Index

accuracy of dike measurements 37–38
accurate measurements of dikes 35–36
action, definition of 493
 minimised for actual dike path 502
active volcano, definition of 1
active volcanoes in the world 380
actual path selected by a dike 493
aerial photographs 35
Almannagja (Iceland) 355
ampholites 43, 44
Anaga (Tenerife) 488
analogue models, definition of 20–21
 of volcano deformation 88–89
analytical models, definition of 21
anisotropic rock body 100
anisotropic stress 95
aperture, definition of 7
 of a volcanic fissure 357, 360
apparent displacement across a dike 45
arrest of dikes 14
 at contact with inclined sheets 448
 examples of 345–348
 arrested sill 245
artificial cooling of magma 526
aseismic creeping 535
aseismic magma transport 71
Askja caldera (Iceland) 305
aspect ratios of dikes 56
aspect ratios of sills 76
asymmetric roses 49
attenuation 301
 attitude 7, 46, 51
 of sills 75
 Augustine Volcano (United States) 3
 Austurhorn fossil magma chamber (Iceland) 306–307
a-value (for earthquakes) 192–194
 axes, principal 93
 of compression (in focal mechanism) 186
 axis of tension (in focal mechanism) 186
background seismicity 206
balloons as magma-chamber models 138
Bardarbunga Volcano (Iceland) 305
Bardarbunga–Holuhraun earthquake swarm 201
basaltic edifices 1, 126, 436
 heights of 260
 slopes of 260
baseline volcanic behaviour 473
Baula fossil magma chamber (Iceland) 305
Baula laccolith 249
beach-ball diagram 185–186
benchmark (for GPS measurements) 16
birefringence 328
 of a volcanic fissure 328
bi-logarithmic (log–log) plot 53
bin (of a histogram) 48
blunt tips of dikes 63
body forces 496
body waves 180–182
 borehole strainmeter 16, 474
 breccia at dike tip
brittle behaviour of rocks 238
brittle–ductile transition of common rocks 570
bulk compressibility 290
bulk modulus (incompressibility) 103
bulk volume of a reservoir 292
buoyancy 240–241, 333
 as part of driving pressure 331
 effects on dike propagation 334, 486–490
b-value (for earthquakes) 192–194
 differences in 202
 calculus of variations 505
 caldera collapse 251–259
 stable 258
 unstable 257
 caldera sizes and magma chamber sizes 287
 caldera-driven explosive eruption 406–407
 carbon dioxide in magma 288
 catastrophic risk and large eruptions 520
cavities in dike rock 72
central volcanoes 424–425
 shift in the location of 283, 285
corner effect 238
 of compression (strain nucleus) 106
caldera–reservoir volume ratio, effects of 428–431
caldera-driven explosive eruption 406–407
carbon dioxide in magma 288
cavities in dike rock 72
central volcanoes 424–425
 shift in the location of 283, 285
centre of compression (strain nucleus) 106
chemical monitoring of volcanoes 475
chemistry of springs for volcano monitoring 16
chilled selvage of dikes 41, 67
clay cones 2
circular histograms 48
Columbia River Basalts (United States) 411
columnar (cooling) joints 450–452
in a dike 42, 43
compliant rocks 64, 99
suppress (reduce) stress 129
composite dikes 40
compressibility 103
of gas 288
of magma 288
compressive stress as positive 94
conceptual models 20
condition for magma-chamber rupture 237
conditions for subsidence 523
conduction of heat 362–366
conduits 382–390
cylindrical 382–385
elliptical 386–387
parallel-plate models of 387–390
configuration of a system 498
conjugate faults 350
conservative forces 279
conservative systems 494, 496
constitutive laws 496
constraints 494
contact as a free surface 341
contact properties 445–446
contacts (between layers) 58, 122
as free surfaces 341
properties of 446–446
welding of 445
continuous (elastic) systems 497–500
continuously erupting volcanoes 396
contours of stress 96
controlling dimensions 12, 56
convection 362
Cook–Gordon delamination 230, 339–341
cooling (columnar) joints 450–452
as paths for dikes 326
cooling of magma to prevent eruption 525–527
coordinates for dike location 35
Coulomb criterion 251
crack–crack interactions 60
crack-displacement modes 190
craters 438
crater cones 438–439
cubic law 257, 361, 438
cumulative (total) thickness of a dike 38
cumulative plots 53
cylindrical conduits 382–385, 439
cylindrical magma chambers 433
damage due to earthquake waves 182
Darcy's law 277–280
physical meaning of 278
data analysis and presentation 46–53
Deccan Traps (India) 411
deep-seated reservoirs 3, 225, 272–324
deflation 87–88, 106
deflection of dikes into sills 229–234
