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A brief review of quantum mechanics

Come forth into the light of things,
Let nature be your teacher.

–William Wordsworth,
The Tables Turned

The main focus of this book is many-particle systems such as electrons in a crystal.
Such systems are studied within the framework of quantum mechanics, with which
the reader is assumed to be familiar. Nevertheless, a brief review of this subject will
provide an opportunity to establish notation and collect results that will be used
later on.

1.1 The postulates

Quantum mechanics is based on five postulates, listed below with some explanatory
comments.

(I) The quantum state

The quantum state of a particle, at time t , is described by a continuous, single-
valued, square-integrable wave function �(r, t), where r is the position of the
particle. In Dirac notation, the state is represented by a state vector, or ket, |�(t)〉,
which is an element of a vector space V. We define a dual vector space V∗ whose
elements, called bras, are in one-to-one correspondence with the elements of V: ket
|α〉 ∈ V ↔ bra 〈α| ∈ V∗, as illustrated in Figure 1.1. The bra corresponding to ket
c |α〉 is c∗ 〈α|, where c∗ is the complex conjugate of c. The inner product of kets
|α〉 and |β〉 is denoted by 〈β|α〉, and it is a complex number (c-number). Note that
the inner product is obtained by combining a bra and a ket. By definition, 〈β|α〉 =
〈α|β〉∗. The state vectors |�(t)〉 and c |�(t)〉, where c is any nonzero complex
number (c ∈ C− {0}), describe the same physical state; because of that, the state
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2 A brief review of quantum mechanics

V V*

Figure 1.1 Vector space V of kets and the corresponding dual space V∗ of bras.
A one-to-one correspondence exists between kets and bras.

Figure 1.2 The probability of finding the particle, at time t , in the cube of volume
d3r , centered on r, is |�(r, t)|2d3r .

is usually taken to be normalized to unity: 〈�(t)|�(t)〉 = 1. The normalized wave
function has a probabilistic interpretation: �(r, t) is the probability amplitude
of finding the particle at position r at time t ; this means that |�(r, t)|2d3r is the
probability of finding the particle, at time t , in the infinitesimal volume d3r centered
on point r (see Figure 1.2).

Note that the description of a quantum state is completely different from the one
used in classical mechanics, where the state of a particle is specified by its position
r and momentum p at time t .

(II) Observables

An observable is represented by a linear, Hermitian operator acting on the state
space. If A is an operator, being linear means that

A (c1|α〉 + c2|β〉) = c1A|α〉 + c2A|β〉, |α〉, |β〉 ∈ V, c1 , c2 ∈ C,

and being hermitian means that A† = A, where A† is the adjoint of A, defined by
the relation

〈β|A†|α〉 = 〈α|A|β〉∗.
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1.1 The postulates 3

In particular, the position of a particle is represented by the operator r, its momentum
p by −ih̄∇, and its energy by the Hamiltonian operator H ,

H = − h̄2

2m
∇2 + V (r, t). (1.1)

V (r, t) is the operator that represents the potential energy of the particle, m is the
particle’s mass, and h̄ is Planck’s constant h divided by 2π .

As with states, the representation of observables in quantum mechanics is com-
pletely different from that of their classical counterparts, which are simply repre-
sented by their numerical values.

(III) Time evolution

The state |�(t)〉 of a system evolves in time according to the Schrödinger equation

ih̄
∂

∂t
|�(t)〉 = H |�(t)〉. (1.2)

If the Hamiltonian H does not depend explicitly on time, then

|�(t)〉 = e−iH t/h̄|�(0)〉. (1.3)

The operator e−iH t/h̄ is called the time evolution operator. Defining the station-
ary states |φn〉 as the solutions of the eigenvalue equation, known as the time-
independent Schrödinger equation,

H |φn〉 = En|φn〉, (1.4)

it is readily verified that |φn〉e−iEnt/h̄ is a solution of Eq. (1.2); the general solution
of Eq. (1.2), when H is independent of t , is then given by

|�(t)〉 =
∑

n

cn|φn〉e−iEnt/h̄.

