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Introduction

The basic principles regarding Cox rings become visible already in the classical
example of the projective space P" over a field K, which we assume to be
algebraically closed and of characteristic zero. The elements of P" are the lines
¢ € K"*! through the origin 0 € K"*!. Such a line ¢ is concretely specified
by its homogeneous coordinates [z, . . ., z,], where (2o, - . ., 2,) is any point
on ¢, different from the origin. Hence, this description comes with an intrinsic
ambiguity. More formally speaking, that means that we should regard the
projective space as a quotient by a group action

K"\ {0} ¢ Kntl
zH[z]l/K*
Pn

where K* acts on K"*! via scalar multiplication. This presentation of the
projective space P" as the quotient of its characteristic space K"*' \ {0} by the
action of the characteristic torus K* is the geometric way of thinking of Cox
rings. In algebraic terms, the action of K* on K"*! is encoded by the associated
decomposition of the polynomial ring into homogeneous parts

K[T07 M) 7;1] = @K[T()a M) Tn]k’
k>0

where K[y, ..., T,]x is the vector space of homogeneous polynomials f of
degree k, which means that f(¢z) = t* f(z) holds for all # and z. The polynomial
ring together with this classical grading is the Cox ring of the projective space.
Note that to construct P" as a K*-quotient, we have to remove the origin, which
is the vanishing locus of the irrelevant ideal, from the total coordinate space
K"*!. The Cox ring can be seen in terms of algebraic geometry intrinsically
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2 Introduction

from the projective space as

K[y, ..., T,] = @KITp..... T,k = PTE®", OkD)),

k>0 keZ

where the class of the hyperplane D := V (1p) € P" freely generates the divisor
class group CI(P") = Z and the sections 1, T/ Ty, ..., T,/ Ty of degree 1 on
the right-hand side correspond to the homogeneous generators Ty, ..., T, on
the left-hand side. The brief discussion of this simple example shows us that
Cox rings are located in the intersection of three fields: graded algebras, group
actions and quotients, and divisors and their section rings.

Let us also take a brief look at the arithmetic aspects. The rational points
[zo, - - -, 2] in the projective space P" over Q are parameterized uniquely up
to sign by primitive vectors, that is, tuples of coprime integers zo, . . . , z,. This
description of rational points is related to Cox rings via the diagram

ZA{0 ¢z

prim

z—>[2] l/Z*

P (Q)
A typical problem is to estimate the number of rational points with bounded
height H([zo, ..., 2,]) := max{|zo], ..., |z4|}, which in our example essen-

tially amounts to estimating the number of lattice points in an (n + 1)-
dimensional box. This is an instance of Manin’s conjecture on the number
of rational points of bounded height on Fano varieties.

The current interest in Cox rings has several sources. A first one dates back
to the 1970s when Colliot-Thélene and Sansuc [96, 98] introduced universal
torsors as a tool in arithmetic geometry in particular to investigate the existence
of rational points on varieties. In the last few years, Salberger’s approach [263]
to study the distribution of rational points via universal torsors and their explicit
representations in terms of Cox rings caused a considerable surge of research.
Another source is the occurrence of characteristic spaces and Cox rings in
toric geometry in the mid-1990s in work of Audin [23], Cox [104] and oth-
ers, which had a tremendous impact on this field. Five years later, Hu and
Keel [176] observed the fundamental connection between Mori theory and
geometric invariant theory via Cox rings; one of the main insights is that,
roughly speaking, finite generation of the Cox ring is equivalent to an optimal
behavior with respect to the minimal model program. This put the toric case
into a much more general framework and established Cox rings as an active
field of research in algebraic geometry. For example, the explicit presentation
of the Cox ring of a given variety in terms of generators and relations is a

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107024625
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-02462-5 - Cox Rings

Ivan Arzhantsev, Ulrich Derenthal, Jiirgen Hausen and Antonio Laface
Excerpt

More information

Introduction 3

central question. The research in this direction was initiated by the work of
Batyrev/Popov [33] and Hassett/Tschinkel [162] on (weak) del Pezzo surfaces.