deformation 14
data 88–92
elastic 14
inelastic 14, 88
permanent 88
plastic 14, 88
source 18
degassing 72
degrees of freedom 498
densities of common fluids 571
densities of common rocks 568–569
density difference 333
between magma and host rock 241
density stratified reservoir 275
depth of erosion (of an outcrop) 44
depths of active magma chambers and reservoirs 302–305
depths of deep-seated reservoirs 225
depths of fossil magma chambers 305–308
depths of shallow magma chambers 225, 477
detecting active magma chambers and reservoirs 299–308, 476
deterministic forecasts 23
difference in shape between feeders and non-feeders 71
differential stress 241
dike and a graben 357
dike arrest 14, 338–348
by a graben 232–233
permanent 61, 63, 65, 66
temporary 61, 63, 65, 66
dike arresters 436
dike deflected into a sill 26, 242
dike emplacement, induced earthquakes 146
dike fingers 358
in the Krafla Volcanic System 351
dike following a fault 509
dike fractures, lateral propagation of 358
dike fractures, vertical propagation of 358
dike initiation 325–332
conditions for 331
dike injection 206
dike injection from a magma chamber 234–239
dike intensity 435
dike meeting a fault 510
dike meeting a contact 340–341
dike paths 325–378
common 505
effects of faults on 509–512
forecasting of 328
in heterogeneous, anisotropic rock 507–509
in homogeneous, isotropic rock 505–507
minimum potential energy and 500–501
potential 328
potential number of 492, 502
dike propagation 483–512
buoyancy effects on 486–490
direction of 68–71
earthquakes induced by 70
ing in all directions 69
lateral 68
least action principle and 491–500
quasi-static 500–502
dike swarms 36
dike tips 46
and grabens 349
and normal faults 349
fractures around 67
lateral 61
proportion of 73
rounded 64
vertical 61
as a solidified magma-filled fracture 7
dike-induced deformation 512–520
dike-induced faulting 483–484
dike-induced fractures 67
dike-induced internal displacements 513–520
dike-induced internal stresses 513–520
dike-induced surface displacements 513–520
dike-injection frequency 429–431
dike-injection rate 234
dike-lets 72
dike-path length 345
dike-propagation paths 332–338
dike-rock texture 67
dikes 7
and sheets in a layered crust 146–156
and sheets in elastic half-spaces 141–146
and sills making volcanoes stronger 447
deflected into sills 229–234
dip-dimension of 12
dips of 51
dislocation models of 143–146
drilling into 526–528
fingers of 69
last movement of magma in 69
lateral propagation of 57
length–thickness ratios 55
length of 11
magma front of 198
proportion of feeders versus non-feeders 73–74
rate of injection of 226
regional and local 325
segmented 199–200
stress concentration around 356
strike-dimension of 12
surface effects of 91
thickness variations of 56
tips (ends of) 61–67
dike-segment overlap 62
dike–sill contacts 335–336
dilation (volume strain) 103
dip 7, 51
dip direction 51
dip distribution of sheet intrusions 125
dip of lava piles 284
dip-dimension, definition of 7
dip-slip faults, ring-faults as 253
direction of dike propagation 68–71
directional data 48
directional distinction 49
discharge velocity 277
discontinuities 63
discrete systems 497
dislocation models of dikes 19, 143–146
surface deformation and 91
displacement 97–98
doming as a condition for ring-fault formation 132–138
during caldera collapse 405
of the surface 523
double magma chambers 272–275, 428
dynamics of 294–299
formation of 281–285
double-couple earthquakes 18, 185–186
downrift migration of earthquakes 70
drain-back 69
drilling into a dike 526–528
driving shear stress (stress drop) 189, 251
duration of earthquake swarms 200–201
duration of eruptions 390–400
dynamics of deep-seated reservoirs 290–293
of double magma chambers 294–299
of shallow magma chambers 286–290
of volcanic eruptions 379–423
double-couple earthquakes 18, 185–186
downrift migration of earthquakes 70
drain-back 69
drilling into a dike 526–528
driving shear stress (stress drop) 189, 251
duration of earthquake swarms 200–201
duration of eruptions 390–400
dynamics of deep-seated reservoirs 290–293
of double magma chambers 294–299
of shallow magma chambers 286–290
of volcanic eruptions 379–423
earthquake swarms 15, 70, 179, 197–201, 326,
473, 507
duration of 200–201
earthquakes associated with dike emplacement 146
a-values of 192–194
b-values of 192–194
