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Introduction

In the first four sections we show how, starting with the usual description of

free groups by means of reduced words, it is possible to arrive at a definition of

the groups RF (G) and their associated R-trees XG, which are the objects of

study in this book. The final section summarises the contents of the following

chapters.

1.1 Finite words and free groups

In constructing free groups, one may start from the collection of all finite words

w = x
e1
i1

x
e2
i2
· · ·xen

in

over an alphabet X ∪X−1, where X is some given set, e1, . . . ,en ∈ {1,−1},

and

X−1 =
{

x−1 : x ∈ X
}

is a set in one-to-one correspondence with X via the map x �→ x−1 such that

X ∩ X−1 = ∅. We extend this map to an involution of X ∪ X−1 by setting

(x−1)−1 = x. A word w can be thought of as a function

{1,2, . . . ,n}→ X ∪X−1,

for some integer n ≥ 0, the unique word of length 0 being the empty word ε . A

word w = x
e1
i1

x
e2
i2
· · ·xen

in
is called reduced if we have x

e j

i j
	= x

−e j+1

i j+1
for all indices

j with 1 ≤ j ≤ n−1, that is, if w does not contain a subword of the form xe
i x−e

i .

Clearly, the empty word ε itself is reduced.
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2 Introduction

1.2 Words over a discretely ordered abelian group Λ

One can generalise the above set-up by taking an arbitrary discretely ordered

abelian group1
Λ, and considering ‘infinite words’ w : [1,α] → X ∪X−1 for

α ≥ 0, where

[1,α ] =
{

β ∈ Λ : 1 ≤ β ≤ α
}

and where 1 denotes the least positive element of Λ, the case α = 0 correspond-

ing to the empty word ε . This has indeed been done; see Myasnikov, Remeslen-

nikov and Serbin [40]. In this setting the concept of reducedness still makes

sense: a word w as above is reduced, if there does not exist β ∈ [1,α −1] such

that w(β +1) = w(β )−1. Clearly, the empty word ε is reduced. Let R(Λ,X) be

the set of all reduced words. We define the inverse of a word w on [1,α] as the

function w−1 given on the same domain [1,α] by

w−1(β ) = w(α −β +1)−1, 1 ≤ β ≤ α.

One can check immediately that if w is reduced then so is w−1.

The concatenation of two words u,v on domains [1,α] and [1,β ], respec-

tively, is defined in a natural way as the word u ◦ v with domain [1,α + β ]

given by

(u◦ v)(ξ ) =

⎧

⎨

⎩

u(ξ ), 1 ≤ ξ ≤ α

v(ξ −α), α +1 ≤ ξ ≤ α +β

⎫

⎬

⎭

(ξ ∈ [1,α +β ]).

In this situation one can define a partial multiplication (reduced concatenation)

on R(Λ,X) in a way that is analogous to multiplication in a free group. We first

define, for u,v ∈ R(Λ,X), com(u,v) to be the largest common initial segment

of u and v, more precisely, com(u,v) = u|[1,γ] with γ ∈ Λ and γ ≥ 0 such that

u(ξ ) = v(ξ ), ξ ∈ [1,γ],

and either γ = min{α,β} or u(γ +1) 	= v(γ +1). The problem with this defi-

nition is, of course, that com(u,v) does not always exist, for which reason we

shall only be able to define a partial multiplication on R(Λ,X). Suppose that

w := com(u−1,v) is defined. Then we can write u−1 = w ◦ u1, v = w ◦ v1, so

that u = u−1
1 ◦w−1, and we define the reduced product uv of the reduced words

u and v by setting

uv = u−1
1 ◦ v1.

1 By an ordered abelian group, we shall always mean a totally ordered abelian group.
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1.2 Words over a discretely ordered abelian group Λ 3

Since u and v are reduced, so is uv. In this way, we obtain a partial multipli-

cation on R(Λ,X), which one can show is associative if it is defined; that is, if

uv and vw are defined, then (uv)w is defined if and only if u(vw) is defined, in

which case (uv)w = u(vw). (Unfortunately, none of the elegant constructions

of a free group that circumvent the need for establishing associativity work

directly in this situation.)

Note that the empty word ε (corresponding to α = 0) is a two-sided identity

element, that is,

εu = u = uε, u ∈ R(Λ,X).

