

ADVANCED AIRCRAFT FLIGHT PERFORMANCE

This book deals with aircraft flight performance. It focuses on commercial aircraft but also considers examples of high-performance military aircraft. The framework is a multi-disciplinary engineering analysis, fully supported by flight simulation, with software validation at several levels. The book covers topics such as geometrical configurations, configuration aerodynamics and determination of aerodynamic derivatives, weight engineering, propulsion systems (gas turbine engines and propellers), aircraft trim, flight envelopes, mission analysis, trajectory optimisation, aircraft noise, noise trajectories and analysis of environmental performance. A unique feature of this book is the discussion and analysis of the environmental performance of the aircraft, focusing on topics such as aircraft noise and carbon dioxide emissions.

Dr. Antonio Filippone's expertise is in the fields of computational and experimental aerodynamics, flight mechanics, energy conversion systems, propulsion systems, rotating machines (helicopter rotors, propellers, wind turbines), systems engineering, and design and optimisation. He has published more than eighty technical papers, ten book chapters, and two books, including *Flight Performance of Fixed and Rotary Wing Aircraft* (2006).

Cambridge Aerospace Series

Editors
Wei Shyy
and
Vigor Yang

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instrument Design*
- 10. G. A. Khoury (ed.): Airship Technology, Second Edition
- 11. J. P. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, Second Edition
- 13. J. Katz and A. Plotkin: Low-Speed Aerodynamics, Second Edition
- 14. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control: A History of the Technologies that Made Aviation Possible, Second Edition
- 15. D. H. Hodges and G. A. Pierce: *Introduction to Structural Dynamics and Aeroelasticity*, Second Edition
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. D. D. Knight: Numerical Methods for High-Speed Flows
- 20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): *Large-Eddy Simulation for Acoustics*
- 21. D. D. Joseph, T. Funada, and J. Wang: *Potential Flows of Viscous and Viscoelastic Fluids*
- 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: *Aerodynamics of Low Reynolds Number Flyers*
- 23. J. H. Saleh: Analyses for Durability and System Design Lifetime
- 24. B. K. Donaldson: Analysis of Aircraft Structures, Second Edition
- 25. C. Segal: The Scramjet Engine: Processes and Characteristics
- 26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
- 27. A. K. Kundu: Aircraft Design
- 28. M. I. Friswell, J. E. T. Penny, S. D. Garvey, and A. W. Lees: *Dynamics of Rotating Machines*
- 29. B. A. Conway (ed.): Spacecraft Trajectory Optimization
- 30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry
- 31. G. A. Flandro, H. M. McMahon, and R. L. Roach: Basic Aerodynamics
- 32. H. Babinsky and J. K. Harvey: Shock Wave-Boundary-Layer Interactions
- 33. C. K. W. Tam: Computational Aeroacoustics: A Wave Number Approach
- 34. A. Filippone: Advanced Aircraft Flight Performance

Ignoranti quem portum petat nullus suus ventus est.

No wind is favourable to a sailor who does not know at which port to land.

[Lucius A. Seneca (4 BC-AD 65), Moral Letters to Lucilius (letter 71)]

Advanced Aircraft Flight Performance

Antonio Filippone

The University of Manchester

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press

32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org

Information on this title: www.cambridge.org/9781107024007

© Antonio Filippone 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Filippone, Antonio, 1965-

Advanced aircraft flight performance / Antonio Filippone.

p. cm. - (Cambridge aerospace series; 34)

Includes bibliographical references and index.

ISBN 978-1-107-02400-7 (hardback)

1. Airplanes – Performance. 2. Airplanes – Design and construction. I. Title.

TL671.4.F449 2012

629.132'3-dc23 2012015394

ISBN 978-1-107-02400-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Tables

Prej	face		xxi
Non	nenc	lature	xxiii
Тес	hnol	ogy Warning	xxvii
1	Pro	olegomena	1
	1.1	Performance Parameters	2
	1.2	Flight Optimisation	4
	1.3	Certificate of Airworthiness	4
	1.4	The Need for Upgrading	6
	1.5	Military Aircraft Requirements	7
	1.6	Review of Comprehensive Performance Programs	9
	1.7	The Scope of This Book	10
	1.8	Comprehensive Programs in This Book	13
		Bibliography	14
2	Air	craft Models	16
	2.1	Model for Transport Aircraft	16
	2.2	Wire-Frame Definitions	20
		2.2.1 Stochastic Method for Reference Areas	21
	2.3	Wing Sections	23
	2.4	Wetted Areas	24
		2.4.1 Lifting Surfaces	24
		2.4.2 Fuselage	25
		2.4.3 Nacelles and Pylons	28
		2.4.4 Winglets	29
		2.4.5 Flaps, Slats and Other Control Surfaces	30
		2.4.6 Model Verification: Cross-Sectional Area	30
	2.5	Aircraft Volumes	31
		2.5.1 Case Study: Do Aircraft Sink or Float on Water?	32
		2.5.2 Wing Fuel Tanks	33
	2.6	Mean Aerodynamic Chord	34

