Contents

Preface \hspace{1cm} page xiii
Foreword by Giulio Maier \hspace{1cm} xv

1 Introduction \hspace{1cm} 1
 1.1 Bifurcation and instability to explain pattern formation \hspace{1cm} 2
 1.2 Bifurcations in elasticity: The elastic cylinder \hspace{1cm} 6
 1.3 Bifurcations in elastoplasticity: The Shanley model \hspace{1cm} 8
 1.4 Shear bands and strain localization \hspace{1cm} 12
 1.5 Bifurcation, softening and size effect as the response of a structure \hspace{1cm} 17
 1.6 Chains with softening elements \hspace{1cm} 22
 1.7 Shear band saturation and multiple shear banding \hspace{1cm} 31
 1.8 Brittle and quasi-brittle materials \hspace{1cm} 33
 1.9 Coulomb friction and non-associative plasticity \hspace{1cm} 37
 1.10 Non-associative flow rule promotes material instabilities \hspace{1cm} 41
 1.11 A perturbative approach to material instability \hspace{1cm} 42
 1.12 A summary \hspace{1cm} 48
 1.13 Exercises, details and curiosities \hspace{1cm} 52
 1.13.1 Exercise: The Euler elastica and the double supported beam subject to compressive load \hspace{1cm} 52
 1.13.2 Exercise: Bifurcation of a structure subject to tensile dead load \hspace{1cm} 69
 1.13.3 Exercise: Degrees of freedom and number of critical loads of elastic structures \hspace{1cm} 70
 1.13.4 Exercise: A structure with a trivial configuration unstable at a certain load, returning stable at higher load \hspace{1cm} 73
 1.13.5 Exercise: Flutter and divergence instability in an elastic structure induced by Coulomb friction \hspace{1cm} 80

2 Elements of tensor algebra and analysis \hspace{1cm} 91
 2.1 Components onto an orthonormal basis \hspace{1cm} 92
 2.2 Dyads \hspace{1cm} 93
 2.3 Second-order tensors \hspace{1cm} 95
 2.4 Rotation tensors \hspace{1cm} 98
Contents

2.5 Positive definite second-order tensors, eigenvalues and eigenvectors 99
2.6 Reciprocal bases: Covariant and contravariant components 101
2.7 Spectral representation theorem 102
2.8 Square root of a tensor 103
2.9 Polar decomposition theorem 104
2.10 On coaxiality between second-order tensors 104
2.11 Fourth-order tensors 105
2.12 On the metric induced by semi–positive definite tensors 106
2.13 The Macaulay bracket operator 107
2.14 Differential calculus for tensors 107
2.15 Gradient 108
2.16 Divergence 110
2.17 Cylindrical coordinates 111
2.18 Divergence theorem 113
2.19 Convexity and quasi-convexity 114
2.20 Examples and details 116
 2.20.1 Example: Jordan normal form of a defective tensor with a double eigenvalue 116
 2.20.2 Example: Jordan normal form of a defective tensor with a triple eigenvalue 117
 2.20.3 Example: Inverse of the acoustic tensor of isotropic elasticity 117
 2.20.4 Example: Inverse of the acoustic tensor for a particular class of anisotropic elasticity 118
 2.20.5 Example: A representation for the square root of a tensor 118
 2.20.6 Proof of a property of the scalar product between two symmetric tensors 119
 2.20.7 Example: Inverse and positive definiteness of the fourth-order tensor defining linear isotropic elasticity 120
 2.20.8 Example: Inverse and positive definiteness of a fourth-order tensor defining a special anisotropic linear elasticity 121
 2.20.9 Example: Inverse of the elastoplastic fourth-order tangent tensor 121
 2.20.10 Example: Spectral representation of the elastoplastic fourth-order tangent tensor 122
 2.20.11 Example: Strict convexity of the strain energy defining linear isotropic elasticity 124

3 Solid mechanics at finite strains 125
 3.1 Kinematics 125
 3.1.1 Transformation of oriented line elements 127
 3.1.2 Transformation of oriented area elements 129
 3.1.3 Transformation of volume elements 129
Contents