Also, we have

uu−1 = ε = u−1u, u ∈ R(Λ,X).

Apart from the fact that reduced multiplication is only a partial operation,

another marked difference from the free group case is that there can be words

w with w 	= ε but w2 = ε .

Example 1.1 Let Λ = Z2 with right lexicographic ordering, so that the least

positive element is (1,0). Let α = (0,1) and fix x ∈ X . Define a word w on

[(1,0),α] via

w(β ) =

⎧

⎨

⎩

x, β = (s,0), s ≥ 1,

x−1, β = (s,1), s ≤ 0.

Then w is reduced and non-trivial, and w2 = ε .

There is also a notion of a cyclically reduced word: a word w ∈ R(Λ,X) is

cyclically reduced if w(1) 	= w(α)−1. Let

CDR(Λ,X)

=
{

w ∈ R(Λ,X) : w = u◦ v◦u−1 for some cyclically reduced word v
}

.

One can show that

CDR(Λ,X) =
{

w ∈ R(Λ,X) : w2 is defined and w2 	= ε
}

∪
{

ε
}

;

see Lemma 3.6 in [40].

We say that G ⊆CDR(Λ,X) is a subgroup of CDR(Λ,X), if u,v ∈ G implies

that uv is defined and that uv ∈ G, if u ∈ G implies that u−1 ∈ G, and if ε ∈ G.

If G is a subgroup of CDR(Λ,X), one can show that the function L : G →

Λ given by L(w) = α , where the domain of w is [1,α ], and L(ε) = 0, is a

Lyndon length function on G and gives rise to an action of G on a Λ-tree that is
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4 Introduction

free and without inversions. (These terms are explained in Appendix A.) This

generalises the fact that a free group, and so any subgroup, acts freely on its

Cayley graph with respect to a basis; this graph is a tree. In fact, one can prove

the following.

Theorem 1.2 Let Λ be a discretely ordered abelian group. A group G acts

freely and without inversions on a Λ-tree if and only if G is a subgroup of

CDR(Λ,X) for some set X.

This is shown in [11]; the backward implication also appears in [40].

1.3 The case where Λ is densely ordered

At this stage, the question arises: can something analogous be done if instead

we start from a densely ordered abelian group Λ? The first problem is that

there is no longer a least positive element, so we replace a domain [1,α] with

an interval [0,α] where α ≥ 0. A more serious problem, however, is that con-

catenation can no longer be defined as above. Our solution is to replace the set

X ∪X−1 by a (discrete) group G. Let

F (Λ,G) :=
⋃

α∈Λ

α≥0

G[0,α] =
{

f : [0,α]→ G : α ∈ Λ, α ≥ 0
}

be the set of all functions with values in G defined on an interval of Λ of the

form [0,α] for some α ≥ 0. Concatenation is then replaced by an operation

denoted ∗, the star product, defined as follows: if f ,g ∈F (Λ,G) are functions

with domains [0,α] and [0,β ], respectively, then f ∗g is the function given on

the interval [0,α +β ] of Λ via

( f ∗g)(ξ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (ξ ), 0 ≤ ξ < α

f (α)g(0), ξ = α

g(ξ −α), α < ξ ≤ α +β

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(ξ ∈ [0,α +β ]).

The function 1G defined on the interval [0,0] = {0} by 1G(0) = 1G (where 1G

is the identity element of G) is a two-sided identity element with respect to the

star operation; that is, we have

f ∗1G = f = 1G ∗ f , f ∈ F (Λ,G).
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1.4 The case where Λ = R 5

We also have a notion of the formal inverse f−1 of a function f ∈ F (Λ,G): if

f is defined on the domain [0,α] then f−1 is the function given on the same

interval [0,α] by

f−1(ξ ) =
(

f (α −ξ )
)−1

, 0 ≤ ξ ≤ α.

