

Index

accuracy of dike measurements 37-38 basaltic edifices 1, 126, 436 accurate measurements of dikes 35-36 heights of 260 action, definition of 493 slopes of 260 minimised for actual dike path 502 baseline volcanic behaviour 473 active volcano, definition of 1 Baula fossil magma chamber (Iceland) 305 active volcanoes in the world 380 Baula laccolith 249 actual path selected by a dike 493 beach-ball diagram 185-186 aerial photographs 35 benchmark (for GPS measurements) 16 Almannagja (Iceland) 355 biaxial tension 95 bidirectional (symmetric) roses 49 amplitude 182 amygdales 43, 44 bi-logarithmic (log-log) plot 53 Anaga (Tenerife) 488 bin (of a histogram) 48 analogue models, definition of 20-21 blunt tips of dikes 63 of volcano deformation 88-89 body forces 496 analytical models, definition of 21 body waves 180-182 anisotropic rock body 100 borehole strainmeter 16, 474 anisotropic stress 95 breccia at dike tip aperture, definition of 7 brittle behaviour of rocks 238 of a volcanic fissure 357, 360 brittle-ductile transition of common rocks 570 apparent displacement across a dike 45 bulk compressibility 290 arrest of dikes 14 bulk modulus (incompressibility) 103 bulk volume of a reservoir 292 at contact with inclined sheets 448 examples of 345-348 buoyancy 240-241, 333 arrested sill 245 as part of driving pressure 331 artificial cooling of magma 526 effects on dike propagation 334, 486-490 aseismic creeping 535 b-value (for earthquakes) 192-194 differences in 202 aseismic magma transport 71 Askja caldera (Iceland) 305 aspect ratios of dikes 56 calculus of variations 505 caldera collapse 251-259 aspect ratios of sills 76 stable 258 asymmetric roses 49 attenuation 301 unstable 257 attitude 7, 46, 51 caldera sizes and magma chamber sizes 287 of sills 75 caldera-driven explosive eruption 406-407 Augustine Volcano (United States) 3 carbon dioxide in magma 288 Austurhorn fossil magma chamber (Iceland) 306-307 catastrophic risk and large eruptions 520 a-value (for earthquakes) 192-194 cavities in dike rock 72 central volcanoes 424-425 axes, principal 93 of compression (in focal mechanism) 186 shift in the location of 283, 285 axis of tension (in focal mechanism) 186 centre of compression (strain nucleus) 106 chamber-reservoir volume ratio, effects of 428-431 background seismicity 206 chemical monitoring of volcanoes 475 balloons as magma-chamber models 138 chemistry of springs for volcano monitoring 16 Bardarbunga Volcano (Iceland) 305 chilled selvage of dikes 41, 67 Bardarbunga-Holuhraun earthquake swarm 201 cinder cones 2

575

circular histograms 48	deep-seated reservoirs 3, 225, 272–324
Columbia River Basalts (United States) 411	deflation 87–88, 106
columnar (cooling) joints 450–452	deflection of dikes into sills 229–234
in a dike 42, 43	deformation 14
compliant rocks 64, 99	data 88–92
suppress (reduce) stress 129	elastic 14
composite dikes 40	inelastic 14, 88
compressibility 103	permanent 88
of gas 288	plastic 14, 88
of magma 288	source 18
compressive stress as positive 94	degassing 72
conceptual models 20	degrees of freedom 498
condition for magma-chamber rupture 237	densities of common fluids 571
conditions for subsidence 523	densities of common rocks 568-569
conduction of heat 362–366	density difference 333
conduits 382-390	between magma and host rock 241
cylindrical 382–385	density stratified reservoir 275
elliptical 386–387	depth of erosion (of an outcrop) 44
parallel-plate models of 387-390	depths of active magma chambers and reservoirs
configuration of a system 498	302–305
conjugate faults 350	depths of deep-seated reservoirs 225
conservative forces 279	depths of fossil magma chambers 305-308
conservative systems 494, 496	depths of shallow magma chambers 225, 477
constitutive laws 496	detecting active magma chambers and reservoirs
constraints 494	299–308, 476
contact as a free surface 341	deterministic forecasts 23
contact properties 445-446	difference in shape between feeders and non-feeders 71
contacts (between layers) 58, 122	differential stress 241
as free surfaces 341	dike and a graben 357
properties of 446–446	dike arrest 14, 338–348
welding of 445	by a graben 232–233
continuous (elastic) systems 497–500	permanent 61, 63, 65, 66
continuously erupting volcanoes 396	temporary 61, 63, 65, 66
contours of stress 96	dike arresters 436
controlling dimensions 12, 56	dike deflected into a sill 26, 242
convection 362	dike emplacement, induced earthquakes 146
Cook–Gordon delamination 230, 339–341	dike fingers 358
cooling (columnar) joints 450–452	in the Krafla Volcanic System 351
as paths for dikes 326	dike following a fault 509
cooling of magma to prevent eruption 525–527	dike fractures, lateral propagation of 358
coordinates for dike location 35	dike fractures, vertical propagation of 358
Coulomb criterion 251	dike initiation 325–332
crack-crack interactions 60	conditions for 331
crack-displacement modes 190	dike injection 206
craters 438	dike injection from a magma chamber 234–239
crater cones 438–439	dike intensity 435
cubic law 257, 361, 438	dike meeting a fault 510
cumulative (total) thickness of a dike 38	dike meeting a contact 340–341
cumulative plots 53	dike paths 325–378
cylindrical conduits 382–385, 439	common 505
cylindrical magma chambers 433	effects of faults on 509–512
	forecasting of 328
damage due to earthquake waves 182	in heterogeneous, anisotropic rock 507–509
Darcy's law 277–280	in homogeneous, isotropic rock 505–507
physical meaning of 278	minimum potential energy and 500–501
data analysis and presentation 46–53	potential 328
Deccan Traps (India) 411	potential number of 492, 502

