

QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS

Recent experimental advances in the control of quantum superconducting circuits, nanomechanical resonators and photonic crystals have meant that quantum measurement theory is now an indispensable part of the modeling and design of experimental technologies.

This book, aimed at graduate students and researchers in physics, gives a thorough introduction to the basic theory of quantum measurement and many of its important modern applications. Measurement and control is explicitly treated in superconducting circuits and optical and optomechanical systems, and methods for deriving the Hamiltonians of superconducting circuits are introduced in detail. Further applications covered include feedback control, metrology, open systems and thermal environments, Maxwell's demon, and the quantum-to-classical transition.

KURT JACOBS is an Associate Professor of Physics at the University of Massachusetts at Boston. He is a leading researcher in quantum measurement theory and feedback control, and applications in nano-electromechanical systems. He is author of the textbook *Stochastic Processes for Physicists: Understanding Noisy Systems* (Cambridge University Press, 2010).

QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS

KURT JACOBS

University of Massachusetts at Boston

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107025486

© Kurt Jacobs 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Jacobs, Kurt (Kurt Aaron), author.

Quantum measurement theory and its applications / Kurt Jacobs, University of Massachusetts at Boston.

pages cm

Includes bibliographical references and index. ISBN 978-1-107-02548-6 (hardback)

1. Quantum measure theory. I. Title. QC174.17.M4J33 2014

530.801-dc23 2014011297

ISBN 978-1-107-02548-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my mother, Sandra Jacobs, for many things. Not least for the Nelson Southern Link Decision, a great triumph unsung.

Contents

Pr	Preface			
1	Quantum measurement theory			
	1.1	Introduction and overview		1
	1.2	Classical measurement theory		4
		1.2.1	Understanding Bayes' theorem	6
		1.2.2	Multiple measurements and Gaussian distributions	9
		1.2.3	Prior states-of-knowledge and invariance	11
	1.3	Quantum measurement theory		15
		1.3.1	The measurement postulate	15
		1.3.2	Quantum states-of-knowledge: density matrices	15
		1.3.3	Quantum measurements	20
	1.4	Understanding quantum measurements		28
		1.4.1	Relationship to classical measurements	28
		1.4.2	Measurements of observables and resolving power	30
		1.4.3	A measurement of position	31
		1.4.4	The polar decomposition: bare measurements and feedback	34
	1.5	5 Describing measurements within unitary evolution		
	1.6	Inefficient measurements		
	1.7	Measurements on ensembles of states		
2	Useful concepts from information theory			
	2.1	Quant	ifying information	48
		2.1.1	The entropy	48
		2.1.2	The mutual information	53
	2.2	2.2 Quantifying uncertainty about a quantum system		55
		2.2.1	The von Neumann entropy	55
		2.2.2	Majorization and density matrices	58
		2.2.3	Ensembles corresponding to a density matrix	61
	2.3	Quantum measurements and information		63
		2.3.1	Information-theoretic properties	64
		2.3.2	Quantifying disturbance	72