In contrast, the evolution of the classical state of a particle is determined by Hamil-
ton’s function H via Hamilton’s equations of motion which, in one dimension,
are

ẋ = ∂H/∂p, ṗ = −∂H/∂x. (1.5)

(IV) Measurements

Let an observable be represented by the linear, Hermitian operator A, and consider
the eigenvalue equation

A|φn〉 = an|φn〉, (1.6)
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4 A brief review of quantum mechanics

where a1, a2, . . . are the eigenvalues, and |φ1〉, |φ2〉, . . . the corresponding eigen-
vectors, or eigenkets. In general, there may be infinitely many eigenvalues and
eigenkets. If k eigenkets correspond to the same eigenvalue al , then al is said to be
k-fold degenerate. The following is postulated:

1. The outcome of any measurement of A is always one of its eigenvalues.
2. The eigenkets |φ1〉, |φ2〉, . . . form a complete set of states, i.e., they form a basis

set that spans the state vector space.
3. If the state of a system is described by the normalized state vector |�(t)〉,

and if the states |φ1〉, |φ2〉, . . . are orthonormal, then the probability of finding
the system in state |φn〉 (in which case a measurement of observable A yields
the eigenvalue an) at time t is given by |〈φn |�(t)〉 |2. That is, 〈φn |�(t)〉 is the
probability amplitude for a system, in state |�(t)〉, to be found in state |φn〉 at
time t .

4. The state of a system, immediately following a measurement of A that gave
the value an, collapses to the state |φn〉 (if an is degenerate, the state col-
lapses to the subspace spanned by the degenerate states corresponding to the
eigenvalue an).

We note that the eigenvalues of a hermitian operator are real; hence, the out-
come of any measurement of an observable is a real number, as it should be.
Further, for a hermitian operator, the eigenkets corresponding to different eigen-
values are necessarily orthogonal. In the case of a k-fold degeneracy, where k

eigenkets correspond to the same eigenvalue, every ket in the k-dimensional sub-
space that the eigenkets span is an eigenket of A with the same eigenvalue. It
is always possible to choose within this subspace a set of k eigenkets that are
orthogonal to each other. By normalizing the eigenkets, it is always possible to
choose the eigenkets |φ1〉, |φ2〉, . . . so as to form a complete orthonormal basis that
spans the vector space of state vectors. Orthonormality means that 〈φi |φj 〉 = δij

where

δij =
{

0 i 
= j

1 i = j
(1.7)

is the Kronecker delta, occasionally written as δi ,j with a comma inserted between
the indices if its absence could cause confusion. Completeness means that states
|φ1〉, |φ2〉, . . . form a basis set: any state vector |�(t)〉 ∈ V can be expanded as

|�(t)〉 =
∑

n

cn(t)|φn〉. (1.8)
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1.1 The postulates 5

If the basis is chosen to be an orthonormal one, i.e., if |φ1〉, |φ2〉, . . . form an
orthonormal set, then for an arbitrary state |�(t)〉,

|�(t)〉 =
∑

n

cn(t)|φn〉 ⇒ 〈φm |�(t)〉 =
∑

n

cn(t)〈φm|φn〉 =
∑

n

cn(t)δnm

= cm(t) ⇒ |�(t)〉 =
∑

n

〈φn |�(t)〉 |φn〉 =
∑

n

|φn〉〈φn |�(t)〉

⇒
∑

n

|φn〉〈φn| = 1. (1.9)

Equation (1.9) expresses mathematically the property of completeness of the
orthonormal states |φ1〉, |φ2〉, . . .. Note that |φn〉〈φn| is an operator: it acts on a
ket to yield another ket, and the 1 on the right hand side (RHS) of Eq. (1.9) is the
identity operator.