dike propagation 483–512	dilation (volume strain) 103
buoyancy effects on 486-490	dip 7, 51
direction of 68-71	dip direction 51
earthquakes induced by 70	dip distribution of sheet intrusions 125
energy for 503-504	dip of lava piles 284
in all directions 69	dip-dimension, definition of 7
lateral 68	dip-slip faults, ring-faults as 253
least action principle and 491-500	direction of dike propagation 68-71
quasi-static 500-502	directional data 48
dike swarms 36	directional distinction 49
dike tips 46	discharge velocity 277
and grabens 349	discontinuities 63
and normal faults 349	discrete systems 497
fractures around 67	dislocation models of dikes 19, 143-146
lateral 61	surface deformation and 91
proportion of 73	displacement 97–98
rounded 64	doming
vertical 61	as a condition for ring-fault formation 132-138
as a solidified magma-filled fracture 7	during caldera collapse 405
dike-induced deformation 512-520	of the surface 523
dike-induced faulting 483-484	double magma chambers 272-275, 428
dike-induced fractures 67	dynamics of 294–299
dike-induced internal displacements 513-520	formation of 281–285
dike-induced internal stresses 513-520	double-couple earthquakes 18, 185–186
dike-induced surface displacements 513-520	downrift migration of earthquakes 70
dike-injection frequency 429-431	drain-back 69
dike-injection rate 234	drilling into a dike 526–528
dike-lets 72	driving shear stress (stress drop) 189, 251
dike-path length 345	duration of earthquake swarms 200-201
dike-propagation paths 332–338	duration of eruptions 390-400
dike-rock texture 67	dynamics
dikes 7	of deep-seated reservoirs 290-293
and sheets in a layered crust 146-156	of double magma chambers 294-299
and sheets in elastic half-spaces 141-146	of shallow magma chambers 286-290
and sills making volcanoes stronger 447	of volcanic eruptions 379-423
deflected into sills 229-234	
dip-dimension of 12	earthquake swarms 15, 70, 179, 197-201, 326,
dips of 51	473, 507
dislocation models of 143-146	duration of 200-201
drilling into 526–528	earthquakes
fingers of 69	associated with dike emplacement 146
last movement of magma in 69	a-values of 192-194
lateral propagation of 57	b-values of 192–194
length–thickness ratios 55	concentration at boundary faults 523-524
length of 11	epicentre of 183-187
magma front of 198	explosion 203
proportion of feeders versus non-feeders 73-74	focal mechanism of 183-187
rate of injection of 226	focus of 18
regional and local 325	Gutenberg-Richter relation 191-192
segmented 199-200	high-frequency (A-type) 195-202
stress concentration around 356	hypocentre of 183-187
strike-dimension of 12	low-frequency (B-type) 203
surface effects of 91	magnitudes of 187-194
thickness variations of 56	migration of (during dike propagation) 70
tips (ends of) 61-67	moment of 187-194
dike-segment overlap 62	moment-magnitude scale 188
dike-sill contacts 335-336	slip surface of 188