The intention of this book is to provide an elementary access to Cox rings
and their applications in algebraic and arithmetic geometry with a particular
focus on the new, concrete aspects that Cox rings bring into these fields. The
introductory part, consisting of the first three chapters, requires basic knowledge
in algebraic geometry, and, in addition, some familiarity with toric varieties
is helpful. The subsequent three chapters consider also more advanced topics
such as algebraic groups, surface theory, and arithmetic questions.

Chapter 1 provides the mathematical framework for the ideas occurring in
the preceding example discussion. We present the basics on graded algebras,
quasitorus actions and their quotients, and divisors and sheaves of divisorial
algebras. Building on this, we define an essentially unique Cox ring for any
irreducible, normal variety with only constant invertible functions and a finitely
generated divisor class group:

R(X) := EB I'(X, O(D)).

[D]eCl(X)

First results concern the algebraic properties of the Cox ring, in particular the
divisibility properties: Cox rings are factorially graded rings in the sense that we
have unique factorization for homogeneous elements. The further main results
of the chapter elaborate the relations between the Cox ring and its geometric
counterpart, the presentation of the underlying variety as a quotient of the
characteristic space by the action of the characteristic quasitorus. For smooth
varieties, this quotient presentation equals the universal torsor and in general it
dominates the universal torsor.

Chapter 2 discusses the concepts provided in Chapter 1 for the example class
of toric varieties; these come with an action of an algebraic torus having a
dense open orbit. The basic feature of toric varieties is their complete descrip-
tion in terms of combinatorial data, so-called lattice fans. Approaching toric
varieties via quotient presentations turns out to be combinatorial as well, and
the describing data, which we call lattice bunches, correspond to lattice fans
via linear Gale duality. Besides being illustrative examples, toric varieties are
important in subsequent chapters as adapted ambient varieties.

Chapter 3 is devoted to varieties with a finitely generated Cox ring. In this
setting, the varieties sharing the same Cox ring all occur as quotients of open
subsets of their common total coordinate space, the spectrum of the Cox ring.
Geometric invariant theory gives us a concrete combinatorial description of
the possible characteristic spaces, which finally leads to the encoding of our
varieties by “bunched rings.” The resulting picture shares many combinatorial
features with toric geometry. In fact, the varieties inherit many properties
from a canonical toric ambient variety. We take a look from the combinatorial
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4 Introduction

aspect to invariants such as Picard groups; local divisor class groups; and the
cones of effective, movable, semiample, and ample divisors. Moreover, we
treat singularities, intersection numbers, and the Mori chamber structure of the
effective cone. A particularly interesting class are the rational varieties with a
torus action of complexity 1, for example, K*-surfaces. Here, the bunched ring
description leads to a very efficient approach to the geometry; for example, one
obtains a concrete combinatorial resolution of singularities.

Chapter 4 begins with a study of Cox rings of embedded varieties and
the effect of modifications, for example, blow-ups on the Cox ring. Then we
investigate the various quotient presentations of a variety and show that they
are all dominated by the characteristic space, playing here a similar role as the
universal covering in topology. The problem of lifting group actions to quotient
presentations and the automorphism group are investigated. We provide various
criteria for finite generation of the Cox ring, for example, Knop’s criterion for
unirational varieties with a group action of complexity 1, a characterization via
the multiplication map, and the characterization in terms of Mori theory due to
Hu and Keel. Moreover, we relate Cox rings of blow-ups of the projective space
to invariant rings of unipotent group actions following Nagata. For varieties
coming with a torus action, we describe the Cox ring in terms of isotropy groups
and a certain quotient; this generalizes the toric case and gives the foundation
for the bunched ring approach to the more general case of complexity 1. Finally,
we take a look at almost homogeneous varieties. After describing the Cox ring
of a homogeneous space, we discuss embeddings with a small boundary in
terms of bunched rings and then turn to Brion’s description of Cox rings of
spherical varieties and wonderful compactifications.