vii

page xvii

viii Contents

	2.7	Geometry Model Verification	35
		2.7.1 Case Study: Wetted Areas of Transport Aircraft	36
	2.8	Reference Systems	37
		2.8.1 Angular Relationships	40
		2.8.2 Definition of the Aircraft State	41
		Summary	41
		Bibliography	42
		Nomenclature for Chapter 2	42
3	We	ight and Balance Performance	45
	3.1	A Question of Size	45
	3.2	Design and Operational Weights	47
	3.3	Weight Management	51
	3.4	Determination of Operational Limits	52
	3.5	Centre of Gravity Envelopes	53
		3.5.1 CG Travel during Refuelling	54
		3.5.2 CG Travel in Flight	55
		3.5.3 Design Limits on CG Position	57
		3.5.4 Determination of the Zero-Fuel CG Limit	59
		3.5.5 Influence of CG Position on Performance	59
	3.6	Operational Moments	60
	3.7	Use of Wing Tanks	61
	3.8	Mass and Structural Properties	62
		3.8.1 Mass Distribution	64
		3.8.2 Centre of Gravity	68
		3.8.3 Moments of Inertia	68
		3.8.4 Case Study: Moments of Inertia	73
		Summary	75
		Bibliography	75
		Nomenclature for Chapter 3	76
4	Aeı	rodynamic Performance	78
	4.1	Aircraft Lift	78
		4.1.1 Calculation of Wing Lift	79
		4.1.2 Wing Lift during a Ground Run	79
		4.1.3 Lift Augmentation	81
		4.1.4 Maximum Lift Coefficient	84
	4.2	Aircraft Drag	85
		4.2.1 Lift-Induced Drag	85
		4.2.2 Profile Drag	87
		4.2.3 Wave Drag	93
		4.2.4 Interference Drag	94
		4.2.5 Drag of the Control Surfaces	95
		4.2.6 Landing-Gear Drag	96
		4.2.7 Environmental Effects	100
		4.2.8 Other Drag Components	102

Contents ix

		4.2.9 Case Study: Aerodynamics of the F4 Wind-Tunnel Model	102
		4.2.10 Case Study: Drag Analysis of Transport Aircraft	103
		4.2.11 Case Study: Drag Analysis of the ATR72-500	104
		4.2.12 Case Study: Drag Analysis of the Airbus A380-861	104
	4.3	Transonic Airfoil Model	105
	4.4	Aircraft Drag at Transonic and Supersonic Speeds	108
		4.4.1 Drag of Bodies of Revolution	110
	4.5	Buffet Boundaries	113
	4.6	Aerodynamic Derivatives	114
	4.7	Float-Plane's Hull Resistance in Water	115
	4.8	Vortex Wakes	116
		Summary	118
		Bibliography	118
		Nomenclature for Chapter 4	121
5	Engi	ne Performance	. 126
	5.1	Gas Turbine Engines	126
	5.2	Thrust and Power Ratings	128
		5.2.1 Engine Derating	129
		5.2.2 Transient Response	130
	5.3	Turbofan Engine Model	130
		5.3.1 Aero-Thermodynamic Model	132
		5.3.2 Determination of Design Point	133
		5.3.3 Case Study: General Electric CF6-80C2	134
		5.3.4 Rubber Engines	137
		5.3.5 Effects of Contamination	138
		5.3.6 Performance Deterioration	139
		5.3.7 Data Handling	140
	5.4	Turboprop Engines	141
		5.4.1 Case Study: Turboprop PW127M	143
	5.5	Turbojet with After-Burning	143
	5.6	Generalised Engine Performance	145
	5.7	Auxiliary Power Unit	147
		5.7.1 Case Study: Honeywell RE-220 APU	149
		Summary	149
		Bibliography	150
		Nomenclature for Chapter 5	150
6	Prop	eller Performance	. 152
	6.1	Propeller Definitions	152
		6.1.1 Propeller Limitations	156
	6.2	Propulsion Models	156
		6.2.1 Axial Momentum Theory	157
		6.2.2 The Blade Element Method	160
		6.2.3 Propeller in Non-Axial Flight	163
		6.2.4 Case Study: Hamilton-Sundstrand F568 Propeller	165