earthquakes (cont.)	extensometer (strainmeter) 16
stress sources of 195-197	external forces 495
triggering eruptions 205–206	extinct volcanoes 3
effect of gravity in models 241	extinction of volcanoes 458-460
effects of layering 351	Eyjafjallajökull (Iceland) 24
El Hierro (Canary Islands) 300	
elastic constants 101-104, 565-567	failed eruptions 201
elastic deformation 14	failed magma paths 61
elastic deformation of volcanoes 87	fault-plane solution (focal mechanism) 18
elastic energy 332, 521	faults 8
elastic half-space 105, 513	as shear fractures 7
elastic mismatch 233–234, 343–345	aseismic slip (creep) of 8
elastic potential energy 406	cumulative (total) displacement of 8
elastic systems, least action principle for 497–500	dip-dimension of 11
elastic-energy magnitude (EEM) scale 521-522	displacement of 8
elastic-plastic expansion 281	in volcanoes 452–454
Eldgja eruption (Iceland) 381	induced by dikes 483
electronic distance meter 16, 90	length of 8
elliptical conduits 386–387	rupture length of 10
energy	slip of 8, 11
dissipation (during dike propagation) 65	width of 8
for dike propagation 503–504	faults and dikes 45
release rate, definition of 330	feeder-dikes 46, 93, 506
enhanced geothermal systems 525, 529	and non-feeders 71–75
epicentre 183–187	closing of 392
Erebus Volcano (Antarctica) 396	shape of
eroded volcanoes, data from 24	volume of 287
error function 363	Fernandina Volcano (Galapagos) 404
Erta Ale Volcano (Ethiopia) 304, 396	Ferrar Dolerite sills (Antarctica) 480
eruptions	field studies of volcanotectonic structures 34-86
duration of 390–400	fingers (of a dike) 69, 358
dynamics of 379–423	fissure eruptions 356–361
earthquake triggering of 205–206	flat ellipses, dikes as 54
failed 201	flexural rigidity 250
forecast of 200	flexural slip 250
frequencies 294, 379–382	flow channelling 387, 438
imminent 204	flow length (of lavas) 437
intensity of 401, 521	fluid pressure, excess 102
large, definition of 287	fluid transport along a dike 45
moderate, definition of 287	fluids, Young's modulus of 102
ordinary 286	focal depth 184
probability of 68	focal mechanism (fault-plane solution) 18, 183–187
quantification of 521–522	and axis of compression 186
sizes of 379–382	and axis of tension 186
small, definition of 287	and nodal planes 186
time-to-peak of 399	focal sphere 186
volumes 293, 393	forces
Esja (Iceland) 449	body 496
evacuation 525	external 495, 498
excess pressure 102, 124, 240, 331, 484	generalised 497
decline of 392	internal 495–496, 498
exponential decrease in 394	surface 496
excess spreading 231	forecasting eruptions 472–559, 520–524
existential risk and large eruptions 520	form (geometry) of magma chambers 477
explosion earthquakes 203	formation and dynamics of magma chambers 272–324
extension fracture 7, 70	formation and evolution of volcanoes 424–471
magma filled 325-326	formation of a shallow magma chamber 227