concentration at boundary faults 523–524
epicentre of 183–187
explosion 203
focal mechanism of 183–187
focus of 18
Gutenberg–Richter relation 191–192
high-frequency (A-type) 195–202
hypocentre of 183–187
low-frequency (B-type) 203
magnitudes of 187–194
migration of (during dike propagation) 70
moment of 187–194
moment-magnitude scale 188
slip surface of 188
<table>
<thead>
<tr>
<th>Index</th>
<th>578</th>
</tr>
</thead>
<tbody>
<tr>
<td>earthquakes (cont.)</td>
<td>extensometer (strainmeter) 16</td>
</tr>
<tr>
<td>stress sources of 195–197</td>
<td>external forces 495</td>
</tr>
<tr>
<td>triggering eruptions 205–206</td>
<td>extinct volcanoes 3</td>
</tr>
<tr>
<td>effect of gravity in models 241</td>
<td>extinction of volcanoes 458–460</td>
</tr>
<tr>
<td>effects of layering 351</td>
<td>Eyjafjallajökull (Iceland) 24</td>
</tr>
<tr>
<td>El Hierro (Canary Islands) 300</td>
<td>failed eruptions 201</td>
</tr>
<tr>
<td>elastic constants 101–104, 565–567</td>
<td>failed magma paths 61</td>
</tr>
<tr>
<td>elastic deformation 14</td>
<td>fault-plane solution (focal mechanism) 18</td>
</tr>
<tr>
<td>elastic deformation of volcanoes 87</td>
<td>faults 8</td>
</tr>
<tr>
<td>elastic energy 332, 521</td>
<td>as shear fractures 7</td>
</tr>
<tr>
<td>elastic half-space 105, 513</td>
<td>aseismic slip (creep) of 8</td>
</tr>
<tr>
<td>elastic mismatch 233–234, 343–345</td>
<td>cumulative (total) displacement of 8</td>
</tr>
<tr>
<td>elastic potential energy 406</td>
<td>dip-dimension of 11</td>
</tr>
<tr>
<td>elastic systems, least action principle for 497–500</td>
<td>displacement of 8</td>
</tr>
<tr>
<td>elastic-energy magnitude (EEM) scale 521–522</td>
<td>in volcanoes 452–454</td>
</tr>
<tr>
<td>Eldgja eruption (Iceland) 381</td>
<td>induced by dikes 483</td>
</tr>
<tr>
<td>electronic distance meter 16, 90</td>
<td>length of 8</td>
</tr>
<tr>
<td>elliptical conduits 386–387</td>
<td>rupture length of 10</td>
</tr>
<tr>
<td>energy dissipation (during dike propagation) 65</td>
<td>slip of 8, 11</td>
</tr>
<tr>
<td>for dike propagation 503–504</td>
<td>width of 8</td>
</tr>
<tr>
<td>release rate, definition of 330</td>
<td>faults and dikes 45</td>
</tr>
<tr>
<td>enhanced geothermal systems 525, 529</td>
<td>feeder-dikes 46, 93, 506</td>
</tr>
<tr>
<td>epicentre 183–187</td>
<td>and non-feeders 71–75</td>
</tr>
<tr>
<td>Erebus Volcano (Antarctica) 396</td>
<td>closing of 392</td>
</tr>
<tr>
<td>eroded volcanoes, data from 24</td>
<td>shape of</td>
</tr>
<tr>
<td>error function 363</td>
<td>volume of 287</td>
</tr>
<tr>
<td>Ertá Ale Volcano (Ethiopia) 304, 396</td>
<td>Fernandina Volcano (Galapagos) 404</td>
</tr>
<tr>
<td>eruptions</td>
<td>Ferrar Dolerite sills (Antarctica) 480</td>
</tr>
<tr>
<td>duration of 390–400</td>
<td>field studies of volcanotectonic structures 34–86</td>
</tr>
<tr>
<td>dynamics of 379–423</td>
<td>fingers (of a dike) 69, 358</td>
</tr>
<tr>
<td>earthquake triggering of 205–206</td>
<td>fissure eruptions 356–361</td>
</tr>
<tr>
<td>failed 201</td>
<td>flat ellipses, dikes as 54</td>
</tr>
<tr>
<td>forecast of 200</td>
<td>flexural rigidity 250</td>
</tr>
<tr>
<td>frequencies 294, 379–382</td>
<td>flexural slip 250</td>
</tr>
<tr>
<td>imminent 204</td>
<td>flow channelling 387, 438</td>
</tr>
<tr>
<td>intensity of 401, 521</td>
<td>flow length (of lavas) 437</td>
</tr>
<tr>
<td>large, definition of 287</td>
<td>fluid pressure, excess 102</td>
</tr>
<tr>
<td>moderate, definition of 287</td>
<td>fluid transport along a dike 45</td>
</tr>
<tr>
<td>ordinary 286</td>
<td>fluids, Young’s modulus of 102</td>
</tr>
<tr>
<td>probability of 68</td>
<td>focal depth 184</td>
</tr>
<tr>
<td>quantification of 521–522</td>
<td>focal mechanism (fault-plane solution) 18, 183–187</td>
</tr>
<tr>
<td>sizes of 379–382</td>
<td>and axis of compression 186</td>
</tr>
<tr>
<td>small, definition of 287</td>
<td>and axis of tension 186</td>
</tr>
<tr>
<td>time-to-peak of 399</td>
<td>and nodal planes 186</td>
</tr>
<tr>
<td>volumes 293, 393</td>
<td>focal sphere 186</td>
</tr>
<tr>
<td>Esja (Iceland) 449</td>
<td>forces body 496</td>
</tr>
<tr>
<td>evacuation 525</td>
<td>external 495, 498</td>
</tr>
<tr>
<td>excess pressure 102, 124, 240, 331, 484</td>
<td>generalised 497</td>
</tr>
<tr>
<td>decline of 392</td>
<td>internal 495–496, 498</td>
</tr>
<tr>
<td>exponential decrease in 394</td>