3.1.4 Angular changes 130
3.1.5 Measures of strain 131

3.2 On material and spatial strain measures 135
3.2.1 Rigid-body rotation of the reference configuration 135
3.2.2 Rigid-body rotation of the current configuration 136

3.3 Motion of a deformable body 137
3.4 Mass conservation 141
3.5 Stress, dynamic forces 142
3.6 Power expended and work-conjugate stress/strain measures 146
3.7 Changes of fields for a superimposed rigid-body motion 150

4 Isotropic non-linear hyperelasticity 152
4.1 Isotropic compressible hyperelastic material 153
4.1.1 Kirchhoff–Saint Venant material 154
4.2 Incompressible isotropic elasticity 155
4.2.1 Mooney-Rivlin elasticity 156
4.2.2 Neo-Hookean elasticity 158
4.2.3 J^2-Deformation theory of plasticity 158
4.2.4 The GBG model 159

5 Solutions of simple problems in finitely deformed non-linear elastic solids 162
5.1 Uniaxial plane strain tension and compression of an incompressible elastic block 162
5.2 Uniaxial plane strain tension and compression of Kirchhoff–Saint Venant material 168
5.3 Uniaxial tension and compression of an incompressible elastic cylinder 170
5.4 Simple shear of an elastic block 173
5.5 Finite bending of an incompressible elastic block 179

6 Constitutive equations and anisotropic elasticity 188
6.1 Constitutive equations: General concepts 188
6.1.1 Change in observer and related principle of invariance of material response 189
6.1.2 Indifference with respect to rigid-body rotation of the reference configuration 192
6.1.3 Material symmetries 195
6.1.4 Cauchy elasticity 198
6.1.5 Green elastic or hyperelastic materials 201
6.1.6 Incompressible hyperelasticity and constrained materials 203
6.2 Rate and incremental elastic constitutive equations 207
6.2.1 Elastic laws in incremental and rate form 207
6.2.2 Relative Lagrangean description 210
6.2.3 Hypoelasticity 220
Contents

7 Yield functions with emphasis on pressure sensitivity 223
 7.1 The Haigh-Westergaard representation 225
 7.2 The BP yield function 229
 7.2.1 Smoothness of the BP yield surface 233
 7.3 Reduction of the BP yield criterion to known cases 234
 7.3.1 Drucker-Prager and von Mises yield criteria 236
 7.3.2 A comparison of the BP yield criterion with experimental results 239
 7.4 Convexity of yield function and yield surface 241
 7.4.1 A general convexity result for a class of yield functions 242
 7.4.2 Convexity of the BP yield function 246
 7.4.3 Generating convex yield functions 247

8 Elastoplastic constitutive equations 251
 8.1 The theory of elastoplasticity at small strain 251
 8.2 The essential structure of rate elastoplastic constitutive equations at large strain 257
 8.2.1 The small strain theory recovered 264
 8.2.2 A theory of elastoplasticity based on multiplicative decomposition of the deformation gradient 265
 8.2.3 A simple constitutive model for granular materials evidencing flutter instability 267
 8.2.4 Elastoplastic coupling in the modelling of granular materials and geomaterials 268
 8.3 A summary on rate constitutive equations 273

9 Moving discontinuities and boundary value problems 275
 9.1 Moving discontinuities in solids 275
 9.1.1 Local jump conditions for propagating discontinuity surfaces 276
 9.1.2 Balance equations for regions containing a moving discontinuity surface 280
 9.2 Boundary value problems in finite, rate and incremental forms 285
 9.2.1 Quasi-static first-order rate problems 287
 9.2.2 Incremental non-linear elasticity 289

10 Global conditions of uniqueness and stability 293
 10.1 Uniqueness of the rate problem 298
 10.1.1 Raniecki comparison solids 299
 10.1.2 Associative elastoplasticity 300
 10.1.3 ‘In-loading comparison solid’ 302
 10.2 Stability in the Hill sense 303
 10.2.1 Associative elastoplasticity 304
 10.2.2 Stability of a quasi-static deformation process 305
 10.2.3 An example: Elastoplastic column buckling 306
Contents