formation of deep-seated reservoirs 272–277 formation of double magma chambers 281–285	for discrete systems 492–497 most general version of 497
fossil magma chambers 4 fossil volcanoes 3	hard-linked fractures 58 hazards
fracture resistance 446	assessment of 74
fracture toughness	volcanic 475–476
definition of 330	
	heat conductivity 364
of common rocks 569–570	heat
fractures	definition of 362
around dike tips 67	flow 362
induced by dikes 67	flux 362
free surface 57	transfer from sheet intrusions 361–366
free-surface effects (on dikes) 72, 106	heat-flux density 362
frequency vs eruption volume 396	heights of table mountains 276, 280
friction, internal 251	Hekla eruption (Iceland), effusion rate of 394
Fuji Volcano (Japan) 437, 439	Hekla Volcano (Iceland) 294
full-space models of magma chambers 109	Hengill Volcano (Iceland) 196
	Hengill Volcanic System (Iceland) 6, 409
gas	heterogeneity and anisotropy of volcanoes 24
composition monitoring 16	heterogeneous rock body 100
expansion in magma 487	heterogeneous stress field 94
exsolution (effect on excess pressure) 393	high-frequency (A-type) earthquakes 195–202
Geitafell Volcano (Iceland) 296, 327, 329	histograms 47–48, 51–52
Geitafellsbjörg fossil chamber (Iceland) 305, 329	historical time 2
general stress 94	Holocene 3
generalised forces 497	homogeneous rock body 100
geochemical techniques for volcano monitoring 16	homogeneous stress field 94
geometry of a volcano 436-444	Hood Volcano (United States) 437
geophysical data inversion 18	Hooke's law 98–101
geophysical techniques and definitions 12-17	hook-shaped fractures 58-59
geysers 205	horizontal tension 123
GPS (Global Positioning System) 16, 90, 475	horns, as failed dike paths 61-62
graben 516	hot-dry-rock systems 525
and a dike in North Iceland 357	human-induced cooling of magma 526
and an arrested dike 67	hydraulic fractures
arresting dike tips 67	propagation of 490-491
as a stress barrier 67	to prevent eruptions 527–529
in the Krafla Volcanic System 354	hydrofractures 7
nested 143-144	hydro-shearing 525
rule 354, 516	advantages and disadvantages of
subsidence 143	535–536
subsidence inducing large eruptions 407–411	economy of 535
grain size of dike rock 40	for geothermal energy 535
gravity, effects in modelling 241	of faults 533–534
Greek alphabet 563	procedure 530–533
Griffith theory 252	producing earthquakes 536
Grimsvötn Volcano (Iceland) 305	social and legal issues of 536
ground deformation monitoring 16–17	stress effects of 534-535
ground elevation and tilting 473-474	to form a stress barrier 534
ground movement 182–184	to minimise stress difference 534-535
Gutenberg–Richter relation 191–194	to prevent eruptions 529–536
	to reduce strain energy 530, 533
Hafnarfjall ring-fault 254	hypocentre (focus) 18, 183-187
half-space model 19, 150	
Hamilton's principle of least action	ideal geometries of magma chambers 236
for an elastic solid 498-499	imminent eruptions 204
for continuous systems 497-500	improving volcanotectonic models 23-26

inclined sheets 7, 225–226	definition of 247, 250
as solidified magma-filled fractures 7	Lagrangian (function)
cross-cutting of 327	definition of 493
potential paths of 449	for an elastic system 499
surface effects of 91	Laki eruption (Iceland) 381
swarm of 296, 449	Lamé's constant 104
incompressibility 103	landslides (lateral/sector collapses) 259–261
inelastic deformation 14, 88	large eruptions
infill material in a fracture 7	and catastrophic risk 520
infinitesimal strain 100	and existential risk 520
inflation (doming) 87, 91, 106	definition of 287
definition of 88	effusive 407–411
of deep-seated reservoirs 273	explosive 400–407
InSAR (Interferometic Synthetic Aperture Radar) 16,	forecasting of 520–524
90, 475	prevention of 524–536
in situ tensile strengths of rocks 569	Las Canadas caldera (Tenerife, Spain) 384, 442, 488
internal forces 495–496 internal friction 251	last movement of magma in a dike 69 latent heat of solidification 366
internal structure of a volcano 444–458	
interpreting data 17–26	lateral migration of conthaugues 70
intrusions	lateral migration of earthquakes 70
and eruption frequencies 428–436	lateral propagation of dikes 57, 68, 358
	lateral tips of dikes 61 lateral/sector collapses (landslides) 259–261
and eruption statistics 295 inversion	lava flow down into fissures 71
of dike-induced deformation data 145	lava piles, dip of 284
of geophysical data 18, 130	lavas, physical properties of 572
inward-dipping ring-fault/ring-dike 255, 257–258,	layered crust, dike and sheet emplacement in 146–150
404–405	length of a dike 39, 53
irregular boundaries of magma chambers 235	lengths of volcanic fissures 54
isotropic rock body 100	length–thickness (aspect) ratios of dikes 55–56
isotropic stress 94	level of neutral buoyancy 487–490
isotropic sucss 74	levelling techniques 474
jogs and notches at contacts 328	linear elastic bodies 88
joints	linkage of dike segments 58–61
as hydrofractures 246	lithology of dike and host rock 40
as weaknesses 451	lithostatic equilibrium, for a reservoir 292
effects on Young's modulus 450	lithostatic state of stress 94
transporting fluids 450	load 432
Jorukleif fault (Iceland) 454	local sheet swarms 122
Solution laute (Ecolatia) 15 1	local stresses around a magma chamber 111, 239, 332
Katla Volcano (Iceland) 304	log-log (bi-logarithmic) plots 53
Katmai Volcano (United States) 381, 400, 404	lopolith 247, 250
Kerid pit crater (Iceland) 2	Love waves 183
Ketillaugarfjall (Iceland) 456	lower hemisphere plots 52
Kilauea feeder-dike 350	low-frequency (B-type) earthquakes 203
Kilauea Volcano (United States) 2, 304, 404	lubrication of fault planes 253
kinetic energy 494	1
Kluchvskoy Volcano (Russia) 304	magma
Krafla caldera (Iceland) 305	accumulation in reservoirs 276, 281
Krafla Volcanic System (Iceland) 197, 298	compressibility 291
Krakatau (Krakatoa) eruption (Indonesia) 381, 401	cooling of to prevent eruption 525–527
Krossanesfjall (Iceland) 236	flow direction in a dike 68–71
Krossanesfjall net-veined complex 306-307	front in a dike 198
-	injection 42
La Garita eruption (United States) 382, 401	layer 277
laccoliths 121	migration in deep-seated reservoirs 277-280
emplacement 247–251	movement through the crust 325-378