An important complete orthonormal set of states is formed by the eigenkets of
the position operator r,

r|r〉 = r|r〉. (1.10)

On the left hand side (LHS), r is the position operator, sometimes written as r̂ or
rop to emphasize that it is an operator, while r on the RHS is the eigenvalue of the
position operator. The ket |r〉 is the state of a particle with a well defined position
r. Since the operator r is hermitian, the states |r〉 form a complete orthonormal set.
Because r is continuous, the orthonormality and completeness of the states now
read

〈r|r′〉 = δ(r− r′) (orthonormality),
∫
|r〉〈r|d3r = 1 (completeness). (1.11)

δ(r− r′) is the Dirac-delta function, defined as follows:

δ(r) =
{

0 r 
= 0

∞ r = 0
(1.12)

and ∫
δ(r)d3r = 1, (1.13)

the integration being over all space. In one dimension, δ(x − x ′) is represented
graphically as in Figure 1.3.

One important property of δ(r− r′) is the sifting property,∫
f (r)δ(r− r′)d3r = f (r′). (1.14)
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6 A brief review of quantum mechanics

Figure 1.3 Dirac-delta function δ(x − x ′). It is zero for all values of x except for
x = x ′ where it is infinite. However, its integral over any interval containing x ′ is
unity.

We also note that δ(r− r′) = δ(r′ − r) and δ(ar) = δ(r)/|a|d , where d is the dimen-
sion of space: d = 3 if r is a three-dimensional vector. A particularly useful repre-
sentation of the Dirac-delta function is the following:

δ(r) = 1
(2π )3

∫
e±ik.rd3k. (1.15)

Another useful representation of the Dirac-delta function is

δ(x) = dθ (x)/dx (1.16)

where θ (x) is the step function:

θ (x) =
{

0 x < 0

1 x > 0.
(1.17)

Note that dθ (x)/dx = 0 for x 
= 0, dθ (x)/dx = ∞ for x = 0, and the integral of
dθ (x)/dx over any interval that includes x = 0 is equal to 1.

Introducing a resolution of identity (1 = ∫ |r〉〈r|d3r), the state vector |�(t)〉
may be written as

|�(t)〉 =
∫
|r〉〈r |�(t)〉 d3r.

This is the continuous analog of the discrete case for which |�(t)〉 =∑
n |φn〉〈φn |�(t)〉.
|〈φn |�(t)〉|2 has been interpreted as the probability for a particle in state |�(t)〉

to be found at time t in state |φn〉. By analogy, should |〈r |�(t)〉|2 be interpreted as
the probability for a particle in state |�(t)〉 to be found at time t in state |r〉, i.e., to
be at position r at time t? Two problems beset this interpretation:

(a) |�(t)〉 and |φn〉 are dimensionless (〈�(t) |�(t)〉 = 1, 〈φn|φn〉 = 1); hence,
|〈φn |�(t)〉|2 is dimensionless and can be interpreted as a probability. However,
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1.1 The postulates 7

the orthonormality and completeness relations for states |r〉, as expressed in
Eq. (1.11), reveal that states |r〉 have dimension 1/Length3/2. Thus, |〈r |�(t)〉|2
has dimension 1/Volume, and it cannot be interpreted as a probability; rather,
it is more properly interpreted as a probability density.

(b) Suppose that a particle is in state |�(t)〉 and a measurement is carried out to
determine its position. No detector could ever pinpoint the location of a particle
to exactly one point; the best a detector could do is to “click” whenever the
particle is in some small volume d3r surrounding the position r. Assuming that
〈r |�(t)〉 does not change appreciably within the volume d3r , the probability
that the detector clicks should be proportional to |〈r |�(t)〉|2d3r . The constant
of proportionality is determined by requiring that the probability of finding the
particle somewhere in space be unity. Noting that∫

|〈r |�(t)〉|2d3r =
∫

d3r〈r |�(t)〉∗ 〈r |�(t)〉 =
∫

d3r〈�(t)|r〉〈r |�(t)〉

= 〈�(t) |�(t)〉 = 1,

the proportionality constant is seen to be 1. 〈r |�(t)〉|2d3r is thus interpreted
as the probability for a particle in state |�(t)〉 to be found at time t in the
infinitesimal volume d3r centered on r. Comparing this with the probabilistic
interpretation of �(r, t) given in postulate I, the following identification is
made:

〈r |�(t)〉 = �(r, t). (1.18)

The state vector |�(t)〉 may now be written as

|�(t)〉 =
∫
|r〉〈r |�(t)〉 d3r =

∫
�(r, t)|r〉d3r.