x Contents

	6.3	Flight Mechanics Integration	168
		6.3.1 Propeller's Rotational Speed	171
	6.4	Propeller Installation Effects	173
		6.4.1 Gearbox Effects	175
		Summary	175
		Bibliography	176
		Nomenclature for Chapter 6	176
7	Airpl	ane Trim	179
	7.1	Longitudinal Trim at Cruise Conditions	179
		7.1.1 Trim Drag	183
		7.1.2 Solution of the Static Longitudinal Trim	183
		7.1.3 Stick-Free Longitudinal Trim	184
	7.2	Airplane Control under Thrust Asymmetry	186
		7.2.1 Dihedral Effect	186
		Summary	192
		Bibliography	192
		Nomenclature for Chapter 7	192
8	Fligh	t Envelopes	195
	8.1	The Atmosphere	195
		8.1.1 International Standard Atmosphere	195
		8.1.2 Other Atmosphere Models	198
	8.2	Operating Speeds	203
	8.3	Design Speeds	206
	8.4	Optimum Level Flight Speeds	208
	8.5	Ceiling Performance	210
		8.5.1 Pressure Effects on Human Body	210
		8.5.2 Cabin Pressurisation	211
	8.6	Flight Envelopes	211
		8.6.1 Calculation of Flight Envelopes	213
		8.6.2 Case Study: Flight Envelopes of the A320 and	
		G550	215
	8.7	Supersonic Flight	216
		8.7.1 Supersonic Dash	216
		8.7.2 Supersonic Acceleration	217
		8.7.3 Supersonic Flight Envelopes	218
		Summary	220
		Bibliography	220
		Nomenclature for Chapter 8	221
9	Take	-Off and Field Performance	224
	9.1	Take-Off of Transport-Type Airplane	224
	9.2	Take-Off Equations: Jet Airplane	228
		9.2.1 Ground Run	229
		9.2.2 Rolling Coefficients	231