<td>surface 496</td>
</tr>
<tr>
<td>excess spreading 231</td>
<td>forecasting eruptions 472–559, 520–524</td>
</tr>
<tr>
<td>existential risk and large eruptions 520</td>
<td>form (geometry) of magma chambers 477</td>
</tr>
<tr>
<td>explosion earthquakes 203</td>
<td>formation and dynamics of magma chambers 272–324</td>
</tr>
<tr>
<td>extension fracture 7, 70</td>
<td>formation and evolution of volcanoes 424–471</td>
</tr>
<tr>
<td>magma filled 325–326</td>
<td>formation of a shallow magma chamber 227</td>
</tr>
</tbody>
</table>
formation of deep-seated reservoirs 272–277
formation of double magma chambers 281–285
fossil magma chambers 4
fossil volcanoes 3
fracture resistance 446
fracture toughness
definition of 330
of common rocks 569–570
fractures
around dike tips 67
induced by dikes 67
free surface 57
free-surface effects (on dikes) 72, 106
frequency vs eruption volume 396
friction, internal 251
Fuji Volcano (Japan) 437, 439
full-space models of magma chambers 109
gas
composition monitoring 16
expansion in magma 487
exsolution (effect on excess pressure) 393
Geitafell Volcano (Iceland) 296, 327, 329
Geitafellsbúj fossil chamber (Iceland) 305, 329
general stress 94
generalised forces 497
geochemical techniques for volcano monitoring 16
geometry of a volcano 436–444
geophysical data inversion 18
geophysical techniques and definitions 12–17
geyser 205
GPS (Global Positioning System) 16, 90, 475
graben 516
and a dike in North Iceland 357
and an arrested dike 67
arresting dike tips 67
as a stress barrier 67
in the Krafla Volcanic System 354
nested 143–144
rule 354, 516
subsidence 143
subsidence inducing large eruptions 407–411
grain size of dike rock 40
gravity, effects in modelling 241
Greek alphabet 563
Griffith theory 252
Grímsvötn Volcano (Iceland) 305
ground deformation monitoring 16–17
ground elevation and tilting 473–474
ground movement 182–184
Gutenberg–Richter relation 191–194
Hafnarfjall ring-fault 254
half-space model 19, 150
Hamilton’s principle of least action
for an elastic solid 498–499
for continuous systems 497–500
for discrete systems 492–497
most general version of 497
hard-linked fractures 58
hazards
assessment of 74
volcanic 475–476
heat conductivity 364
heat
definition of 362
flow 362
flux 362
transfer from sheet intrusions 361–366
heat-flux density 362
heights of table mountains 276, 280
Hekla eruption (Iceland), effusion rate of 394
Hekla Volcano (Iceland) 294
Hengill Volcano (Iceland) 196
Hengill Volcanic System (Iceland) 6, 409
heterogeneity and anisotropy of volcanoes 24
heterogeneous rock body 100
heterogeneous stress field 94
high-frequency (A-type) earthquakes 195–202
histograms 47–48, 51–52
historical time 2
Holocene 3
homogeneous rock body 100
homogeneous stress field 94
Hood Volcano (United States) 437
Hooke’s law 98–101
hook-shaped fractures 58–59
horizontal tension 123
horns, as failed dike paths 61
hot-dry-rock systems 525
human-induced cooling of magma 526
hydraulic fractures
propagation of 490–491
to prevent eruptions 527–529
hydrofractures 7
hydro-shearing 525
advantages and disadvantages of 535–536
economy of 535
for geothermal energy 535
of faults 533–534
procedure 530–533
producing earthquakes 536
social and legal issues of 536
stress effects of 534–535
to form a stress barrier 534
to minimise stress difference 534–535
to prevent eruptions 529–536
to reduce strain energy 530, 533
hypocentre (focus) 18, 183–187
ideal geometries of magma chambers 236
imminent eruptions 204
improving volcanotectonic models 23–26

© in this web service Cambridge University Press
www.cambridge.org
inclined sheets 7, 225–226
as solidified magma-filled fractures 7
cross-cutting of 327
potential paths of 449
surface effects of 91
swarm of 296, 449
incompressibility 103
inelastic deformation 14, 88
infill material in a fracture 7
infinite strain 100
inflation (doming) 87, 91, 106
definition of 88
of deep-seated reservoirs 273
InSAR (Interferometric Synthetic Aperture Radar) 16, 90, 475
in situ tensile strengths of rocks 569
internal forces 495–496
internal friction 251
internal structure of a volcano 444–458
interpreting data 17–26
intrusions
and eruption frequencies 428–436
and eruption statistics 295
inversion
of dike-induced deformation data 145
of geophysical data 18, 130
inward-dipping ring-fault/ring-dike 255, 257–258, 404–405
irregular boundaries of magma chambers 235