physical properties of 572	mechanical layering, effects of 155
pressure 123	melt fraction of magma chambers 479
supply 282	Mercalli intensity scale 187-188
transport to the surface 382–390	metal rods (strainmeters) 16
transport, aseismic 71	mineral veins 7, 10, 44
viscosity of 436	minimum potential energy
volume leaving the chamber 406	and dike paths 500–501
magma chambers	and fluid transport 278, 281
as a crustal magma body 225	mixed-mode fractures 59, 251, 344
as a dynamic system 235	Miyakejima Volcano (Japan) 404
as a sink 425	models 20–27
as a source 425	moderate eruption defined 287
as cavities, analogue models 109-121, 137-140	modes I, II, III of cracks 190
as cavities, numerical models 122-137	Modified Griffith criterion 252
as holes 116–120	Mogi model
as nuclei of strain 105-109	advantages of 108
as oblate ellipsoids 131	as a point source 89
as sills 120–121	definition of 105
condition for rupture of 237	disadvantages of 108-109
depths of 302–305	of magma chambers 105–109
detection of 476	moment-magnitude scale 188
detection of active 299-302	moments of earthquakes 187-194
ellipsoidal 114–115	monitoring
form (geometry) of 477	dike propagation 326
fossil 4	seismic (of volcanoes) 206-208
irregular boundaries of 235	volcanic unrest 12
ideal geometries of 236	multiple dikes 38-39, 42
in layered (anisotropic) crust 126-132	multiple intrusions 480
initiation 224–234	multiple sills 227–229
irregular in shape 114	
local stress around 111, 239	necks 384
melt fraction of 479	nested grabens 143–144
modelled as a balloon 138	networks of dikes and sills 449
Mogi model of 105–109	neutral buoyancy level 487-490
partially molten 286	nodal planes 186
roof of 25	non-conservative systems 496
rupture of 234–239, 326, 481–483	non-double couple earthquakes 18, 186
sill-like (oblate spheroid) 125	non-feeder (arrested) dikes 46, 47, 330
sizes in relation to caldera sizes 287	non-linear elastic behaviour 100
stress contours around 126	non-normalised (unweighted) data 49-50
three-dimensional numerical models of 130–131	normal strain 98
totally molten 286, 481	normal stress 92, 98
volume estimates of 301–302	normal-faulting earthquakes 186
walls and roofs, tensile strength of 485–486	normalised (weighted) data 49–50
magma-path formation 426–428	Novarupta eruption (United States) 381, 400
magnetic effects 36	nucleus of strain (point pressure) 105
magnetic fabric 69	numerical models
magnitudes of earthquakes 187–194	definition of 21–22, 23
mantle plume 276–277, 280	of dike paths 334–338
material points (for continuous systems) 500	of volcano deformation 88-89
material toughness 504	-1.1-411::4
definition of 330 of common rocks 569–570	oblate ellipsoids, magma chambers as 131 offset (dike/fissure) segments 64, 358
Mauna Kea Volcano (United States) 436, 438	Oman (Semail) ophiolite (Oman) 308
Mauna Loa Volcano (United States) 436, 438	open ring-faults 255
Mayon Volcano (Philippines) 437	opening displacement 7, 359–360
measurement line (for dike/fracture studies) 36	ophiolites 303, 435
measurement line (for disc/fracture studies) 30	оршониз 202, 422