viii	Contents				
	2.4	Distin	guishing quantum states	78	
	2.5		ty of quantum operations	82	
3	Continuous measurement				
	3.1	Continuous measurements with Gaussian noise			
	0.11	3.1.1	Classical continuous measurements	90 90	
		3.1.2	Gaussian quantum continuous measurements	96	
		3.1.3	When the SME is the classical Kalman–Bucy filter	104	
		3.1.4	The power spectrum of the measurement record	106	
	3.2	Solvin	ag for the evolution: the linear form of the SME	113	
		3.2.1	The dynamics of measurement: diffusion gradients	117	
		3.2.2	Quantum jumps	119	
		3.2.3	Distinguishing quantum from classical	122	
		3.2.4	Continuous measurements on ensembles of systems	123	
	3.3	Measu	rements that count events: detecting photons	125	
	3.4		dyning: from counting to Gaussian noise	133	
	3.5		nuous measurements with more exotic noise?	137	
	3.6	The H	eisenberg picture: inputs, outputs, and spectra	137	
	3.7		nberg-picture techniques for linear systems	145	
		3.7.1	Equations of motion for Gaussian states	145	
		3.7.2	Calculating the power spectrum of the measurement record	146	
	3.8	Param	eter estimation: the hybrid master equation	150	
		3.8.1	An example: distinguishing two quantum states	152	
4	Statistical mechanics, open systems, and measurement		echanics, open systems, and measurement	160	
	4.1		ical mechanics	161	
		4.1.1	Thermodynamic entropy and the Boltzmann distribution	161	
		4.1.2	Entropy and information: Landauer's erasure principle	171	
		4.1.3	Thermodynamics with measurements: Maxwell's demon	175	
	4.2 Thermalization I: the origin of irreversibility				
		4.2.1	A new insight: the Boltzmann distribution from typicality	182	
		4.2.2	Hamiltonian typicality	185	
	4.3	Therm	nalization II: useful models	188	
		4.3.1	Weak damping: the Redfield master equation	189	
		4.3.2	Redfield equation for time-dependent or interacting systems	201	
		4.3.3	Baths and continuous measurements	202	
		4.3.4	Wavefunction "Monte Carlo" simulation methods	205	
		4.3.5	Strong damping: master equations and beyond	211	
	4.4 The quantum-to-classical transition				
	4.5	4.5 Irreversibility and the quantum measurement problem		222	
5	Quantum feedback control				
	5.1	5.1 Introduction			
	5.2	Measurements versus coherent interactions			
	5.3	3 Explicit implementations of continuous-time feedback		239	

			Contents	ix
		5.3.1	Feedback via continuous measurements	239
		5.3.2	Coherent feedback via unitary interactions	242
		5.3.3	Coherent feedback via one-way fields	243
		5.3.4	Mixing one-way fields with unitary interactions:	
			a coherent version of Markovian feedback	247
	5.4	Feedb	ack control via continuous measurements	250
		5.4.1	Rapid purification protocols	250
		5.4.2	Control via measurement back-action	256
		5.4.3	Near-optimal feedback control for a single qubit?	260
		5.4.4	Summary	266
	5.5	Optimization		266
		5.5.1	Bellman's equation and the HJB equation	267
		5.5.2	Optimal control for linear quantum systems	282
		5.5.3	Optimal control for nonlinear quantum systems	290
6	Met	Metrology		
	6.1	Metro	logy of single quantities	304
		6.1.1	The Cramér–Rao bound	304
		6.1.2	Optimizing the Cramér–Rao bound	305
		6.1.3	Resources and limits to precision	307
		6.1.4	Adaptive measurements	309
	6.2 Metrology of signals		logy of signals	311
		6.2.1	Quantum-mechanics-free subsystems	312
		6.2.2	Oscillator-mediated force detection	314
7	Qua	uantum mesoscopic systems I: circuits and measurements		
	7.1			
		7.1.1	Procedure for obtaining the circuit Lagrangian (short method)	329
	7.2	Reson	ance and the rotating-wave approximation	330
	7.3			
	7.4			336
		7.4.1	The Josephson junction	336
		7.4.2	The Cooper-pair box and the transmon	340
		7.4.3	Coupling qubits to resonators	343
		7.4.4	The RF-SQUID and flux qubits	344
	7.5	Electromechanical systems		346
	7.6			351
	7.7	Measuring mesoscopic systems		354
		7.7.1	Amplifiers and continuous measurements	354
		7.7.2	Translating between experiment and theory	361
		7.7.3	Implementing a continuous measurement	361
		7.7.4	Quantum transducers and nonlinear measurements	370
8	Qua	ntum m	esoscopic systems II: measurement and control	383
	8.1	Open-	loop control	383