Contents xi

	9.3	Solution	on of the Take-Off Equations	232
		9.3.1	Case Study: Normal Take-Off of an Airbus	
			A300-600 Model	234
		9.3.2	Effect of the CG Position on Take-Off	236
		9.3.3	Effect of Shock Absorbers	236
	9.4	Take-	Off with One Engine Inoperative	238
		9.4.1	Decelerate-Stop	239
		9.4.2	Accelerate-Stop	240
	9.5	Take-	Off of Propeller Aircraft	242
	9.6	Minim	num Control Speed	245
	9.7	Aircra	aft Braking Concepts	248
	9.8	Perfor	rmance on Contaminated Runways	250
		9.8.1	Contamination Drag	251
		9.8.2	Impingement Drag	253
	9.9	Closed	d-Form Solutions for Take-Off	254
		9.9.1	Jet Aircraft	255
			Propeller Aircraft	259
	9.10		nd Operations	260
			Ground Manoeuvring	261
			Bird Strike	262
		Summ	•	264
			graphy	264
		Nome	nclature for Chapter 9	265
10	Clim	b Perfo	ormance	269
10		b Perfo Introd		269
10	10.1	Introd		
10	10.1	Introd	luction d-Form Solutions	269
10	10.1	Introd Closed 10.2.1	luction	269 270
10	10.1	Introd Closed 10.2.1 10.2.2	luction d-Form Solutions Steady Climb of Jet Airplane	269 270 270
10	10.1	Introd Closed 10.2.1 10.2.2 10.2.3	luction d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane	269 270 270 271
10	10.1 10.2	Introd Closed 10.2.1 10.2.2 10.2.3 Climb	luction d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb	269 270 270 271 272
10	10.1 10.2	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1	luction d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane	269 270 270 271 272 273
10	10.1 10.2	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles	269 270 270 271 272 273 273
10	10.1 10.2	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around	269 270 270 271 272 273 273 277
10	10.1 10.2	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations	269 270 270 271 272 273 273 277 277
10	10.1 10.2	Introd Closec 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem	269 270 270 271 272 273 273 277 277 278
10	10.1 10.2	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues	269 270 270 271 272 273 273 277 277 278 281
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Climb	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative	269 270 270 271 272 273 273 277 277 278 281 282
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Climb Energ	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative of Commercial Propeller Aircraft	269 270 270 271 272 273 273 277 277 278 281 282 282
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Climb Energ 10.5.1 10.5.2	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative of Commercial Propeller Aircraft y Methods Total-Energy Model Specific Excess Power Charts	269 270 270 271 272 273 273 277 277 278 281 282 282
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Climb Energ 10.5.1 10.5.2	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative of Commercial Propeller Aircraft y Methods Total-Energy Model	269 270 271 272 273 273 277 277 278 281 282 282 285 286
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.4 10.3.5 10.3.6 Climb Energ 10.5.1 10.5.2 10.5.3	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative of Commercial Propeller Aircraft y Methods Total-Energy Model Specific Excess Power Charts	269 270 270 271 272 273 277 277 278 281 282 282 285 286 288 290 291
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.4 10.3.5 10.3.6 Climb Energ 10.5.1 10.5.2 10.5.3 Minim 10.6.1	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative of Commercial Propeller Aircraft y Methods Total-Energy Model Specific Excess Power Charts Differential Excess Power Charts num Problems with the Energy Method Minimum Time to Climb and Steepest Climb	269 270 270 271 272 273 273 277 277 278 281 282 285 286 288 290 291
10	10.1 10.2 10.3	Introd Closed 10.2.1 10.2.2 10.2.3 Climb 10.3.1 10.3.2 10.3.3 10.3.6 Climb Energ 10.5.1 10.5.2 10.5.3 Minim 10.6.1 10.6.2	d-Form Solutions Steady Climb of Jet Airplane Steady Climb of Propeller Airplane Climb at Maximum Angle of Climb to Altitude of a Commercial Airplane Climb Profiles OEI Take-Off and Go-Around Governing Equations Boundary-Value Problem Numerical Issues Initial Climb with One Engine Inoperative of Commercial Propeller Aircraft y Methods Total-Energy Model Specific Excess Power Charts Differential Excess Power Charts num Problems with the Energy Method	269 270 270 271 272 273 277 277 278 281 282 282 285 286 288 290 291

xii Contents

		10.6.4 Case Study: Climb to Specified Mach Number	293
		10.6.5 Minimum Flight Paths	295
		Summary	296
		Bibliography	296
		Nomenclature for Chapter 10	297
11	Desc	ent and Landing Performance	300
	11.1	En-Route Descent	300
	11.2	Final Approach	303
	11.3	Continuous Descent Approach	307
	11.4	Steep Descent	308
	11.5	Unpowered Descent	311
		11.5.1 Minimum Sinking Speed	311
		11.5.2 Minimum Glide Angle	312
		11.5.3 General Gliding Flight	313
		11.5.4 Maximum Glide Range with the Energy	
		Method	314
		Holding Procedures	315
	11.7	Landing Performance	316
		11.7.1 Airborne Phase	317
		11.7.2 Landing Run	318
		11.7.3 Crab Landing	320
	11.8	Go-Around Performance	323
		Summary	324
		Bibliography	325
		Nomenclature for Chapter 11	325
12	Crui	se Performance	328
	12.1	Introduction	328
	12.2	Point Performance	329
		12.2.1 Specific Air Range at Subsonic Speed	330
		12.2.2 Figure of Merit	331
		12.2.3 Weight-Altitude Relationship	332
	12.3	Numerical Solution of the Specific Air Range	332
		12.3.1 Case Study: Gulfstream G550	335
		12.3.2 Case Study: ATR72-500	338
		12.3.3 Effects of Atmospheric Winds on SAR	338
	12.4	The Range Equation	339
		12.4.1 Endurance	341
	12.5	Subsonic Cruise of Jet Aircraft	341
		12.5.1 Cruise at Constant Altitude and Mach Number	342
		12.5.2 Cruise at Constant Altitude and Lift Coefficient	343
		12.5.3 Cruise at Constant Mach and Lift Coefficient	343
		12.5.4 Comparison among Cruise Programs	344
		12.5.5 Fuel Burn for Given Range	345