In this setting there is also a notion of a reduced function, which necessarily

needs to be somewhat more elaborate. A function f ∈ F (Λ,G) defined on

the interval [0,α] of Λ is called reduced if, for each point ξ0 ∈ (0,α) with

f (ξ0) = 1G and every element ε ∈Λ with 0< ε ≤min{α−ξ0,ξ0}, there exists

some δ ∈ Λ such that 0 < δ ≤ ε and such that f (ξ0+δ ) 	=
(

f (ξ0−δ )
)−1

. The

set of all reduced functions in F (Λ,G) is denoted by RF (Λ,G). Given a

function f : [0,α]→ G in F (Λ,G), let us call an ε-neighbourhood

[ξ0 − ε,ξ0 + ε] ⊆ [0,α]

of a point ξ0 ∈ (0,α), with f (ξ0) = 1G, a cancelling neighbourhood around

ξ0 if f (ξ0 − δ ) =
(

f (ξ0 + δ )
)−1

for all 0 < δ ≤ ε . Then we can say that a

function f ∈ F (Λ,G) as above is reduced if and only if there does not exist a

cancelling neighbourhood around any interior point of the domain [0,α] of f

satisfying f (ξ0) = 1G.

For u,v ∈ F (Λ,G), an analogue of com(u,v) can be defined and, if the el-

ement com(u−1,v) =: w exists, so that u−1 = w ∗ u1 and v = w ∗ v1, we may

define the reduced product uv of u and v by uv = u−1
1 ∗ v1. This gives a par-

tial multiplication on F (Λ,G) that is associative when defined. It can also

be shown that the product of two reduced functions, when it exists, is again

reduced.

1.4 The case where Λ = R

In this book, we shall confine our attention to the case where Λ =R, taking the

view that this is already quite difficult to deal with (in particular, the proof of

the associativity of reduced multiplication is non-trivial). In this case (reduced)

multiplication is always defined, and we obtain a group denoted by RF (G),

with the formal inverse of a reduced function f acting as a two-sided inverse

of f and with 1G as the neutral element.

There is a construction of an R-tree XG on which RF (G) acts with point

stabilisers isomorphic to G. More precisely, by definition, each element f of

RF (G) has a real number L( f ) assigned to it, namely the length α of its
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6 Introduction

domain [0,α]; it is not hard to see that the function L : RF (G)→R defined in

this way is a Lyndon length function. It follows that RF (G) has a canonical

action by isometries on an R-tree

XG = (XG,d)

with a distinguished base-point x0 such that Lx0
= L, where Lx0

is the displace-

ment function

Lx0
( f ) = d(x0, f x0), f ∈ RF (G)

associated with this action and such that

G0 := stabRF (G)(x0) =
{

f ∈ RF (G) : L( f ) = 0
}

∼= G.

It turns out that XG is always metrically complete and that the action of RF (G)

on XG is transitive.

As always in such situations, the action of RF (G) on XG leads to a classi-

fication of the elements of RF (G) according to whether they are elliptic (that

is, have a fixed point) or hyperbolic (that is, act as a fixed-point free isometry).

Hyperbolic elements have some local geometry associated with them, leading,

in particular, to another type of length function on RF (G): if f ∈ RF (G) is

hyperbolic then there exists an isometric copy A f ⊆ XG of the real line (the so-

called axis of f ) such that f acts on A f as a non-trivial translation; in particular,

hyperbolic elements have infinite order. The translation length of a hyperbolic

element f along its axis A f is called the hyperbolic length of f , denoted �( f ),

and � is extended to the whole of RF (G) by setting �( f ) = 0 for an elliptic

function f .

With a view to investigating further the action of RF (G), we shall introduce

and study an analogue of cyclic reduction in free groups; this allows us, among

other things, to characterize hyperbolic elements in a purely algebraic way and

to compute hyperbolic length in terms of the length function L.

It follows from the transitivity of the action that the set of elliptic elements

in RF (G) coincides with the union of all conjugates of G0; in particular,

RF (G) has torsion if and only if the group G has. We will establish a stronger

result to the effect that a subgroup of RF (G) is bounded (with respect to the

length function L) if and only if it is conjugate to a subgroup of G0. This result

shows in particular that every finite subgroup of RF (G) is conjugate to a

subgroup of G0, a result reminiscent of the bounded subgroup theorem for free

products with amalgamation; see, for instance, Theorem 8 of Chapter I in Serre

[45]. It also follows that the trivial group {1G} is the only bounded subnormal

subgroup of RF (G).

www.cambridge.org/9781107024816
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-02481-6 — A Universal Construction for Groups Acting Freely on Real Trees
Ian Chiswell , Thomas Müller
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.5 Contents of the book 7

1.5 Contents of the book

We now turn to a discussion of individual chapters.

