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1 Pulses on transmission lines

The term ‘transmission line’ is not uniquely defined and is usually taken to mean a

length of line joining a source to a termination. A simple example of such a

transmission line is shown in Figure 1.1.

This transmission line might consist of just two parallel wires or a coaxial

cable or something more unusual. Using ordinary equivalent circuit theory,

which has widespread use in both Electrical and Electronic Engineering,

a current of 1A flows in the whole circuit, the moment the switch is closed.

This is only true if every element in the circuit is considered to be a lumped

element. Now a lumped element is a circuit component in which a current is

instantaneously produced as soon as a voltage is applied. The battery and the

resistor may well have a small delay before any current appears, but in this

introductory chapter it will be assumed these effects can be neglected. However,

the 50m length of line cannot be described as a lumped element as it takes a

finite time for a voltage introduced at one end to propagate to the other. Only if

this time is much smaller than any other transient being considered can the

transmission line effects described in this chapter be neglected. In order to

analyse this propagation, a distributed circuit is needed which gives some

considerable insight into the performance of transmission lines. This circuit

approach is limited to the use of voltages and currents, which are inappropriate

for transmission lines like waveguides and optical fibres. In the later chapters,

two alternative descriptions of the lines will be given; one in terms of electro-

magnetic fields and the other in terms of photons. All three descriptions reveal

unique aspects of the propagation along transmission lines and together they

give a more complete picture.

50 m

10 Ω10 V

Figure 1.1 A simple transmission line 50 m long joining a 10 V source to a 10 Ω termination.
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The distributed circuit method applies to those transmission lines which have

two or more conductors. However, this chapter will discuss the simplest case of

just two conductors, which is the most common configuration. There are two

assumptions that are needed before a distributed circuit can be developed. The

first is that the conductors must be good conductors so that the voltage does not

vary around the cross-section of an individual line, or in other words, it is an equi-

potential surface. Secondly, the lines will be assumed to be free from losses so that

signals can travel down them without attenuation. In Chapter 6, the effects of

various types of losses on the operation of the lines will be introduced. Electrically,

there are only two things left to consider; they are the capacitance and the

inductance of the line. Since a transmission line normally is assumed to be

uniform, both of these quantities increase with length, so it is common practice

to define them for a one-metre length of line. They are then called the distributed

capacitance, C, and distributed inductance, L, and have the units of Fm�1 and

Hm�1 respectively.

In practice, these parameters can easily be measured using a one-metre

length of the line. If the far end is open-circuited, then the capacitance, C,

can be measured at the near end, with some corrections for the capacitance of

the open circuit. Similarly, if the far end is short-circuited, the inductance, L,

can also be measured, again with an appropriate correction for the inductance

of the short circuit. These measurements can be made over a wide range of

frequencies and, to get started on this basic description, these distributed

parameters will be assumed to be constant with frequency. In Chapter 6 the

variation of these parameters with frequency, called dispersion, will be dis-

cussed. So an equivalent circuit for a short length of line, Δx, is fairly simple

and is shown in Figure 1.2.

The short length of line is important because, as Δx ! 0, the two distributed

elements become effectively lumped elements again and so ordinary circuit equa-

tions can legitimately be applied. This sounds like a circular argument, but the

principle being applied is to do with the transit time of signals. If a length of line is

small enough, this transit time can be neglected and so ordinary circuit theory can

be used. In the electromagnetic field description, given in later chapters, this

somewhat circuitous argument is not required!

I1

LΔx
CΔxV1

I2

V2

Δx

Figure 1.2 An equivalent circuit of a small length, Δx, of loss-less transmission line.

4 Pulses on transmission lines
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1.1 Velocity and characteristic impedance

Imagine then a voltage source, V1, is connected to the left-hand side of a short

length of transmission line, as shown in Figure 1.2, which also causes a current,

I1, to flow as shown. As the signal travels down the short length, two changes

occur. Firstly, there is a voltage drop across the inductance and secondly, a

current loss through the capacitor. So at the right-hand side the voltage and

current become:

V2 ¼ V1 � LΔx
∂I
∂t

and I2 ¼ I1 � CΔx
∂V
∂t

, ð1:1Þ
where these are obtained from the usual circuit laws for capacitances and induct-

ances. These equations would be the same for an equivalent circuit with the

inductance on the right-hand side of the capacitance.