		Contents	xiii
	12.6	Cruise Range of Propeller Aircraft	346
	12.7	Cruise Altitude Selection	347
	12.8	Cruise Performance Deterioration	349
	12.9	Cost Index and Economic Mach Number	350
	12.10	Centre of Gravity Position	352
	12.11	Supersonic Cruise	353
		12.11.1 Cruise at Constant Altitude and Mach Number	354
		12.11.2 Cruise at Constant Mach Number and Lift Coefficient	355
		Summary	355
		Bibliography	356
		Nomenclature for Chapter 12	357
13	Mano	oeuvre Performance	360
	13.1	Introduction	360
	13.2	Powered Turns	361
		13.2.1 Banked Turn at Constant Thrust	362
		13.2.2 Turn Power and High-Speed Manoeuvre	363
		13.2.3 Turn Rates and Corner Speed	365
		13.2.4 Minimum-Fuel Turn	367
		Unpowered Turns	369
	13.4	Manoeuvre Envelope: <i>V-n</i> Diagram	370
		13.4.1 Sustainable <i>g</i> -Loads	374
	13.5	Roll Performance	374
		13.5.1 Mach Number Effects	378
		Pull-Up Manoeuvre	379
	13.7	Flight in a Downburst	380
		13.7.1 Aircraft Manoeuvre in a Downburst	383
		13.7.2 Case Study: Flight in a Downburst	386
		Summary	387
		Bibliography	387
		Nomenclature for Chapter 13	389
14	Ther	mo-Structural Performance	392
	14.1	Cold-Weather Operations	392
		14.1.1 Aircraft Icing	394
	14.2	Aviation Fuels	397
	14.3	Fuel Temperature in Flight	400
	14.4	Fuel-Temperature Model	402
		14.4.1 Fuel-Vapour Model	404
		14.4.2 Heat-Transfer Model	404
		14.4.3 Numerical Solution	405
		14.4.4 Numerical Solution and Verification	407
	14.5	Tyre-Heating Model	409
		14.5.1 Numerical Simulations	416

14.6 Jet Blast

418

xiv Contents

		Summary	419
		Bibliography	419
		Nomenclature for Chapter 14	420
15	Missi	on Analysis	423
		Mission Profiles	423
	10.1	15.1.1 Operational Parameters	425
	15.2	Range-Payload Chart	426
		15.2.1 Case Study: Range Sensitivity Analysis	429
		15.2.2 Case Study: Payload-Range of the ATR72-500	430
		15.2.3 Calculation of the Payload-Range Chart	430
	15.3	Mission Analysis	432
		15.3.1 Mission Range for Given Fuel and Payload	434
	15.4	Mission Fuel for Given Range and Payload	435
		15.4.1 Mission-Fuel Prediction	435
		15.4.2 Mission-Fuel Iterations	436
	15.5	Reserve Fuel	438
		15.5.1 Redispatch Procedure	441
	15.6	Take-Off Weight Limited by MLW	442
	15.7	Mission Problems	443
		15.7.1 Cruise with Intermediate Stop	443
		15.7.2 Fuel Tankering	444
		15.7.3 Equal-Time Point and Point-of-No-Return	446
	15.8	Direct Operating Costs	448
	15.9	Case Study: Aircraft and Route Selection	453
	15.10	Case Study: Fuel Planning for Specified Range, B777-300	455
	15.11	Case Study: Payload-Range Analysis of Float-Plane	460
		15.11.1 Estimation of Floats Drag from Payload-Range Chart	460
	15.12	Risk Analysis in Aircraft Performance	463
		Summary	465
		Bibliography	466
		Nomenclature for Chapter 15	467
16	Aircr	aft Noise: Noise Sources	470
	16.1	Introduction	470
	16.2	Definition of Sound and Noise	471
		16.2.1 Integral Metrics: Effective Perceived Noise	472
		16.2.2 Integral Metrics: Sound Exposure Level	475
	16.3	Aircraft Noise Model	475
		16.3.1 Polar-Emission Angle	477
	16.4	Propulsive Noise	478
		16.4.1 Noise-Propulsion System Interface	478
		16.4.2 Fan and Compressor Noise	479
		16.4.3 Combustor Noise	483
		16.4.4 Turbine Noise	484
		16.4.5 Single-Jet Noise	489