isotropic rock body 100
isotropic stress 94
jogs and notches at contacts 328
joints
as hydrofractures 246
as weaknesses 451
effects on Young’s modulus 450
transporting fluids 450
Jorulkefjald fault (Iceland) 454
Katla Volcano (Iceland) 304
Katmai Volcano (United States) 381, 400, 404
Kerid pit crater (Iceland) 2
Ketiljagarfjall (Iceland) 456
Kilauea feeder-dike 350
Kilauea Volcano (United States) 2, 304, 404
kinetic energy 494
Kluchvskoy Volcano (Russia) 304
Krafla caldera (Iceland) 305
Krafla Volcanic System (Iceland) 197, 298
Krakatau (Krakatoa) eruption (Indonesia) 381, 401
Krossanesjill (Iceland) 236
Krossanesjill nei-veined complex 306–307
La Garita eruption (United States) 382, 401
laccoliths 121
emplacement 247–251
definition of 247, 250
Lagrangean (function) definition of 493
for an elastic system 499
Laki eruption (Iceland) 381
Lamé’s constant 104
landslides (lateral/sector collapses) 259–261
large eruptions
and catastrophic risk 520
and existential risk 520
definition of 287
effusive 407–411
explosive 400–407
forecasting of 520–524
prevention of 524–536
Las Canadas caldera (Tenerife, Spain) 384, 442, 488
last movement of magma in a dike 69
latent heat of solidification 366
lateral collapse and volcano shape 440, 444
lateral migration of earthquakes 70
lateral propagation of dikes 57, 68, 358
lateral tips of dikes 61
lateral/sector collapses (landslides) 259–261
lava flow down into fissures 71
lava piles, dip of 284
lavas, physical properties of 572
layered crust, dike and sheet emplacement in 146–156
length of a dike 39, 53
lengths of volcanic fissures 54
length-thickness (aspect) ratios of dikes 55–56
level of neutral buoyancy 487–490
levelling techniques 474
linear elastic bodies 88
linkage of dike segments 58–61
lithology of dike and host rock 40
lithostatic equilibrium, for a reservoir 292
lithostatic state of stress 94
load 432
local sheet swarms 122
local stresses around a magma chamber 111, 239, 332
log–log (bi-logarithmic) plots 53
lopolith 247, 250
Love waves 183
lower hemisphere plots 52
low-frequency (B-type) earthquakes 203
lubrication of fault planes 253
magma
accumulation in reservoirs 276, 281
compressibility 291
cooling of to prevent eruption 525–527
flow direction in a dike 68–71
front in a dike 198
injection 42
layer 277
migration in deep-seated reservoirs 277–280
movement through the crust 325–378
Index

ordinary eruption, definition of 286
oriented data (roses for) 49
orthogonal fractures 29
outward-dipping ring-fault/ring-dikes 253, 255, 256, 402–404, 457
overburden pressure 94
overlap (between dike segments) 62, 64
overlapping spreading centres 58
overpressure (driving pressure) 239
palaeo-rift zones 35
paleo-flow directions in a dike 69
parallel-plate models of sheets 387–390
partially molten magma chambers 286, 289
particles (for discrete systems) 500
paths of dikes 19
penny-shaped crack 120
permanent deformation 14, 88
permeability 43
phase transition during solidification 366
phenocrysts 44
photographs in the field 46
physical constants 564
physical properties of lavas 572
physical properties of magmas 572
Pinatubo eruption (Philippines) 381, 400–401
Pinatubo Volcano (Philippines) 404
piston-like caldera roof 406
Piton de la Fournaise Volcano (Reunion, France) 2, 404
plastic deformation 14, 88
plugs 384
plugs and necks 457–458
plutons 282
point pressure source 105–106
Poisson’s ratio
definition of 101–103
effect on volume and shape 103
for common rocks 565–566
values of 102
Poisson’s relation 104
pole plots 52
poles (to dike/fracture planes) 51
polygenetic volcanoes 88
pore compressibility defined 291
pore-fluid pressure 252
porosity of reservoirs 430
potential energy 494
and fluid transport 278–279
total 499, 503
potentiometric surface 276, 280
power-law distribution 46, 53
for earthquakes 191–192
for eruptions 380
precision levelling technique 89
preventing large eruptions 524–536
primary waves (P-waves) 180–181
principal axes 93
principal planes of stress 93
principal stress directions 95
principal stress magnitudes 95
principal stress rotations 60
principal stresses 93
principle of least action and dike propagation paths 491–500
principle of minimum potential energy 493, 499
principle of virtual displacements 494
principle of virtual work 494
probabilistic forecasts 23
probability of eruption 68
process zones 70