Chapters 2 and 3. Here we give the basic definitions, introduce the groups

RF (G), and develop some cancellation theory needed for (among other things)

a proof of the associativity of reduced multiplication. We then study the geom-

etry associated with RF (G) via its action on the R-tree XG and the clas-

sification of the group elements effected by this action, covering the ground

indicated in Section 1.4 above and more.

Chapter 4. This chapter reflects a rather exciting new development, reporting

on the authors’ recent discovery of two basic embedding theorems. We show

that a group G acting freely and without inversions on a Λ-tree X (for an arbi-

trary ordered abelian group Λ) can be embedded into a group Ĝ, acting freely,

without inversions, and transitively on the Λ-tree X̂, which isometrically and

G-equivariantly embeds X. This result is of considerable independent inter-

est, in particular shedding new light on the class of infinitely generated R-free

groups.

We then proceed to discuss a second, more specialised, embedding theorem

concerning free and transitive R-tree actions: we show that a group G acting

freely and transitively on an R-tree X can be embedded into RF (H) for some

suitable group H such that X embeds isometrically and G-equivariantly into

XH , the R-tree canonically associated with RF (H).

Combining these two results we infer that RF -groups and their associated

R-trees are in fact universal (with respect to inclusion) for free R-tree actions.

Chapter 5. Very little is known at present concerning homomorphisms involv-

ing RF -groups. In this chapter a certain homomorphism

eg : RF (G)→ R

is defined for each element g ∈ G by means of Lebesgue measure theory. The

construction of these maps eg is analogous to and inspired by the exponent sum

maps of a free group relative to a basis element. By construction, the elliptic

elements of RF (G) are contained in the kernel of eg for every g, and if g ∈ G

is not an involution then the corresponding map eg is surjective; this shows in

particular that if G is not an elementary abelian 2-group then RF (G) is not

generated by its elliptic elements. For G an elementary abelian 2-group, the

question remains open at this stage since all exponent sums of G are trivial.
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8 Introduction

The problem is taken up and resolved in Chapter 9 as part of the theory of test

functions (see below).

Chapter 6. In this chapter we explore various aspects of functoriality of the

RF -construction. The most striking result obtained here is that if two groups

G and H have the same (cardinal) number of involutions and the same number

of non-involutions then we have

RF (G)/E(G)∼= RF (H)/E(H),

where E(G) is the subgroup of RF (G) generated by the elliptic elements,

that is, the normal closure of G0. With slight imprecision the last result may be

rephrased as follows.

The isomorphism type of the group RF (G)/E(G) depends

only on the two cardinal numbers |Inv(G)| and |G− Inv(G)|.

The proof of this surprising and rather deep lying rigidity result is long and

somewhat technical. However, the techniques developed in this chapter also

allow us to obtain at least a partial result concerning the automorphism group

of the quotient group RF (G)/E(G); see Proposition 6.7 and Corollary 6.8.

Chapter 7. A guiding principle when investigating RF -groups appears to be

the following.

Hyperbolic elements of a non-trivial RF -group behave

analogously to the non-trivial elements of a (large) free group.

This principle manifests itself for instance in the conjugacy theorem for hy-

perbolic elements established in Chapter 7, which (except for its proof) is an

exact continuous analogue of the corresponding result for free groups. We also

show there that the centraliser of a hyperbolic element f ∈ RF (G) has index

at most 2 in the normaliser of the infinite cyclic group 〈 f 〉 in RF (G).

Chapter 8. It is easy to see that, for a non-trivial element g ∈ G0, we have

CRF (G)(g) =CG0
(g).

Consequently the centralisers of elliptic elements in RF (G) are determined,

up to isomorphism, by the isomorphism types of the centralisers in the group G

itself; hence, in general (that is, without restricting the structure of G), nothing

more can be said here.

The situation is very different, and much more interesting, for hyperbolic el-

ements, and the present chapter provides a penetrating study of their centralis-

ers. We establish a criterion characterising those hyperbolic elements whose
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1.5 Contents of the book 9

centraliser is cyclic and obtain considerable insight into the centraliser struc-

ture in the general case; in particular, we show that centralisers of hyperbolic

elements are abelian and relatively ‘small’, in that they always embed into the

additive reals. As suggested by Remeslennikov, the centraliser CRF (G)( f ) for

hyperbolic f is controlled by (a subset of) the periods of the function f ; the

reader is referred to Chapter 8 for details.