> Contents X 8.1.1 Fast state-swapping for oscillators 387 8.1.2 389 Preparing non-classical states 8.2 Measurement-based feedback control 396 8.2.1 Cooling using linear feedback control 397 8.2.2 404 Squeezing using linear feedback control 8.3 Coherent feedback control 408 8.3.1 The "resolved-sideband" cooling method 408 8.3.2 Resolved-sideband cooling via one-way fields 412 8.3.3 Optimal cooling and state-preparation 416 Appendix A The tensor product and partial trace 432 Appendix B A fast-track introduction for experimentalists 441 448 Appendix C A quick introduction to Ito calculus Appendix D Operators for qubits and modes 451 Appendix E Dictionary of measurements 456 458 Appendix F Input-output theory F.1 A mode of an optical or electrical cavity 458 F.2 The traveling-wave fields at x = 0: the input and output signals 462 F.3 The Heisenberg equations of motion for the system 463 F.4 A weakly damped oscillator 467 F.5 467 Sign conventions for input-output theory F.6 The quantum noise equations for the system: Ito calculus 468 F.7 469 Obtaining the Redfield master equation F.8 Spectrum of the measurement signal 470 475 *Appendix G Various formulae and techniques* The relationship between Hz and s^{-1} , and writing decay rates in Hz475 G.1G.2 Position representation of a pure Gaussian state 475 G.3476 The multivariate Gaussian distribution G.4*The rotating-wave approximation (RWA)* 476 G.5477 Suppression of off-resonant transitions G.6Recursion relations for time-independent perturbation theory 478 G.7479 Finding operator transformation, reordering, and splitting relations G.8The Haar measure 484 G.9General form of the Kushner–Stratonovich equation 485 G.10 Obtaining steady states for linear open systems 486 Appendix H Some proofs and derivations 490 H.1The Schumacher-Westmoreland-Wootters theorem 490 H.2The operator-sum representation for quantum evolution 492 H.3 Derivation of the Wiseman–Milburn Markovian feedback SME 494 498 References

Index

539

Preface

I would like to thank here a number of people to whom I am indebted in one way or another. To begin, there are five people from whose insights I especially benefited in my formative years in physics. In order of appearance: Sze M. Tan, for teaching me classical measurement theory, and introducing me to information theory and thermodynamics; Howard M. Wiseman, for teaching me about quantum measurement theory; Salman Habib, for teaching me about open systems and classical chaos; Tanmoy Bhattacharya, for enlightenment on a great variety of topics, and especially for the insight that measurement is driven by diffusion gradients; Gerard Jungman, for mathematical and physical insights, and for introducing me to many beautiful curiosities.

I am very grateful to a number of people who helped directly to make this book what it is: Os Vy, Luciano Silvestri, Benjamin Cruikshank, Alexandre Zagoskin, Gelo Tabia, Justin Finn, Josh Combes, Tauno Palomaki, Andreas Nunnenkamp, and Sai Vinjanampathy who read various chapters and provided valuable suggestions that improved the book. Xiaoting Wang who derived Eqs. (G.43)–(G.48). Jason Ralph who enlightened me on some superconductor facts that were strangely difficult to extract from the literature. Jason also helped me with the brief history of superconductivity and quantum superconducting circuits in Chapter 7. Justin Guttermuth who saved our asses when we had a house to move into, rooms to paint, a new baby, and I had this book to finish. My colleagues in the UMass Boston physics department for their support — especially Maxim Olchanyi, Bala Sundaram, Vanja Dunjco, and Steve Arnason. And last but not least, my wonderful wife Jacqueline, who helped me with the figures and the cover, and put up with the long hours this book required.

I apologize in advance for any errors and inadvertent omissions in this book. I would be most grateful to be notified of any errors that you may find. I will include corrections to all errors, as they are found, in an errata file on my website. I am very grateful to a number of readers who sent me corrections for my previous book, *Stochastic Processes for Physicists*, all of which have been made in the current printing. I was also able to acknowledge these readers in the current printing, which due to their efforts now appears to be largely error-free.

While I have endeavored to cite a fairly comprehensive and representative set of research papers on the topics I have covered in this text, it is likely that I have omitted some that

xii Preface

deserve to be included. If you discover that your important paper on topic X has been missed, please send me the reference and I will be glad to correct this omission in any further edition.

Finally, it is a pleasure to acknowledge an ARO MURI grant, W911NF-11-1-0268, that was led by Daniel Lidar and administered by Harry Chang. This grant provided partial support for a number of research projects during the writing of this book, and from which it greatly benefited.