In Chapter 5, we take a close look at Cox rings of complex algebraic sur-
faces. A first general part is devoted to the classification of smooth Mori dream
surfaces. We present a complete picture for surfaces with nonnegative anti-
canonical litaka dimension, and study in detail the cases of elliptic rational
surfaces, K3 surfaces, and Enriques surfaces. Then we turn to the explicit
description of Cox rings by generators and relations. For del Pezzo surfaces,
we show that the Cox ring is generated in anticanonical degree 1 and that the
ideal of relations is generated by quadrics. A discussion of the relations between
Cox rings of del Pezzo surfaces and flag varieties ends this part. Then we return
to K3 surfaces. Here we provide a detailed study in the case of Picard number 2
and complete results are obtained for double covers of del Pezzo surfaces and
of blow-ups of Hirzebruch surfaces in at most three points. Finally, we develop
the theory of rational K*-surfaces. Here we allow singularities and show how
their minimal resolution is encoded in the Cox ring. As an example class, we
present the Gorenstein log del Pezzo K*-surfaces in terms of their Cox rings.

The aim of Chapter 6 is to indicate how Cox rings and universal torsors can
be applied to arithmetic questions regarding rational points on varieties. We
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begin by discussing Colliot-Théléne’s and Sansuc’s theory of universal torsors
over not necessarily algebraically closed fields, and explore the connection to
characteristic spaces and Cox rings. Then we enter the problem of the existence
of rational points on varieties over number fields. We discuss the Hasse principle
and weak approximation. The failure of these principles is often explained by
Brauer—Manin obstructions, and we indicate how they can be approached via
universal torsors and give an overview of the existing results. Then we turn to
Manin’s conjecture. For del Pezzo surfaces, it is known in many cases, and a
general strategy emerges. We discuss this strategy in detail and show how it
can be applied to prove Manin’s conjecture for a singular cubic surface.

Each chapter is followed by a choice of exercises and problems. The col-
lections comprise small general background tutorials and examples comple-
menting the text as well as guided exercises to topics going beyond the text
including references and, finally, we pose several open problems (*) of varying
presumed difficulty.

We are grateful to all people supporting the work on this text. In par-
ticular, we thank Carolina Araujo, Michela Artebani, Hendrik Baker, Victor
Batyrev, Benjamin Bechtold, Cinzia Casagrande, Jean-Louis Colliot-Thélene,
Christopher Frei, Giuliano Gagliardi, Fritz Hormann, Johannes Hofscheier,
Elaine Huggenberger, Simon Keicher, Alvaro Liendo, Taras Panov, Marta
Pieropan, Yuri Prokhorov, Fred Rohrer, Alexei Skorobogatov, Damiano Testa,
Dmitri Timashev, Andrea Tironi, and Luca Ugaglia for helpful remarks and
discussions.
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Basic concepts

In this chapter we introduce the Cox ring and, more generally, the Cox sheaf and
its geometric counterpart, the characteristic space. In addition, algebraic and
geometric aspects are discussed. Section 1.1 is devoted to commutative algebras
graded by monoids. In Section 1.2, we recall the correspondence between
actions of quasitori (also called diagonalizable groups) on affine varieties and
affine algebras graded by abelian groups and provide the necessary background
on good quotients. Section 1.3 is a first step toward constructing Cox rings.
Given an irreducible, normal variety X and a finitely generated subgroup K C
WDiv(X) of the group of Weil divisors, we consider the associated sheaf of
divisorial algebras

S =P ox(D).

DekK

We present criteria for local finite generation and consider the relative spectrum.
A first result says that I'(X, S) is a unique factorization domain if K generates
the divisor class group CI(X). Moreover, we characterize divisibility in the
ring ['(X, §) in terms of divisors on X. In Section 1.4, the Cox sheaf of an
irreducible, normal variety X with finitely generated divisor class group C1(X)
is introduced; roughly speaking it is given as

R = @ Ox(D).

[D]eCl(X)

The Cox ring then is the corresponding ring of global sections. In the case
of a free divisor class group well-definedness is straightforward. The case of
torsion needs some effort; the precise way to define R then is to take the
quotient of an appropriate sheaf of divisorial algebras with respect to a certain
ideal sheaf. Basic algebraic properties and divisibility theory of the Cox ring are
investigated in Section 1.5. Finally, in Section 1.6, we study the characteristic
space, that is, the relative spectrum X = SpecyR of the Cox sheaf. It comes

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107024625
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-02462-5 - Cox Rings

Ivan Arzhantsev, Ulrich Derenthal, Jiirgen Hausen and Antonio Laface
Excerpt

More information

1.1 Graded algebras 7

with an action of the characteristic quasitorus H = Spec K[CI(X)] and a good
quotient X — X. We relate geometric properties of X to properties of this
action and describe the characteristic space in terms of geometric invariant
theory.