		Contents	X
		16.4.6 Co-Axial Jet Noise	491
		16.4.7 Far-Field Noise from a Subsonic Circular Jet	493
		16.4.8 Stone Jet Noise Model	494
		16.4.9 Jet-Noise Shielding	501
	16.5	APU Noise	508
	16.6	Airframe Noise	509
		16.6.1 Wing Noise	510
		16.6.2 Landing-Gear Noise	512
	16.7	Propeller Noise	516
		16.7.1 Propeller's Harmonic Noise	517
		16.7.2 Propeller's Broadband Noise	521
		Summary	523
		Bibliography	524
		Nomenclature for Chapter 16	527
17	Aircr	aft Noise: Propagation	533
		Airframe Noise Shielding	533
		Atmospheric Absorption of Noise	535
		Ground Reflection	538
	17.5	17.3.1 Ground Properties	541
		17.3.2 Turbulence Effects	542
	17.4	Wind and Temperature Gradient Effects	543
	1/.1	17.4.1 Numerical Solution	545
		Summary	548
		Bibliography	549
		Nomenclature for Chapter 17	550
18	A irer	aft Noise: Flight Trajectories	553
10		·	
		Aircraft Noise Certification	553
	18.2	Noise-Abatement Procedures	560
		18.2.1 Cumulative Noise Index	561
	10.2	18.2.2 Noise-Program Flowchart	562
	18.3	Flight-Mechanics Integration	564 565
	18.4	18.3.1 Noise Data Handling Noise Sensitivity Analysis	566
	18.5	Case Study: Noise Trajectories of Jet Aircraft	568
	18.6	Case Study: Noise Trajectories of Jet Alicraft Case Study: Noise Trajectories of Propeller Aircraft	570
	18.7	Further Parametric Analysis of Noise Performance	572
	18.8	Verification of the Aircraft-Noise Model	572 574
	18.9	Noise Footprint	578
	10.7	18.9.1 Noise Maps Refinement	580
	18 10	Noise from Multiple Aircraft Movements	581
	10.10	18.10.1 Noise Reduction and Its Limitations	584
		Summary	584
		Bibliography	585
		Nomenclature for Chapter 18	586

xvi Contents

19	Envi	ronmental Performance	. 589
	19.1	Aircraft Contrails	589
		19.1.1 Cirrus Clouds	591
		19.1.2 Cruise Altitude Flexibility	593
		19.1.3 The Contrail Factor	595
		19.1.4 Effects of Propulsive Efficiency	596
		19.1.5 Heat Released in High Atmosphere	599
	19.2	Radiative Forcing of Exhaust Emissions	599
	19.3	Landing and Take-Off Emissions	600
	19.4	Case Study: Carbon-Dioxide Emissions	604
	19.5	The Perfect Flight	606
	19.6	Emissions Trading	608
	19.7	Other Aspects of Emissions	609
		Summary	610
		Bibliography	611
		Nomenclature for Chapter 19	612
20	Epilo	ogue	. 614
	App	endix A: Gulfstream G-550	. 617
	App	endix B: Certified Aircraft Noise Data	. 622
	App	endix C: Options for the FLIGHT Program	. 624
Inde	ex		627

Tables

2.1

2.1	Cross-sectional areas of selected supercritical wing sections	page 23
2.2	Volume breakdown of selected aircraft; all volumes in [m ³]	33
2.3	Calculations of MAC for the Airbus A320-200 aircraft; graphs on	
	the same scale	35
2.4	Analysis of the geometry of the F4 aircraft model	37
2.5	Wetted-area breakdown for the selected aircraft (calculated). All	
	areas are in [m ²]; ()* data are approximate	38
3.1	Payload data for very large aircraft; X is the range at maximum	
	payload	47
3.2	Standard passenger weights (rounded to full kg)	52
3.3	Fuel tanks of some Airbus airplanes. $ACT = Additional Central$	
	Tanks; Jet-A1 density at $15 ^{\circ}\text{C} = 0.804 \text{kg/l}$	63
3.4	Weight breakdown of Airbus airplanes; mass in [kg]	73
3.5	Airplane mass properties at take-off-empty (no fuel) configuration	
	(calculated)	73
3.6	Coefficients of Equation 3.44	74
4.1	Profile drag sensitivity for the Airbus A380-861 resulting from	
	$\Delta A_{wet} = 2\%$. All drag coefficients are given as drag counts	105
4.2	Aircraft separation following ICAO rules	118
5.1	Power ratings for PW127 turboprop engine variants, sea level;	
	maximum temperatures as indicated	129
5.2	Turbofan-engine parameters used for flight and aircraft-noise	
	calculations	133
5.3	Selected engine data for the CF6-80C2A3; data with an asterisk * are	
	estimated	135
5.4	Typical APU fuel flow [kg/s], depending on load type and	
	atmospheric conditions	148
5.5	Estimated APU power and emission database	148
6.1	Design limitations of the Dowty propeller R391; Ψ_w is the wind	
	direction	156
6.2	Some notable propellers and their applications	157
7.1	Stability derivatives for calculation of airplane response to	
	asymmetric thrust; model Boeing B747-100	190