582 Index

ordinary eruption, definition of 286 principal planes of stress 93 oriented data (roses for) 49 principal stress directions 95 orthogonal fractures 29 principal stress magnitudes 95 outward-dipping ring-fault/ring-dikes 253, 255, 256, principal stress rotations 60 402-404, 457 principal stresses 93 principle of least action and dike propagation paths overburden pressure 94 overlap (between dike segments) 62, 64 491-500 overlapping spreading centres 58 principle of minimum potential energy 493, 499 principle of virtual displacements 494 overpressure (driving pressure) 239 principle of virtual work 494 palaeo-rift zones 35 probabilistic forecasts 23 paleo-flow directions in a dike 69 probability of eruption 68 parallel-plate models of sheets 387-390 process zones 70 profile for dike/fracture studies 35 partially molten magma chambers 286, 289 particles (for discrete systems) 500 propagation of dikes 45, 483-512 paths of dikes 19 proportion of dike tips 73-74 penny-shaped crack 120 proportion of feeders versus non-feeders 73 permanent deformation 14, 88 P-waves (primary waves) 180-181 permeability 43 phase transition during solidification 366 quantifying eruptions 521-522 phenocrysts 44 quasi-static dike propagation 500-502 photographs in the field 46 physical constants 564 radiation 362 physical properties of lavas 572 radius of curvature physical properties of magmas 572 equation for 78 Pinatubo eruption (Philippines) 381, 400-401 of a dike tip 65 Pinatubo Volcano (Philippines) 404 Rainier Volcano (United States) 437 piston-like caldera roof 406 rate of injection of dikes 226 Piton de la Fournaise Volcano (Reunion, France) 2, 404 Rayleigh waves 183 plastic deformation 14, 88 real fault-slip plane 186 plugs 384 regional dikes 326 plugs and necks 457-458 regional stress field 111 regression analyses 18, 47 plutons 282 point pressure source 105-106 reinforcing effects of sheets in volcanoes 447 reservoirs (deep-seated) 13, 225, 272-324 Poisson's ratio definition of 101-103 bulk volume of 292 effect on volume and shape 103 density stratified 275 for common rocks 565-566 depth of 225 detection of active 299-302 values of 102 Poisson's relation 104 dome-shaped 426 pole plots 52 dynamics of 290-293 poles (to dike/fracture planes) 51 formation of 272-277 polygenetic volcanoes 88 initiation of 273 pore compressibility defined 291 magma accumulation in 276 pore-fluid pressure 252 magma migration in 277-280 porosity of reservoirs 430 titled contacts in 276 potential energy 494 resistance of dike rock to erosion 41, 42 and fluid transport 278-279 reverse-faulting earthquakes 186 total 499, 503 Reydarartindur fossil magma chamber (Icealnd) 479 potentiometric surface 276, 280 Reykjadalur Volcano (Iceland) 112-113 power-law distribution 46, 53 Reykjanes Peninsula (Iceland) 347 ribs at the surface of a joint 69 for earthquakes 191-192 for eruptions 380 Richter scale 188 precision levelling technique 89 rifting event 42 preventing large eruptions 524-536 right-hand rule for strike measurements 48