1.1 Graded algebras
1.1.1 Monoid graded algebras

We recall basic notions on algebras graded by abelian monoids. In this subsec-
tion, R denotes a commutative ring with a unit element.

Definition 1.1.1.1 Let K be an abelian monoid. A K -graded R-algebra is an
associative, commutative R-algebra A with a unit and a direct sum decompo-
sition

Az@Aw

wek

into R-submodules A,, € A such that A, - A,y € Ay holds for any two
elements w, w’ € K. The R-submodules A,, C A are the (K -)homogeneous
components of A. An element f € A is (K-)homogeneous if f € A, holds for
some w € K, and in this case w is called the degree of f. We write Ax C A
for the multiplicative monoid of homogeneous elements.

We also speak of a K-graded R-algebra as a monoid graded algebra or just as
a graded algebra. To compare R-algebras A and A’ that are graded by different
abelian monoids K and K’, we work with the following notion of a morphism.

Definition 1.1.1.2 A morphism from a K -graded algebra A to a K'-graded
algebra A’ is a pair (, V), where ¢: A — A’ is a homomorphism of R-
algebras, ¥ : K — K’ is a homomorphism of abelian monoids, and

holds forevery w € K.Inthecase K = K’ and 1; = idg, we denote a morphism
of graded algebras just by ¢: A — A’ and also refer to it as a (K-)graded

homomorphism.

Example 1.1.1.3 Given an abelian monoid K and wy, ..., w, € K, the poly-

nomial ring R[T7, ..., T,] can be turned into a K -graded R-algebra by setting
R[Ty,..., T, ]y := Z a,T"; a, € R, viwi +---+v,w, =w

"
VEZL,
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8 Basic concepts

This K-grading is determined by deg(7;) = w; for 1 <i <r. Moreover,
R[Ty, ..., T,] comes with the natural Z’Zo—grading given by

R[T\,....,T,], :=R-T",

and we have a canonical morphism (i, 1/7) from R[T}, ..., T,] to itself, where
Y =idand ¢ : Z’zo — K sends v to viw; + - -+ 4+ v, w,.

For any abelian monoid K, we denote by K * the associated group of differ-
ences and by Kg := K* ®; Q the associated rational vector space. Note that
we have canonical maps K — K + Kgq, where the first one is injective if
and only if K admits cancellation and the second one is injective if and only
if K¥* is torsion free. Given w € K, we allow ourselves to write w € K* and
w € K for the respective images.

Definition 1.1.1.4 Let A be a K-graded R-algebra. The weight monoid of A
is the submonoid S(A) € K generated by all w € K with A,, # 0. The weight
group of A is the subgroup K(A) € K= generated by S(A) C K. The weight
cone of A is the convex cone w(A) € Kq generated by S(A) € K.

By an integral R-algebra, we mean an R-algebra A # 0 without zero divi-
sors. Note that for an integral R-algebra A graded by an abelian monoid K, the
weight monoid of A is given as

S(A) = {weKk; Aw#o} c K.

We recall the construction of the algebra associated with an abelian monoid;
it defines a covariant functor from the category of abelian monoids to the
category of monoid graded algebras.

Construction 1.1.1.5 Let K be an abelian monoid. As an R-module, the
associated monoid algebra over R is given by

RIK]:= P Rx"

wekK

and its multiplication is defined by x* - x* := x ™. If K’ is a further abelian
monoid and ¥ : K — K’ is a homomorphism, then we have a homomorphism

¥ = R[J1: RIK] — RIK'l,  x" — x"®.

The pair (y, J) is a morphism from the K-graded algebra R[K] to the K'-
graded algebra R[K'], and this assignment is functorial.

