Microbes and microbiology are seldom encountered in philosophical accounts of the life sciences. Although microbiology is a well-established science and microbes the basis of life on this planet, neither the organisms nor the science have been seen as philosophically significant. This book will change that. It fills a major gap in the philosophy of biology by examining central philosophical issues in microbiology. Topics are drawn from evolutionary microbiology, microbial ecology and microbial classification. These discussions are aimed at philosophers and scientists who wish to gain insight into the basic philosophical issues of microbiology.

Maureen A. O’Malley is a Senior Researcher in the Department of Philosophy at the University of Sydney.
'Microbiology is a beautiful science. Someone should do some philosophical work on it’. (W. Ford Doolittle, 2003)
Contents

List of figures and tables
page viii

Acknowledgements
page x

1. An introduction to philosophy of microbiology
2. Philosophy in microbiology; microbes in philosophy
3. Philosophical debates in high-level microbial classification
4. Philosophical debates in species-level microbial classification
5. Philosophical issues in microbial evolution
6. Microbial ecology from a philosophical perspective
7. Microbes as model biological systems
8. Conclusion: further philosophical questions

Glossary
page 219

References
page 222

Index
page 261
Figures and Tables

The majority of illustrations are new graphics, drawn by Michel Durinx (www.centimedia.org). Permission was granted to use several copyrighted images (see Reference List for full citations).

Figure 1.1: A prokaryote cell.
Figure 1.2: A eukaryote cell.
Figure 1.3: The evolutionary importance of microbes.
Figure 1.1: Evolutionary transitions defined metabolically. From Falkowski (2006), used with permission from AAAS/Science.
Figure 1.2: Magnetotactic bacteria in northern and southern hemispheres.
Figure 1.3: A metabolic function for the magnetosome?
Figure 1.4: Early microscopists. Hooke image by Rita Greer.
Figure 2.1: Whittaker’s five kingdoms, modified by Lynn Margulis (1971). Used with permission from John Wiley and Sons.
Figure 2.2: Three domains: Archaea, Bacteria, Eukarya. Based on Pace (2006).
Figure 2.3: Five kingdoms with Monera now split into Bacteria and Archaea.
Figure 2.4: The eocyte tree. Based on Cox et al. (2008).
Figure 2.5: Eukaryote supergroups (Adl et al. 2012). Used with permission from John Wiley and Sons.
Figure 3.1: Some major historical figures in bacterial classification. David Bergey’s image used with permission from the Bergey’s Manual Trust.
Figure 3.2: The three main mechanisms of LGT. Based on Furuya and Lowy (2006).
List of figures and tables

Figure 3.3: LGT versus gene duplication and differential loss. Based on Gogarten and Townsend (2005). 81
Figure 3.4: Phylogenetic versus ecological representations of the three domains. Based on a sketch by Moselio Schaechter (2012a). 92
Figure 4.1: \textit{Paenibacillus vortex} and social IQ distribution. Used with permission from Eshel Ben-Jacob, Tel Aviv University. 109
Figure 4.2: Organisms and other social entities. Based on Queller and Strassmann (2009). 114
Figure 5.1: Some major historical figures in microbial ecology. Baas Becking image courtesy of \textit{Biografisch Woordenboek van Nederland}; van Niel used with permission from Edward Weston/Viscopy; ZoBell used with permission from Scripps Institute of Oceanography Archives, University of California San Diego library; Jannasch used with permission of Woods Hole Oceanographic Institute. 134
Figure 5.2: Species-area relationships and the z-slope. Based on Horner-Devine et al. (2004). 163
Figure 6.1: Major figures in early molecular bacterial genetics. Lederberg used with permission from University of Wisconsin (Madison) Archives; Tatum courtesy of www.nobelprize.org; Luria courtesy of profiles.nlm.nih.gov; Hayes used with permission from Australian National University Archives; Zinder used with permission from Cold Spring Harbor Laboratory Archives. 178
Figure 6.2: Schematic view of a chemostat. 185
Figure 6.3: Feedback loops between the gut microbiota and human brain. Based on Cryan and Dinan (2012). 199
Figure C.1: An impressionistic tree of life, putting humans in phylogenetic context. 202
Figure C.2: The balance of conservation. 204
Figure G.1: Monophyletic, paraphyletic and polyphyletic groups. 220
Table I.1: Terminology for microbes 2
Acknowledgements

For reading and commenting on various chapters, my grateful thanks to: Ford Doolittle and Elio Schaechter (who read several chapters each), plus Sam Baron, Pierrick Bourrat, David Braddon-Mitchell, Adrian Currie, Michael Duncan, John Dupré, Matthias Grote, Adam Hochman, Andrew Holmes, Gladys Kostyrka, Maria Kronfeldner, Arnon Levy, Alan Love, Staffan Müller-Wille, Tom Richards, Susan Spath and Mike Travisano. Anonymous reviewers, at both the preliminary and later stages of writing, were tremendously helpful in shaping this book. Numerous discussions over the last decade, especially at Dalhousie University, Halifax (Nova Scotia), provided valuable material and philosophical insight into microbiology. Feedback from audiences and co-participants at several ISHPSSB and SANU Philosophy of Biology meetings was crucial to the development of the book. Comments from Departmental colleagues during a seminar I gave at the University of Sydney had a formative influence on the concluding chapter. I also wish to acknowledge the many hundreds of references that I have been unable to cite here for space reasons but which have informed my writing. For illustrations and help with finding copyright-free images, thanks to Michel Durinx (www.centimedia.org). The Australian Research Council and University of Sydney funded most of the research and writing time it took to produce this book.