The equations can be rearranged as follows:

V2 � V1 ¼ ΔV ¼ �LΔx
∂I
∂t

and I2 � I1 ¼ ΔI ¼ �CΔx
∂V
∂t

,

ΔV
Δx

¼ �L
∂I
∂t

and
ΔI
Δx

¼ �C
∂V
∂t

, ð1:2Þ

and in the limit as Δx ! 0:

∂V
∂x

¼ �L
∂I
∂t

and
∂I
∂x

¼ �C
∂V
∂t

: ð1:3Þ

These are called the Telegraphists’ equations and are useful in linking the voltage

and current on a transmission line. However, since they are cross-linked in these

two variables, it is not possible directly to eliminate one or other of them to find a

solution. The normal route to a solution is to differentiate each of them with

respect to both time and distance:

∂2V
∂x2

¼ �L
∂2I
∂x∂t

and
∂2V
∂t∂x

¼ �L
∂2I
∂t2

,

∂2I
∂x2

¼ �C
∂2V
∂x∂t

and
∂2I
∂t∂x

¼ �C
∂2V
∂t2

: ð1:4Þ

Since the parameters of space and time are independent, the order of the differen-

tiation is not important. So eliminating the mixed differentials gives:

∂2V
∂x2

¼ LC
∂2V
∂t2

and
∂2I
∂x2

¼ CL
∂2I
∂t2

: ð1:5Þ

These equations are called wave equations because their solutions are waves. Both

the voltage and the current obey the same equation in this simple case. The

solutions of these wave equations are any functions of the variable:

t� x

v
, i:e: V ¼ f t� x

v

� �
and I ¼ g t� x

v

� �
, ð1:6Þ

51.1 Velocity and characteristic impedance
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where v is a constant.

Substituting the voltage function into the wave equations gives

1

v2
f 00 t� x

v

� �
¼ LCf 00 t� x

v

� �
:

So the constant, v, is given by:

v ¼ 1ffiffiffiffiffiffi
LC

p : ð1:7Þ

By examiningEquations (1.6) and taking theminus sign it canbe seen that any function

of t is delayed in the positive x direction. This function is called a forward wave and its

velocity is given by v in Equation (1.7). The positive sign is for waves moving in the

negative x direction and these are called backward or reflected waves. Now the link

between the voltage and the current waves is found by using the Telegraphists’

equations in (1.3). Substituting the functions given in Equation (1.6) gives

� 1

v
f 0 t� x

v

� �
¼ �Lg0 t� x

v

� �
and � 1

v
g0 t� x

v

� �
¼ �Cf 0 t� x

v

� �
:

Integrating both sides of the equations with respect to time gives

� 1

v
f t� x

v

� �
¼ �Lg t� x

v

� �
and � 1

v
g t� x

v

� �
¼ �Cf t� x

v

� �
: ð1:8Þ

Then using Equations (1.6) and (1.7) gives

V

I
¼ �

ffiffiffiffi
L

C

r

from both equations in (1.8).

The positive sign relates to the forward waves and the negative sign to the

reverse waves. This ratio of voltage to current has the units of ohms in this case

and is normally given the symbol Z0 and called the characteristic impedance of the

transmission line. By denoting a subscript plus to forward waves and a subscript

minus to reverse waves gives

Z0 ¼
ffiffiffiffi
L

C

r
¼ Vþ

Iþ
¼ � V�

I�
: ð1:9Þ

The negative sign in Equation (1.9) is because the wave is travelling in the reverse

direction.

1.2 Reflection coefficient

Thenext concept to consider is the reflection ofwaves. This is often causedby a sudden

change of impedance along a transmission line. The simplest case is a line terminated

with an impedance,ZL,whichwill cause reflections because the total voltage across the

impedance, VL, and the current through it, IL, is given by Ohm’s Law as

6 Pulses on transmission lines
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VL

IL
¼ ZL ¼ Vþ þ V�

Iþ þ I�
: ð1:10Þ

This assumes that ZL has small dimensions so that there is zero transit time

between the arrival of the wave and the appearance of a current in the impedance.

In other words it is subject to the normal circuit laws. The presence of the reflected

wave enables Ohm’s Law to be obeyed both at the termination and in the two

waves given in Equation (1.9). In the time domain, a termination may not always

be described as a simple impedance, ZL, whereas in the frequency domain it is

always possible. In many of the examples that follow, ZL is a pure resistance,

and so Equation (1.10) is valid for both domains. However, for the later examples,

1.9 onwards, more complex time domain expressions are developed.

A special case for Equation (1.10) is when:

ZL ¼ Z0: ð1:11Þ
Then ZL is called a matched termination and, since it is equal to the characteristic

impedance, no reflections occur. A useful measure of the amount of reflection is

the ratio, ρ, of the reflected to the incident voltage wave:

ρ ¼ V�
Vþ

¼ � I�
Iþ

: ð1:12Þ

In the third part of Equation (1.12) the negative sign is because of the negative sign

in Equation (1.9). So the current reflects in an equal and opposite way to the

voltage. Substituting Equation (1.12) into Equation (1.10) gives

ZL ¼ Vþ 1þ ρð Þ
Vþ
Z0

1� ρð Þ
or ρ ¼ ZL � Z0

ZL þ Z0
: ð1:13Þ

It is useful to realise the significance of ρ or, as it is commonly called, the reflection

coefficient. In the frequency domain, both ZL and Z0 can be complex, making the

reflection coefficient complex as well.

If we limit the discussion to real values of Z0 and values of ZL where the real part

is positive, then

jρj � 1 and � π � ∠ρ � π: ð1:14Þ
For example, some typical values are:

ZL=Z0 jρj ∠ρ

0 (short circuit) 1 ±π
∞ (open circuit) 1 0
1 (matched load) 0 indeterminate
ja (inductance) 1 π to 0

�jb (capacitance) 1 –π to 0
2 (resistance >Z0)

1
3 0

0.5 (resistance <Z0)
1
3 ±π

where a and b are constants.