profile for dike/fracture studies 35
propagation of dikes 45, 483–512
proportion of dike tips 73–74
proportion of feeders versus non-feeders 73
P-waves (primary waves) 180–181
quantifying eruptions 521–522
quasi-static dike propagation 500–502
radiation 362
radius of curvature
equation for 78
of a dike tip 65
Rainier Volcano (United States) 437
rate of injection of dikes 226
Rayleigh waves 183
real fault-slip plane 186
regional dikes 326
regional stress field 111
regression analyses 18, 47
reinforcing effects of sheets in volcanoes 447
reservoirs (deep-seated) 13, 225, 272–324
bulk volume of 292
density stratified 275
depth of 225
detection of active 299–302
dome-shaped 426
dynamics of 290–293
formation of 272–277
initiation of 273
magma accumulation in 276
magma migration in 277–280
titled contacts in 276
resistance of dike rock to erosion 41, 42
reverse-faulting earthquakes 186
Reydarartindur fossil magma chamber (Iceland) 479
Reykjadalur Volcano (Iceland) 112–113
Reykjanes Peninsula (Iceland) 347
ribs at the surface of a joint 69
Richter scale 188
ripping event 42
right-hand rule for strike measurements 48
rigid-body rotation 97
rigid-body translation 97
ring-dikes 454–456, 509
propagation of 253
ring-faults 251, 454–456
as dip-slip faults 253
as normal faults 133, 139
as reverse faults 133, 139
formation of 132–138
inward-dipping 255, 257–258
outward-dipping 253, 255, 256
ripples 182
rose diagrams 48–50
rounded tips 64
rows in a dike 42
rupture 180
Sakurajima Volcano (Japan) 396–397
Sandfell fossil magma chamber (Iceland) 305
Sandfell laccolith (Iceland) 249
Santorini caldera (Greece) 346, 443
satellites for geodetic measurements 16
scan-lines for dike/fracture studies 35
scoria cones 2
secondary minerals 43
zonation of 44
sections for dike/fracture studies 35, 36
segmented dikes 39, 41, 53, 58–61, 199–200
segments
as a single fracture 58
of a volcanic fissure 68
offset (of dikes) 64
seismic moment 188–194
seismic monitoring of volcanoes 206–208
seismic tomography 301
seismic waves 179–183
seismicity, background 206
seismometers 474
shallow crustal magma chambers
definition of 225
depth of 225, 477
dynamics of 286–290
shape
of a dikes 53–58
of a volcano 436–444
shear fracture 7
shear modulus 103
shear movements along discontinuities 66
shear strain 97
shear strength 251
shear stress 93
sheet intrusions 325
change in dip and thickness 113
dip distribution of 125
swarms of 435
sheeted dike complexes 225
sheets as internal framework of a volcano 447–450
shift in location of central volcano 283, 285
SI units and prefixes 560–562
sills 75–76
arrest of 245
as aquifers 450
as different from dikes and inclined sheets 76
as different from lava flows 75
as fossil magma chambers 308
as oblate spheroidal magma chambers 125
as solidified magma-filled fractures 7
aspect ratios of 76
attitude of 75
emplacement of 242–247
geometries of 76
magma chambers as 120–121
rate of solidification of 226, 228
thermal effects of 76
tunnel-shaped 244
single magma flow 294
Skaftafellur fossil magma chamber (Iceland) 117, 306
slip 180
slip surface of an earthquake rupture 188
slow-spreading ridges 303
small eruption defined 287
soft rocks 99
soft layers 73
soft-linked fractures 58
solidification
definition of 363
of magma in a sheet intrusion 361–366
solid-matrix compressibility defined 290
sound waves 180
source of deformation 18
spatter-and-scoria cones 2
specific heat capacity, definition of 364
specific latent heat, definition of 366
spreading vectors 50
stable caldera collapse 258
Stardalshnjukar fossil magma chamber (Iceland) 305–306
Stardalur Volcano (Iceland) 306
state of stress close to a dike 240
statistical techniques for structural data 18
statistical-probabilistic models 20
steps during dike propagation 500–501
stereograms 48
stereoplots 51–52
stiff layers 73
stiff rocks 63
stiffness, definition of 99
Stromboli Volcano (Italy) 396–397
straight-line fit to data 19
strain 97–98
infiniteesimal 100
normal 98
shear 97
strain energy 503–504, 523
 dissipation during dike propagation 66
 Mogi model and 107, 110
 of a body 498
 of a volcano 121
 per unit volume 503
 total 504
strain rate 97
strainmeters 16, 474
stratigraphic level 35, 36
stratovolcanoes 127
 as strong structures 438
 heights of 260
 slopes of 260
streamlines, trajectories as 432
strength 99
 definition of 99
 of a volcano 446