xvii

xviii Tables

8.1	Sea-level data of the International Standard Atmosphere	196
8.2	Recognised international symbols for design air speeds and Mach	
	numbers	208
9.1	International symbols for take-off of a transport airplane	225
9.2	Delay in response time after activation for selected systems	240
9.3	Average rolling coefficient for some runway conditions	255
9.4	Estimated fuel burn during a taxi-out	261
10.1	Approximate limit speeds for selected commercial aircraft	275
10.2	Key events in the OEI take-off and go-around procedure	278
10.3	Climb report for the Airbus A320-200 with CFM56-5C4P turbofan	
	engines and 331-9 APU; standard day, no wind	280
10.4	Climb report for the case shown in Figure 10.6	285
10.5	Climb time and fuel for the flight paths shown in Figure 10.15	295
11.1	Flap and slat settings for the Airbus A320-200	305
11.2	Descent report for the A320-200, conventional descent	308
11.3	Descent report for the A320-200, continuous descent approach	308
11.4	Definition of landing speeds	318
11.5	Limit crosswind speeds coupled with runway conditions	321
12.1	Summary of subsonic cruise conditions, jet aircraft	345
12.2	SAR penalty due to non-optimal cruise altitude for some Airbus	
	airplanes	349
14.1	Characteristics of aviation fuels, at 15 °C; data are averages	398
14.2	Characteristics of turbine fuels Jet-A and Jet-A1	398
15.1	Fuel use for mixed long- and short-range service of the Boeing	
	B777-300 (calculated)	444
15.2	Summary of parameters for DOC model	452
15.3	Calculated payload fuel efficiency for long-haul commercial flight	453
15.4	Operational data for mission analysis in case study	456
15.5	Summary of flight-planning analysis	457
15.6	Taxi-out report of fuel/weight-planning analysis	458
15.7	Take-off report of fuel/weight-planning analysis	458
15.8	Cruise report of fuel/weight-planning analysis	459
15.9	Basic performance data of model float-plane	460
	Estimated floats' dimensions	460
	Summary of integral noise metrics	472
16.2	Polar directivity levels	485
16.3	Empirical constants for turbine acoustic power	486
16.4	Spectrum function for broadband noise	487
17.1	Numerical coefficients for Equation 17.7	537
17.2	Typical values for flow resistivity and inverse effective depth	542
18.1	Microphone positions for aircraft-noise measurements at London	
10.0	Heathrow	557
18.2	Noise sensitivity matrix for a Boeing 777-300 for \pm 2 dB on take-off	
10.0	and landing trajectories (simulated data)	567
18.3	ATR72-500 noise trajectories; All noise levels are in dB	572

B.2

Cambridge University Press 978-1-107-02400-7 - Advanced Aircraft Flight Performance Antonio Filippone Frontmatter More information

	Tables		xix
18.4	Calculated noise metrics (in dB) over a conventional and steep		
	landing trajectory at a FAR/ICAO landing point and point 1,000 m		
	upstream	573	
19.1	ICAO flight modes, times and thrust rating as % of maximum thrust	602	
19.2	LTO emissions summary for Airbus A320-200 with CFM56 engines	603	
19.3	Analysis of a perfect flight with an Airbus A320-200 model	608	
A.1	Weights and capacities of the G-550	618	
A.2	Basic dimensions of the G-550	618	
A.3	Operational limits of the G550	619	
A.4	Selected data of the Rolls-Royce BR710 C4-11 gas-turbine engine	619	
A.5	Landing gear of the G550	620	
B.1	Certified noise levels for commercial aircraft	622	

Certified noise levels for commercial aircraft (part 2)

623

Preface

This book is a derivative of an earlier textbook on flight performance. This new work reflects my increased wisdom on the subject and represents an almost complete departure from closed-form solutions that are traditionally taught in under-graduate and post-graduate programs. Over the past several years, I have benefited from the experience of teaching a flight performance course to senior engineers from industry, government departments and academia. In the process, I learned a few new things that now find a place somewhere in the book.