As an application of the main result of that chapter (Theorem 8.16), we show

that RF -groups enjoy an analogue of the centraliser partition property of free

groups: the binary relation ↔ given by

f ↔ g :⇐⇒ f and g commute

is an equivalence relation on the set

RF (G) −
⋃

t∈RF (G)

tG0t−1

of hyperbolic elements of RF (G); see Proposition 8.23 and Corollary 8.24.

This result provides a further illustration of the philosophy concerning hyper-

bolic elements expressed above. As another application of Theorem 8.16, we

show that RF -groups do not contain non-trivial soluble normal subgroups. A

completely different approach to this last result, using the theory of test func-

tions, is given in Chapter 10.

Chapters 9 and 10. These two chapters provide an introduction to the theory

of test functions and its applications, as developed originally in Müller [36]

and Müller and Schlage-Puchta [38]. Roughly speaking, a test function is a

mapping f : [0,α]→ G of positive length L( f ) = α , such that f does not look

locally like its own inverse. More precisely, we require that there do not exist

ε > 0 and points ξ1,ξ2 ∈ (0,α) such that

f (ξ1 +η) = f−1(ξ2 +η), |η |< ε.

Test functions do in fact always exist; for instance, the function f0 of length 1

given by

f0(ξ ) =

⎧

⎨

⎩

x, ξ 2 ∈Q

1G, ξ 2 	∈Q

⎫

⎬

⎭

(0 ≤ ξ ≤ 1),

where x is any non-trivial element of G, can be shown to be a test function; see

Section 9.3. Test functions are automatically (cyclically) reduced and give rise

to a further class of homomorphisms RF (G)→ R. Roughly speaking, given

a test function f ∈ RF (G) of length α > 0, the idea is to compare (‘test’)
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10 Introduction

functions g ∈ F (G) locally against f and f−1, in this way obtaining two sets

M
+
f (G),M−

f (G)⊆ (0,L(g)). To be more explicit, we set

M
±
f (g) :=

{

ξ ∈ (0,L(g)) :∃ε > 0, ∃ξ ′ ∈ (0,α) such that

g(ξ +η) = f±(ξ ′+η) for all |η |< ε
}

,

observing that M
+
f (g) and M

−
f (g) are open sets and thus Lebesgue measur-

able, and define a function λ f : RF (G)→ R by

λ f (g) = µ
(

M
+
f (g)

)

− µ
(

M
−
f (g)

)

,

where µ denotes Lebesgue measure. We show that λ f is a surjective homo-

morphism whose kernel contains E(G), in this way demonstrating in particular

that RF (G) is never generated by its elliptic elements; see Theorem 9.8 and

Corollary 9.9.

A second important idea introduced in Chapter 9 is that of local compatibil-

ity and incompatibility. Roughly speaking, given functions f : [0,α]→ G and

g : [0,β ]→ G, we say that f and g are locally compatible if f looks locally like

g or g−1. To be more precise, f and g as above are termed locally compatible

if there exist ε > 0 and points ξ ∈ (0,α), ζ ∈ (0,β ) such that either

f (ξ +η) = g(ζ +η), |η |< ε,

or

f (ξ +η) = g−1(ζ +η), |η |< ε.

If f and g both have positive length but are not locally compatible then they are

called locally incompatible. Locally incompatible functions have no cancella-

tion against each other, and if f ,g are locally incompatible then so are f−1 and

g as well as f−1 and g−1.

We call a subgroup H ≤ RF (G) hyperbolic if the set H −{1G} consists

entirely of hyperbolic elements. As a further application of test function theory

(as developed so far), in Section 9.6 we show among other things that the

family of centralisers {CRF (G)( fσ )}σ∈S corresponding to a family { fσ}σ∈S of

pairwise locally incompatible test functions generates a hyperbolic subgroup of

RF (G) isomorphic to the free product∗σ∈S CRF (G)( fσ ); see Corollary 9.24.

The most striking applications of test function theory to date, however, stem

from a rather deep result (Theorem 10.1) asserting the existence of large fami-

lies of pairwise locally incompatible test functions with prescribed centraliser:

given a non-trivial group G and a proper subgroup Λ ≤ (R,+), there exists

a family F of pairwise locally incompatible test functions in RF (G) such

www.cambridge.org/9781107024816
www.cambridge.org