11 Local conditions for uniqueness and stability

11.1 A local sufficient condition for uniqueness: Positive definiteness of the constitutive operator 311
 11.1.1 Uniaxial tension 313
 11.1.2 The small strain theory 316
11.2 Singularity of the constitutive operator 317
 11.2.1 Uniaxial tension 318
 11.2.2 The small strain theory 319
11.3 Strong ellipticity 319
 11.3.1 The small strain theory 323
11.4 Ellipticity, strain localisation and shear bands 323
 11.4.1 The small strain theory 326
11.5 Flutter instability 331
 11.5.1 Onset of flutter 331
 11.5.2 Flutter instability for small strain elastoplasticity with isotropic elasticity 332
 11.5.3 Physical meaning and consequences of flutter 335
11.6 Other types of local criteria and instabilities 335
11.7 A summary on local and global uniqueness and stability criteria 336

12 Incremental bifurcation of elastic solids

12.1 The bifurcation problem 339
12.2 Bifurcations of incompressible elastic solids deformed in plane strain
 12.2.1 Local uniqueness and stability criteria for Biot plane strain and incompressible elasticity 340
 12.2.2 Bifurcations of layered structures: General solution 351
 12.2.3 Surface bifurcation 353
 12.2.4 Interfacial bifurcations 355
 12.2.5 Bifurcations of an elastic incompressible block 358
 12.2.6 Incompressible elastic block on a ‘spring foundation’ 361
 12.2.7 Multi-layered elastic structures 363
12.3 Bifurcations of an incompressible elastic cylinder 365
 12.3.1 Numerical results for bifurcations of an elastic cylinder subject to axial compression 370
12.4 Bifurcation under plane strain bending 375

13 Applications of local and global uniqueness and stability criteria to non-associative elastoplasticity

13.1 Local uniqueness and stability criteria for non-associative elastoplasticity at small strain 385
13.2 Axi-symmetric bifurcations of an elastoplastic cylinder under uniaxial stress
 13.2.1 Results for the axi-symmetric bifurcations of a cylinder 391
13.3 Flutter instability for a finite-strain plasticity model with anisotropic elasticity 396
xii

Contents

13.3.1 Examples of flutter instability for plane problems 396
13.3.2 Spectral analysis of the acoustic tensor 400

14 Wave propagation, stability and bifurcation 403
 14.1 Incremental waves and bifurcation 405
 14.2 Incremental plane waves 407
 14.2.1 Non-linear elastic materials 407
 14.3 Waves and material instabilities in elastoplasticity 409
 14.3.1 Instability of uniform flow 413
 14.3.2 A discussion on waves and instability in elastoplasticity 419
 14.4 Acceleration waves
 14.4.1 Non-linear elastic material deformed incrementally 420
 14.4.2 Elastoplastic materials 420

15 Post-critical behaviour and multiple shear band formation 427
 15.1 One-dimensional elastic models with non-convex energy 428
 15.2 Two-dimensional elastoplastic modelling of post-shear banding 434
 15.2.1 Post-shear banding analysis 436
 15.2.2 Sharp shear banding versus saturation 439
 15.2.3 Post-band saturation analysis 439

16 A perturbative approach to material instability 444
 16.1 Infinite-body Green’s function for a pre-stressed material 447
 16.1.1 Quasi-static Green’s function 447
 16.1.2 The dynamic time-harmonic Green’s function for general non-symmetric constitutive equations 457
 16.1.3 Effects of flutter instability revealed by a pulsating perturbing dipole 464
 16.2 Finite-length crack in a pre-stressed material 469
 16.2.1 Finite-length crack parallel to an orthotropy axis 471
 16.2.2 The inclined crack 480
 16.2.3 Shear bands interacting with a finite-length crack 482
 16.2.4 Incremental energy release rate for crack growth 486
 16.3 Mode I perturbation of a stiffener in an infinite non-linear elastic material subjected to finite simple shear deformation 489
 16.4 The stress state near a shear band and its propagation 498

References 507
Index 527

Color plates section is between pages 274 and 275