rigid-body rotation 97

rigid-body translation 97

primary waves (P-waves) 180-181

principal axes 93

ring-dikes 454–456, 509	shift in location of central volcano 283, 285
dip variation of 455–457	SI units and prefixes 560–562
propagation of 253	sills 75–76
ring-faults 251, 454–456	arrest of 245
as dip-slip faults 253	as aquifers 450
as normal faults 133, 139	as different from dikes and inclined sheets 76
as reverse faults 133, 139	as different from lava flows 75
dip variation of 139	as fossil magma chambers 308
formation of 132–138	as oblate spheroidal magma chambers 125
inward-dipping 255, 257–258	as solidified magma-filled fractures 7
outward-dipping 253, 255, 256	aspect ratios of 76
ripples 182	attitude of 75
rose diagrams 48–50	emplacement of 242-247
rounded tips 64	geometries of 76
rows in a dike 42	magma chambers as 120–121
rupture 180	rate of solidification of 226, 228
1	thermal effects of 76
Sakurajima Volcano (Japan) 396–397	tunnel-shaped 244
Sandfell fossil magma chamber (Iceland) 305	single magma flow 294
Sandfell laccolith (Iceland) 249	Slaufrudalur fossil magma chamber (Iceland)
Santorini caldera (Greece) 346, 443	117, 306
satellites for geodetic measurements 16	slip 180
scan-lines for dike/fracture studies 35	slip surface of an earthquake rupture 188
scoria cones 2	slow-spreading ridges 303
secondary minerals 43	small eruption defined 287
zonation of 44	soft rocks 99
sections for dike/fracture studies 35, 36	soft layers 73
segmented dikes 39, 41, 53, 58-61, 199-200	soft-linked fractures 58
segments	solidification
as a single fracture 58	definition of 363
of a volcanic fissure 68	of magma in a sheet intrusion 361-366
offset (of dikes) 64	solid-matrix compressibility defined 290
seismic moment 188–194	sound waves 180
seismic monitoring of volcanoes 206-208	source of deformation 18
seismic tomography 301	spatter-and-scoria cones 2
seismic waves 179–183	specific heat capacity, definition of 364
seismicity, background 206	specific latent heat, definition of 366
seismometers 474	spreading vectors 50
shallow crustal magma chambers	stable caldera collapse 258
definition of 225	Stardalshnjukar fossil magma chamber (Iceland)
depth of 225, 477	305–306
dynamics of 286–290	Stardalur Volcano (Iceland) 306
shape	state of stress close to a dike 240
of a dikes 53–58	statistical techniques for structural data 18
of a volcano 436-444	statistical-probabilistic models 20
shear fracture 7	steps during dike propagation 500-501
shear modulus 103	stereograms 48
shear movements along discontinuities 66	stereoplots 51–52
shear strain 97	stiff layers 73
shear strength 251	stiff rocks 63
shear stress 93	stiffness, definition of 99
sheet intrusions 325	Stomboli Volcano (Italy) 396-397
change in dip and thickness 113	straight-line fit to data 19
dip distribution of 125	strain 97–98
swarms of 435	infinitesimal 100
sheeted dike complexes 225	normal 98
sheets as internal framework of a volcano 447–450	shear 97

-t: 502 504 522	1: 1 1:4: 6 522
strain energy 503–504, 523	subsidence, conditions for 523
dissipation during dike propagation 66	subvertical flow of magma 69
Mogi model and 107, 110	supervolcanoes 521
of a body 498	surface deformation, causes of 90-91
of a volcano 121	surface of displacements 122
per unit volume 503	surface effects of dikes 348–356
total 504	surface forces 496
strain rate 97	surface stress peaks 133, 349
strainmeters 16, 474	surface stresses 122
stratigraphic level 35, 36	surface subsidence above dikes 349
stratovolcanoes 127	surface uplift peaks 516
as strong structures 438	surface waves 180, 182–183
heights of 260	swarms of inclined sheets 449
slopes of 260	S-wave shadows 181, 301, 476
streamlines, trajectories as 432	S-wave velocities and temperature 181
strength 99	5-wave velocities and temperature 181
definition of 99	table manutaine heights of 276, 200
	table mountains, heights of 276, 280
of a volcano 446	Tambora eruption (Indonesia) 381, 400–401
of common rocks 568–569	Tambora Volcano (Indonesia) 441
shear 251	tangent modulus 101
stress 92–96	Taupo eruption (New Zealand) 381
anisotropic 95	tectonics 4
barrier 230–233, 342, 534	Teide Volcano (Tenerife, Spain) 442
concentration 60	temperature
concentration and intrusion frequency 431-436	definition of 362
concentration around a dike 356	gradient 362
concentration around a hole 432	tensile strength 238, 568–569
concentration around magma chambers 127-137	of the roof and walls of a chamber 485–486
contours 96	tensile stress as negative 94
contours around a magma chamber 126	tension fracture 7, 8, 10, 28
definition of 92	dike-induced 350
drop (driving shear stress) 189, 252	theoretical stress magnitudes 66
effects of hydro-shearing 534–535	thermal diffusivity 363
general 94	thermal effects of sills 76
heterogeneous 94	thermal effects on dike propagation 332
homogeneous 94	thermal energy, definition of 362
isotropic (hydrostatic) 94	thickness
lithostatic 94	of dikes 38, 52
magnitudes of 95, 124	of an intrusive sheet 7
monitoring 523	variations of dikes 56
normal 92, 98	Thingvellir Graben (Iceland) 408–410
principal planes of 93	three-dimensional numerical model of a magma
shear 93	chamber 130–131
sources for earthquakes 195–197	Tianchi eruption (China) 381
tensor 93	tilted contacts in reservoirs 276
trajectories 95–96, 123–124, 432	tiltmeters (inclinometers) 16, 90, 474
transfer 205	tips
vector 93	blunt 63
stresses associated with dikes and sheets 140–156	measurements of 65
stress-homogenisation 533	of dikes 61–67
stress-intensity factor 330	radius of curvature of 65
strike 6, 48	wedge-like 62
strike and dip measurements of a dike 36-37	Toba caldera (Indonesia) 443
strike-dimension 7, 11	Toba eruption (Indonesia) 381-382, 401
strike-slip-fault earthquakes 186	top craters 438-440
structural geology 4	Torres del Paine fossil magma chamber (Chile) 248,
techniques and definitions of 5–12	308 478