 of common rocks 568–569
shear 251
stress 92–96
 anisotropic 95
 barrier 230–233, 342, 534
 concentration 60
 concentration and intrusion frequency 431–436
 concentration around a dike 356
 concentration around a hole 432
 concentration around magma chambers 127–137
 contours 96
 contours around a magma chamber 126
 definition of 92
 drop (driving shear stress) 189, 252
 effects of hydro-shearing 534–535
 general 94
 heterogeneous 94
 homogenous 94
 isotropic (hydrostatic) 94
lithostatic 94
magnitudes of 95, 124
monitoring 523
normal 92, 98
principal planes of 93
shear 93
 sources for earthquakes 195–197
 tensor 93
 trajectories 95–96, 123–124, 432
 transfer 205
vector 93
 stresses associated with dikes and sheets 140–156
 stress-homogenisation 533
 stress-intensity factor 330
 strike 6, 48
 strike and dip measurements of a dike 36–37
 strike-dimension 7, 11
 strike-slip-fault earthquakes 186
structural geology 4
 techniques and definitions of 5–12
subsidence, conditions for 523
subvertical flow of magma 69
supervolcanoes 521
surface deformation, causes of 90–91
surface of displacements 122
surface effects of dikes 348–356
surface forces 496
surface stress peaks 133, 349
surface stresses 122
 surface subsidence above dikes 349
 surface uplift peaks 516
surface waves 180, 182–183
swarms of inclined sheets 449
S-wave shadows 181, 301, 476
S-wave velocities and temperature 181
table mountains, heights of 276, 280
Tambora eruption (Indonesia) 381, 400–401
Tambora Volcano (Indonesia) 441
taupo eruption (New Zealand) 381
tectonics 4
Teide Volcano (Tenerife, Spain) 442
temperatures
 definition of 362
 gradient 362
tensile strength 238, 568–569
 of the roof and walls of a chamber 485–486
 tensile stress as negative 94
tension fracture 7, 8, 10, 28
tension fractures
 dike-induced 350
 theoretical stress magnitudes 66
thermal diffusivity 363
thermal effects of sills 76
thermal effects on dike propagation 332
thermal energy, definition of 362
thickness
 of dikes 38, 52
 of an intrusive sheet 7
 of tectonic sections 56
 of volcanic structures 140–156
 Tiangchi eruption (China) 381
 tilted contacts in reservoirs 276
 tilmeters (inclinometers) 16, 90, 474
tips
 blunt 63
 for monitoring 523
 of dikes 61–67
 of volcanic structures 140–156
 radius of curvature of 65
 wedge-like 62
 Toba caldera (Indonesia) 443
 Toba eruption (Indonesia) 381–382, 401
top craters 438–440
Torres del Paine fossil magma chamber (Chile) 248, 308, 478
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>total energy for dike-fracture formation 511</td>
<td>585</td>
</tr>
<tr>
<td>total fluid pressure 238</td>
<td></td>
</tr>
<tr>
<td>total potential energy 499, 503</td>
<td></td>
</tr>
<tr>
<td>total radiated energy in earthquakes 193</td>
<td></td>
</tr>
<tr>
<td>total strain energy 504</td>
<td></td>
</tr>
<tr>
<td>totally molten magma chamber 286</td>
<td></td>
</tr>
<tr>
<td>traction 93</td>
<td></td>
</tr>
<tr>
<td>trajectories 95–96, 505</td>
<td></td>
</tr>
<tr>
<td>transfer faults 59</td>
<td></td>
</tr>
<tr>
<td>transform faults 59</td>
<td></td>
</tr>
<tr>
<td>transpression 184</td>
<td></td>
</tr>
<tr>
<td>transstension 184</td>
<td></td>
</tr>
<tr>
<td>trapdoor caldera collapse 254, 258</td>
<td></td>
</tr>
<tr>
<td>traverse for dike/fracture studies 35</td>
<td></td>
</tr>
<tr>
<td>tremors (volcanic) 204–205, 207</td>
<td></td>
</tr>
<tr>
<td>triple magma chambers 304</td>
<td></td>
</tr>
<tr>
<td>tunnel-shaped sill 244</td>
<td></td>
</tr>
<tr>
<td>underpressure for ring-fault formation 133</td>
<td></td>
</tr>
<tr>
<td>unidirectional (asymmetric) roses 48–49</td>
<td></td>
</tr>
<tr>
<td>unit length (for dikes) 49</td>
<td></td>
</tr>
<tr>
<td>unrest (volcanic) 12, 472–559</td>
<td></td>
</tr>
<tr>
<td>monitoring of 12</td>
<td></td>
</tr>
<tr>
<td>monitoring techniques 474–475</td>
<td></td>
</tr>
<tr>
<td>signals 473–474</td>
<td></td>
</tr>
<tr>
<td>unstable caldera collapse 257</td>
<td></td>
</tr>
<tr>
<td>unweighted (non-normalised) data 49–50</td>
<td></td>
</tr>
<tr>
<td>upward migration of earthquakes 70</td>
<td></td>
</tr>
<tr>
<td>variational symbol 494</td>
<td></td>
</tr>
<tr>
<td>velocity model 186</td>
<td></td>
</tr>
<tr>
<td>vertical collapse (caldera collapse) 251–259</td>
<td></td>
</tr>
<tr>
<td>vertical collapse and volcano shape 440–444</td>
<td></td>
</tr>
<tr>