Note that the monoid algebra R[K ] has K as its weight monoid, and R[K]
is finitely generated over R if and only if the monoid X is finitely generated. In
general, if a K-graded algebra A is finitely generated over R, then its weight
monoid is finitely generated and its weight cone is polyhedral, that is, the set
of nonnegative linear combinations over a given finite collection of vectors.
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1.1 Graded algebras 9

Construction 1.1.1.6 (Trivial extension) Let K € K’ be an inclusion of
abelian monoids and A a K-graded R-algebra. Then we obtain an K’-graded
R-algebra A’ by setting

A, ifuek,
A= @Pa, PSS S
vk’ {0} else.

Construction 1.1.1.7 (Lifting) Let G: K— K be a homomorphism of
abelian monoids and A a K-graded R-algebra. Then we obtain a K-graded
R-algebra

AV = @Zu, Ku = AG(u)-

uek

Definition 1.1.1.8 Let A be a K-graded R-algebra. An ideal I C A is called
(K -)homogeneous if it is generated by (K -)homogeneous elements.

Anideal I € A of a K-graded R-algebra A is homogeneous if and only if it
has a direct sum decomposition

1=@1w, I, == INA,.

wekK

Construction 1.1.1.9 (Graded factor algebra) Let A be a K-graded R-algebra
and I € A a homogeneous ideal. Then the factor algebra A/I is K-graded by

Al = @(A/I)w (A/Dy = Ay + L.
wekK

Moreover, for each homogeneous component (A/I),, € A/I, one has a canon-
ical isomorphism of R-modules

Ay/l, — (A/D)y, f+1L, — f+1.

Construction 1.1.1.10 Let A be a K-graded R-algebra, and 1}: K — K’ be
ahomomorphism of abelian monoids. Then one may consider A as a K'-graded
algebra with respect to the coarsened grading

A:@Au, A, = @ Ay.

uek’ F(w)=u

Example 1.1.1.11 Let K = Z? and consider the K-grading of R[T}, ..., Ts]
given by deg(7;) = w;, where

w;=(—1,2), w,=(1,0), w3=(0,1), ws=(Q2,—-1), ws=(-2,3).
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10 Basic concepts

Then the polynomial 717 + T32 + T4Ts is K-homogeneous of degree (0, 2),
and thus we have a K -graded factor algebra

A=RI[Ty,...,Ts1/(TiT, + T + T,Ts).

The standard Z-grading of the algebra A with deg(T}) = ... = deg(T5) =1
may be obtained by coarsening via the homomorphism v : Z> — Z, (a, b) —
a+b.

Proposition 1.1.1.12 Let A be a Z" -graded R-algebra satisfying ff' # 0 for
any two nonzero homogeneous f, ' € A. Then the following statements hold.

(1) The algebra A is integral.
(i1) If gg’ is homogeneous for 0 # g, g’ € A, then g and g’ are homogeneous.
(iii) Every unit f € A* is homogeneous.

Proof Fix alexicographic ordering on Z". Given two nonzero g, g’ € A, write
g=>_ f.and g =" f, with homogeneous f, and f,. Then the maximal
(minimal) component of gg’ is f,, f,, # 0, where f,, and f,, are the maximal
(minimal) components of f and f” respectively. The first two assertions follow.
For the third one observe that 1 € A is homogeneous (of degree zero). O

1.1.2 Veronese subalgebras

We introduce Veronese subalgebras of monoid graded algebras and present
statements relating finite generation of the algebra to finite generation of a
given Veronese subalgebra and vice versa.

We begin with basic observations on finite generation of monoids. The first
one is a generalization of the classical Gordan lemma which asserts that for
any convex polyhedral cone o € Q", the monoid ¢ N Z" is finitely generated.

Proposition 1.1.2.1 Let K be a finitely generated abelian group and L C
M C K submonoids. If L is finitely generated and every w € M admits an
n € Zs withnw € L, then M is finitely generated.

Proof First we prove Gordan’s lemma. Consider K = Z"; let L C K be
generated by wy, ..., ws; € Z" and M = o N Z" the monoid of integral points
inside the convex cone o C Q" generated by wy, ..., wy. Then M is generated
by the finite subset

(0,11 - wy +---+[0,1]-wy) N Z" C M.

We turn to the general case. Choose an epimorphism «: Z" — K. Then also
K' =7 with L' := o~ '(L)and M’ := o~ ! (M) satisfy the assumptions. So, it
suffices to show that M’ is finitely generated. Take generators wy, ..., ws; € Z"
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