In other words, the wave function �(r, t) is the component of state vector
|�(t)〉 along |r〉.

In the r-representation, the orthonormality of states |φ1〉, |φ2〉, . . . reads

δij = 〈φi |φj 〉 =
∫
〈φi |r〉〈r|φj 〉d3r =

∫
φ∗i (r) φj (r) d3r , (1.19)

and their completeness is expressed as

1 =
∑

n

|φn〉〈φn| =
∑

n

∫∫
|r〉〈r|φn〉〈φn|r′〉〈r′|d3r d3r ′

=
∫∫ ∑

n

φn(r) φ∗n(r′)|r〉〈r′|d3r d3r ′.
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8 A brief review of quantum mechanics

For the above to be true, it must be that∑
n

φn(r) φ∗n(r′) = δ(r− r′). (1.20)

This expresses the completeness property in the r-representation.
We note that if operators A and B, representing two observables, commute

(AB = BA), a complete set of states can be chosen so as to be simultaneous
eigenstates of A and B; A and B may then be measured simultaneously.

So far, the fact that particles have spin has been ignored. To specify the state of
a particle, its spin state must also be specified. For example, an electron has spin
s = 1/2, and the z-component Sz of the spin operator has eigenvalues +h̄/2 and
−h̄/2,

Sz |↑〉 = h̄

2
|↑〉, Sz |↓〉 = −h̄

2
|↓〉. (1.21)

The spin-up state |↑〉 is also denoted by |1/2〉, or |+〉, or α, while the spin-down
state may also be written as | − 1/2〉, or |−〉, or β. A general spin state, denoted by
|χ〉, is a linear combination of the basis states |↑〉 and |↓〉,

|χ〉 = a |↑〉 + b |↓〉

where a = 〈↑|χ〉 and b = 〈↓|χ〉. If |χ〉 is normalized (〈χ |χ〉 = 1), the probability
of finding the spin up is |a|2 and that of finding it down is |b|2.

The spin states |↑〉 and |↓〉 span a two-dimensional complex vector space, the
spin space Vspin: they form an orthonormal basis for Vspin,

〈↑|↑〉 = 〈↓|↓〉 = 1, 〈↑|↓〉 = 0, |↑〉〈↑| + |↓〉〈↓| = 1. (1.22)

The above equations express, respectively, normalization, orthogonality, and com-
pleteness of the spin states. In general, for a particular spin s, the spin projection
σ = −s,−s + 1, . . . , s; the spin space is a (2s + 1)-dimensional complex vector
space. The orthonormality and completeness relations are

〈σ |σ ′〉 = δσσ ′ ,
∑

σ

|σ 〉〈σ | = 1 (1.23)

where σ, σ ′ = −s,−s + 1, . . . , s.
On the other hand, the states |φn〉, which are eigenstates of a linear hermitian

operator that depends on spatial coordinates, span a spatial vector space Vspatial.
The states |φν〉 = |φn〉 ⊗ |σ 〉, σ = −s,−s + 1, . . . , s and n = 1, 2, . . . form an
orthonormal basis for the direct product space V= Vspatial⊗Vspin , known as the
Hilbert space. The state of a particle is a vector |�(t)〉 ∈ V; hence, it can be
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1.1 The postulates 9

expanded in the basis states,

|�(t)〉 =
∑
nσ

cnσ (t) |φn〉 ⊗ |σ 〉 =
∑

ν

cν(t)|φν〉. (1.24)

Here, ν is a collective index that specifies the spatial and spin quantum numbers.
For example, four quantum numbers specify the eigenstates of a hydrogen atom:
the principal quantum number n that determines the energy of the state, l which
determines the value of L2 (the square of the orbital angular momentum), m which
determines the value of Lz (the z-component of the orbital angular momentum),
and σ which is either ↑ or ↓. In this case ν = [nlmσ ], while the index n in |φn〉
stands for the spatial quantum numbers [nlm]. The ket |φν〉 = |φn〉 ⊗ |σ 〉, being a
direct product of an orbital (spatial) state and a spin state, is called a spin orbital.