<td>vertical ends (of dikes) 65</td>
<td></td>
</tr>
<tr>
<td>vertical propagation of a dike fracture 358</td>
<td></td>
</tr>
<tr>
<td>vertical tips of dikes 61</td>
<td></td>
</tr>
<tr>
<td>vesicles in dike rock 43, 67</td>
<td></td>
</tr>
<tr>
<td>Vesturhorn fossil magma chamber (Iceland) 306–307</td>
<td></td>
</tr>
<tr>
<td>vibrations (in the Earth) 179</td>
<td></td>
</tr>
<tr>
<td>view north (east, south, or west) defined 6, 46</td>
<td></td>
</tr>
<tr>
<td>virtual displacement, definition of 494</td>
<td></td>
</tr>
<tr>
<td>virtual work and dike propagation paths 491–500</td>
<td></td>
</tr>
<tr>
<td>virtual work, definition of 494</td>
<td></td>
</tr>
<tr>
<td>viscosities of some crustal fluids 571</td>
<td></td>
</tr>
<tr>
<td>viscosities of magmas 436, 572</td>
<td></td>
</tr>
<tr>
<td>volcanic earthquakes 179–223</td>
<td></td>
</tr>
<tr>
<td>volcanic edifices 424–428, 436</td>
<td></td>
</tr>
<tr>
<td>volcanic explosivity index (VEI) 521</td>
<td></td>
</tr>
<tr>
<td>volcanic fissures 38, 68</td>
<td></td>
</tr>
<tr>
<td>lengths of 54</td>
<td></td>
</tr>
<tr>
<td>volcanic hazards 475–476</td>
<td></td>
</tr>
<tr>
<td>volcanic tremors 15, 204–205, 207</td>
<td></td>
</tr>
<tr>
<td>volcanic unrest 15, 472–559</td>
<td></td>
</tr>
<tr>
<td>volcanic deformation</td>
<td></td>
</tr>
<tr>
<td>analogue models of 89</td>
<td></td>
</tr>
<tr>
<td>analytical models of 88</td>
<td></td>
</tr>
<tr>
<td>numerical models of 88–89</td>
<td></td>
</tr>
<tr>
<td>volcanoes 1</td>
<td></td>
</tr>
<tr>
<td>active 1</td>
<td></td>
</tr>
<tr>
<td>basaltic edifice 1</td>
<td></td>
</tr>
<tr>
<td>composite 1</td>
<td></td>
</tr>
<tr>
<td>continuously erupting 396</td>
<td></td>
</tr>
<tr>
<td>deflation of 14</td>
<td></td>
</tr>
<tr>
<td>deformation of 13–14</td>
<td></td>
</tr>
<tr>
<td>erupting each year 395–396</td>
<td></td>
</tr>
<tr>
<td>extinct 3</td>
<td></td>
</tr>
<tr>
<td>extinction of 458–460</td>
<td></td>
</tr>
<tr>
<td>fossil 3</td>
<td></td>
</tr>
<tr>
<td>ground-deformation monitoring of 16–17</td>
<td></td>
</tr>
<tr>
<td>inflation of 13–14</td>
<td></td>
</tr>
<tr>
<td>internal structure of 444–458</td>
<td></td>
</tr>
<tr>
<td>layers and contacts of 445–447</td>
<td></td>
</tr>
<tr>
<td>loading of 13</td>
<td></td>
</tr>
<tr>
<td>monogenetic 1</td>
<td></td>
</tr>
<tr>
<td>polygenetic 1</td>
<td></td>
</tr>
<tr>
<td>potentially active 4</td>
<td></td>
</tr>
<tr>
<td>seismicity monitoring of 15–16</td>
<td></td>
</tr>
<tr>
<td>profiles of 437–438</td>
<td></td>
</tr>
<tr>
<td>seismology of 179, 474</td>
<td></td>
</tr>
<tr>
<td>shape of 436–444</td>
<td></td>
</tr>
<tr>
<td>shape effects of collapses on 440–444</td>
<td></td>
</tr>
<tr>
<td>slope of 260, 436</td>
<td></td>
</tr>
<tr>
<td>strato (stratovolcanoes) 1</td>
<td></td>
</tr>
<tr>
<td>strength of 446</td>
<td></td>
</tr>
<tr>
<td>unrest of 14</td>
<td></td>
</tr>
<tr>
<td>volcanotectonic deformation 87–178</td>
<td></td>
</tr>
<tr>
<td>volcanotectonic processes 224–271</td>
<td></td>
</tr>
<tr>
<td>volcanotectonic swarms 197–201</td>
<td></td>
</tr>
<tr>
<td>volcanotectonics</td>
<td></td>
</tr>
<tr>
<td>and classical physics 4–5</td>
<td></td>
</tr>
<tr>
<td>and geodesy 4–5</td>
<td></td>
</tr>
<tr>
<td>and geophysics 4–5</td>
<td></td>
</tr>
<tr>
<td>and models 4–5</td>
<td></td>
</tr>
<tr>
<td>and seismology 4–5</td>
<td></td>
</tr>
<tr>
<td>and structural geology 4–5</td>
<td></td>
</tr>
<tr>
<td>and tectonics 4–5</td>
<td></td>
</tr>
<tr>
<td>definition of 4</td>
<td></td>
</tr>
<tr>
<td>scope and aims of 4–5</td>
<td></td>
</tr>
<tr>
<td>volume strain 103</td>
<td></td>
</tr>
<tr>
<td>volumetric flow (effusion) rate 53, 256, 361, 393</td>
<td></td>
</tr>
<tr>
<td>water in magma 288</td>
<td></td>
</tr>
<tr>
<td>waves carrying energy 180</td>
<td></td>
</tr>
<tr>
<td>weak contacts (between layers) 147</td>
<td></td>
</tr>
<tr>
<td>weighted (normalised) data 49–50</td>
<td></td>
</tr>
<tr>
<td>welded scoria 348</td>
<td></td>
</tr>
<tr>
<td>welding of contacts 445</td>
<td></td>
</tr>
<tr>
<td>work, definition of 362</td>
<td></td>
</tr>
<tr>
<td>xenocrysts 44</td>
<td></td>
</tr>
<tr>
<td>xenoliths 44</td>
<td></td>
</tr>
</tbody>
</table>
yield strength 436
Young’s modulus
and size of body 99
definition of 88, 98
in situ 99
of common rocks 565–566
of fluids 102
values of 102
zig-zag geometry of dike paths 337