2.23)

where a(x, y, t) is a smooth function and is periodic in y, say with period 1.
The macroscale model is of the form

∂tU = ∂x ·D, (2.24)

D =

�

a

�

x,
x

ε
, t

�

∂xu
ε

�

, (2.25)

where �·� means taking spatial averages.
We will choose a finite volume method as the macro solver. Then D

needs to be evaluated at the cell boundaries (Abdulle and E 2003). We will
make the assumption that the flux D depends on the local values of U and
∂xU only. Consequently, for the micro model, we will impose the boundary
condition that uε(x, t) 2 Ax is periodic where A = ∂xU is evaluated at the
location of interest.

Denote the micro solver by

un+1 = Sδτ,δx(u
n;A). (2.26)

Assuming that we have the numerical approximation {Un
j } (where tn =

n∆t, Un
j > U(n∆t, j∆x)) at the nth macro time step, we obtain the numer-

ical approximation at the next macro time step via the following procedure.
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1 For each j, let An
j = (Un

j 2 Un
j−1)/∆x.

2 Re-initialize the micro solver, so u0j (x)2An
j x is periodic for each j.

3 Apply the micro solver M steps:

un,m+1

j = Sδτ,δx(u
n,m
j ;An

j ),

with m = 0, 1, . . . ,M 2 1.

4 Compute

Dn+1

j−1/2 =

�

a

�

x,
x

ε
, tn

�

∂xu
n,M
j

�

. (2.27)

5 Evolve the macrostate variables using

Un+1
j = Un

j +∆t
Dn+1

j+1/2 2Dn+1

j−1/2

∆x
. (2.28)

Example 5: Incompressible polymeric fluid flow. Let U be the mac-
roscale velocity field. The macroscale model should be of the form

ρ0(∂tU + (U · ')U) = ' · σ,

' · U = 0.

These are simply statements of the conservation of momentum and mass,
for a fluid of constant density ρ0. The missing data comprise the stress field
σ: D = σ.

Let us assume that the micro model is a molecular dynamics model for
the particles that make up the fluid:

mj
d2yj
dt2

= fj , j = 1, 2, . . . , N. (2.29)

Here mj , yj are, respectively, the mass and position of the jth particle and
fj is the force acting on the jth particle, and u is the set of variables in this
model.

Given that the macroscale model is in the form of an incompressible flow
equation, it is natural to select the projection method as the macro solver
(Chorin 1967). In the implementation of the projection method, we will
need the values of σ at appropriate grid points. These are the data that
need to be estimated. At this point, we have to make an assumption on
the functional dependence of σ; this enters in the constraints applied to the
microscale model. Let us assume that

σ = σ('U). (2.30)

We will constrain the molecular dynamics in such a way that the average
strain rate is given by the value of 'U at the relevant grid point. In general,
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