The orthonormality and completeness of the states |φν〉 mean that

〈φν |φν ′ 〉 = 〈φn|φn′ 〉〈σ |σ ′〉 = δnn′δσσ ′ = δνν ′ (1.25)

∑
ν

|φν〉〈φν | =
∑

n

|φn〉〈φn| ⊗
∑

σ

|σ 〉〈σ | = 1spatial ⊗ 1spin = 1. (1.26)

Here, 1spatial (1spin) is the identity operator in Vspatial (Vspin), and 1 on the RHS is the
identity operator in the Hilbert space (the direct product space).

So far, we have restricted the discussion to a one-particle system. We now
consider a system comprised of N identical particles. Identical particles, such as
electrons, are truly indistinguishable in quantum mechanics. The stationary states
(eigenfunctions of the Hamiltonian H ) of a system of N identical particles will
be written as �(1, 2, . . . , N), depending on the spatial and spin coordinates of
the particles. Because of the indistinguishability of the particles, the Hamiltonian
remains unchanged if any two particles are interchanged. This means that H

commutes with Pij , the permutation operator which interchanges particles i and
j . It follows that the eigenfunctions of H can be chosen to be simultaneously
eigenfunctions of Pij . Denoting the eigenvalues of Pij by λ, we can write

Pij�(1, . . . , i, . . . , j, . . . , N) = λ�(1, . . . , i, . . . , j, . . . , N).

Applying Pij to both sides of the above equation, and noting that P 2
ij = 1, we obtain

�(1, . . . , i, . . . , j, . . . , N) = λ2�(1, . . . , i, . . . , j, . . . , N).

Thus, λ2 = 1 ⇒ λ = ±1. For λ = +1(−1), the wave function is symmetric (anti-
symmetric) under the exchange of coordinates (spatial and spin) of any two par-
ticles. In nature, particles with integral spin (0, 1, 2, . . . ), known as bosons, have
symmetric wave functions under the exchange of the coordinates of two particles,
and they obey Bose–Einstein statistics. On the other hand, particles with half inte-
gral spin (1/2, 3/2, . . . ), known as fermions, have antisymmetric wave functions
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10 A brief review of quantum mechanics

under the exchange of the coordinates of two particles, and they obey Fermi–Dirac
statistics. The Pauli exclusion principle is a direct consequence of this antisym-
metry of the fermionic wave function. The last postulate of quantum mechanics
follows.

(V) Wave function of a system of identical particles

Under the interchange of all coordinates (spatial and spin) of one particle with
those of another, the wave function of a collection of identical particles must
be symmetric if the particles are bosons, and antisymmetric if the particles are
fermions:

�(1, . . . , j, . . . , i, . . . , N) =
{

�(1, . . . , i, . . . , j, . . . , N) Bosons

−�(1, . . . , i, . . . , j, . . . , N) Fermions.
(1.27)

We close this section by remarking that some exotic quasiparticles, known as
anyons, which arise as excitations of a two-dimensional electron gas in a magnetic
field, are believed to obey some fractional statistics, which are neither Bose–
Einstein nor Fermi–Dirac statistics (Wilczek, 1982).

1.2 The harmonic oscillator

We briefly review the solution of the harmonic oscillator problem in quantum
mechanics. For a particle of mass m confined to a harmonic potential, the Hamil-
tonian is given by

H = p2

2m
+ 1

2
mω2x2 , (1.28)

where ω is the oscillator frequency. We introduce two new operators

a =
(mω

2h̄

)1/2
(

x + i

mω
p

)
, a† =

(mω

2h̄

)1/2
(

x − i

mω
p

)
. (1.29)

Since x and p are hermitian, a† is the adjoint of a, and vice versa. The operators x

and p = −ih̄d/dx do not commute: xp 
= px. We define the commutator of any
two operators A and B by

[A, B] = AB − BA. (1.30)

By letting the commutator [x , p] act on an arbitrary differentiable function f (x), it
is found that [x , p] = ih̄. It follows that [a, a†] = 1. In terms of the new operators,

H = h̄ω(N + 1/2), N = a†a. (1.31)
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