total energy for dike-fracture formation 511	numerical models of 88-89
total fluid pressure 238	volcanoes 1
total head 279	active 1
total potential energy 499, 503	basaltic edifice 1
total radiated energy in earthquakes 193	composite 1
total strain energy 504	continuously erupting 396
totally molten magma chamber 286	deflation of 14
traction 93	deformation of 13–14
trajectories 95–96, 505	erupting each year 395–396
transfer faults 59	extinct 3
transform faults 59	extinction of 458–460
transpression 184	fossil 3
transtension 184	ground-deformation monitoring of 16–17
trapdoor caldera collapse 254, 258	inflation of 13–14
traverse for dike/fracture studies 35	internal structure of 444–458
tremors (volcanic) 204–205, 207	layers and contacts of 445–447
triple magma chambers 304	loading of 13
tunnel-shaped sill 244	monogenetic 1
	polygenetic 1
underpressure for ring-fault formation 133	potentially active 4
unidirectional (asymmetric) roses 48–49	seismicity monitoring of 15–16
unit length (for dikes) 49	profiles of 437–438 seismology of 179, 474
unrest (volcanic) 12, 472–559 monitoring of 12	shape of 436–444
monitoring of 12 monitoring techniques 474–475	shape of 430–444 shape effects of collapses on 440–444
signals 473–474	slope of 260, 436
unstable caldera collapse 257	strato (stratovolcanoes) 1
unweighted (non-normalised) data 49–50	strangth of 446
upward migration of earthquakes 70	unrest of 14
upward inigration of cartifquakes 70	volcanotectonic deformation 87–178
variational symbol 494	volcanotectonic deformation 37–178
velocity model 186	volcanotectoric processes 224–271 volcanotectoric swarms 197–201
vertical collapse (caldera collapse) 251–259	volcanotectonics
vertical collapse and volcano shape 440–444	and classical physics 4–5
vertical ends (of dikes) 65	and geodesy 4–5
vertical propagation of a dike fracture 358	and geophysics 4–5
vertical tips of dikes 61	and models 4–5
vesicles in dike rock 43, 67	and seismology 4–5
Vesturhorn fossil magma chamber (Iceland) 306–307	and structural geology 4–5
vibrations (in the Earth) 179	and tectonics 4–5
view north (east, south, or west) defined 6, 46	and volcanology 4-5
virtual displacement, definition of 494	definition of 4
virtual work and dike propagation paths 491–500	scope and aims of 4-5
virtual work, definition of 494	volume strain 103
viscosities of some crustal fluids 571	volumetric flow (effusion) rate 53, 256, 361
viscosities of magmas 436, 572	393
volcanic earthquakes 179-223	
volcanic edifices 424-428, 436	water in magma 288
volcanic explosivity index (VEI) 521	waves carrying energy 180
volcanic fissures 38, 68	weak contacts (between layers) 147
lengths of 54	weighted (normalised) data 49-50
volcanic hazards 475–476	welded scoria 348
volcanic tremors 15, 204-205, 207	welding of contacts 445
volcanic unrest 15, 472-559	work, definition of 362
volcano deformation	
analogue models of 89	xenocrysts 44
analytical models of 88	xenoliths 44

586 Index

yield strength 436 Young's modulus and size of body 99 definition of 88, 98 in situ 99 of common rocks 565–566 of fluids 102 values of 102

zig-zag geometry of dike paths 337