71.2 Reflection coefficient
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Only when there is a resistive part to ZL does the amplitude of ρ go below unity.

When ZL is reactive the phase or argument of ρ can be as large as π, due to the

bilinear nature of Equation (1.13). So far in the discussion, the nature of the

voltage waveform has been left totally general. For instance, it could be a voltage

step, which would occur when a battery is connected, or it could be a sine wave, or

a pulse or some rarer wave like a bi-pulse. To illustrate these waveforms in the

time domain, a series of problems will now be briefly described, starting with only

resistive terminations and ending with more complex terminations. The next

chapter will discuss problems involving sinusoidal waves.

1.3 Step waves incident on resistive terminations

Example 1.1 A powerful ten-volt battery is suddenly connected to a 100 m long

transmission line. At the far end of the line is a short circuit. If the velocity of

propagation is 2.108 ms�1 and the characteristic impedance is 50Ω, find the

current in the short circuit after 5 μs, assuming the battery has zero internal

resistance. See Figure 1.3.

Solution to Example 1.1

This problem would have a simple solution in circuit theory, as the current would

instantaneously be infinite! However, in transmission line theory, this is not the

correct solution. Initially the battery sends a voltage step of amplitude 10V and

10 V Z0=50 Ω

100 m 

10V, 200 mA

–10V, 200 mA

10V, 200 mA

400 mA 

800 mA

1μs

10V, 200 mA

–10V, 200 mA

Figure 1.3 The circuit diagram and wave diagram for Example 1.1.

8 Pulses on transmission lines

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02600-1 - Transmission Lines: Equivalent Circuits, Electromagnetic Theory, and Photons
Richard Collier
Excerpt
More information

http://www.cambridge.org/9781107026001
http://www.cambridge.org
http://www.cambridge.org


current 200mA (see Equation (1.9)) which takes 0.5 μs to reach the short circuit.

Using Equations (1.12) and (1.13), this step is reflected so that reverse wave has a

voltage of –10V and a current of þ200mA. Thus the current in the short circuit

jumps up to a total of 400mA but with no overall voltage as the two waves

superimpose so as to cancel their voltages and add their currents. The reflected

wave returns after a similar reflection at the battery in 1.5 μs to add a further

400mA to the current in the short circuit. This is shown in the wave diagram in

Figure 1.3 where time is the coordinate vertically downwards. So just after 4.5 μs
the current will be 2A, as shown in Figure 1.4. Obviously the current will be

limited by several factors, for instance, if the maximum current that the battery

could supply was 40A, then this current would be reached in 100 μs.
The essential thing to notice from this problem is that the transmission line

limits the initial supply of current from the source and also that the step wave goes

back and forth, endlessly delivering increases in current until a limit is reached.

The battery supplies the original 200mA continuously and the current builds up

because of the wave motion, which keeps increasing the battery current in steps.

So a ‘long’ short circuit could prevent dangerous currents for a short period.

It is useful to note that the battery is effectively ‘seeing’ a changing resistive load

which reduces in value with time, as shown in Figure 1.5. If the line had been very long

the battery would have just supplied 200 mA to the line. However, the multiple

reflections in this example result in an increasing current being drawn from the battery.

Finally, the wave induces a positive current in one of the lines and a negative

current in the other line. Thus the battery is sending out a current from one of its
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Figure 1.4 The current in the short circuit against time for Example 1.1.
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terminals and receiving a current at the other, as the wave progresses. It is usually

easier to think of the upper wire in Figure 1.3 carrying the positive current of

200 mA and the lower or return wire a negative current of 200 mA.

Example 1.2 Using the same circuit as in Example 1.1, the switch is closed at t¼ 0

as before, but then opened at t¼ 5 μs. Find the current waveform in the short

circuit for the next 5 μs.

Solution to Example 1.2

This problem again would have a simple solution in circuit theory: the current

would be zero. However, the wave theory does not give that answer. When the

switch is opened, the wave is trapped in the circuit and cannot escape. When it

reflects from the switch, which is now effectively an open circuit, the total wave

goes on reflecting back and forth forever. In practice there will be some loss

mechanisms, which will reduce the wave amplitude eventually to zero, but in this

special case with no losses the circuit becomes a square wave oscillator. The

solution is easier to see if all the five waves are added together at the moment

the switch is opened. The total wave approaching the short circuit has an ampli-

tude of 50V and carries a current of 1A. The total wave departing from the short

circuit has an amplitude of –50V and also carries a current of 1A. These two
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Figure 1.5 The resistance ‘seen’ by the battery against time in Example 1.1.

10 Pulses on transmission lines

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02600-1 - Transmission Lines: Equivalent Circuits, Electromagnetic Theory, and Photons
Richard Collier
Excerpt
More information

http://www.cambridge.org/9781107026001
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107026001: 