There is an increase in numerical methods in all fields of engineering; nevertheless, flight performance has remarkably resisted change. Some closed-form solutions have been retained for those engineers who need a quick answer. The modern airplane is a complex engineering machine governed by systems, software and avionics. Primitive methods are still widely used, which are then applied to aircraft design and produce results of dubious accuracy that cannot be assessed. Worryingly, these methods are used in most "conceptual design" and "multi-disciplinary optimisation" methods. Now assume, more realistically, that you have been hired to provide flight prediction tools to an airline operator or a manufacturer of engines or airframes, a national or international aviation authority, an air traffic control organisation. Why should they trust your performance software? What is the risk of under-predicting the mission fuel for an intercontinental flight?

As we worried about conceptual design, the world has moved on. There is increased emphasis on airplane evolution and upgrading, which is now reflected in my thinking. At the same time, the environmental performance of the aircraft has become very prominent. Therefore, part of this book is devoted to a wide spectrum of environmental aspects of flight. My initial concerns have slowly shifted from noise to engine emissions. Noise disappears as the aircraft moves away from the receiver, although not many would like to agree. Exhaust gases remain with us for the next few generations. In particular, aircraft condensation trails are there to remind us that aviation is having a measurable impact on our skies. The lack of flexibility in aircraft levels, stepped cruise and descent, and the use of holding patterns in congested air space are all problems that need a solution in the coming years.

The book contains considerable advanced material across several disciplines, including aircraft noise, environmental performance, airframe-propulsion integration, thermo-structural performance and flight mechanics. I am conscious of the

xxi

xxii Preface

audacity of the task I have undertaken, but I am confident that this work meets the expectations of the aviation industry and the academic world.

I have developed some fully comprehensive flight codes. One code in particular, FLIGHT, to simulate aircraft performance and mission analysis of transport aircraft, contains most of the cross-disciplinary aspects of performance discussed in this book. In its present form it consists of about 160 KLOCS (thousand lines of code). Other codes discussed in the book include the propeller code, that is fully integrated with FLIGHT, as well as a supersonic flight performance code (SFLIGHT). Several block flowcharts have been included to help with the understanding of computer programs, numerical models, system analysis and flight performance. The following material is made available to readers:

- Computer code FLIGHT (demo version)
- Computer code Prop/FLIGHT (demo version)
- Computer code SFLIGHT (demo version)
- All charts and figures in any suitable graphical format

Separate technical documents will be issued to the readers wishing to work with these computer models.

Dr. Z. Mohammed-Kassim, my long-time associate, has actively contributed to the work on aircraft noise and to considerable code debugging. My doctoral student Nicholas Bojdo took great care in reading some chapters. I am indebted to my editor, Peter Gordon, who has been enthusiastic about my work from the beginning of the project to the end. The editorial and production work was efficiently managed by Peggy Rote at Aptara, Inc.

Finally, I thank my wife, Susan, for having the patience to tolerate my late nights at the desk, especially when I reached the *tunnel phase* of my work, that is, when I thought the book was finished but in fact there was no end in sight. A sabbatical leave from the University has allowed me to step up my efforts. I am grateful to the University, and the School, for the opportunity they have given me.

Nomenclature

Organisations

Below is a list of organisations that publish regularly documents (technical reports, papers, journals, regulations) as well as more general information of aviation.

AAIB AIAA	Air Accidents Investigation Branch, United Kingdom (www.aaib.gov.uk) American Institute of Aeronautics & Astronautics (www.aiaa.org)
ANSI	American National Standards Institute (www.ansi.org)
ASTM	American Society for Testing and Materials (www.astm.org)
BTS	Bureau of Transportation Statistics, USA (www.bts.gov)
CAA	Civil Aviation Authority (www.caa.co.uk)
EASA	European Aviation Safety Agency (www.easa.eu.int)
ESDU	Engineering Data Unit (www.esdu.com)
FAA	Federal Aviation Administration (www.faa.gov)
FSF	Flight Safety Foundation (www.flightsafety.org)
IATA	International Air Transport Association (www.iata.org)
ICAO	International Civil Aviation Organisation (www.icao.int)
IPCC	Inter-governmental Panel for Climate Change (www.ipcc.ch)
Jane's	Jane's Information Systems (www.janes.com)
MIL	Military Standards (www.mil-standards.com)
NASA	National Administration for Space and Aeronautics (www.nasa.gov)
NATO	Advisory Group, Aerospace Research & Development (www.rta.nato.int)
NATS	National Air Traffic System, United Kingdom (www.nats.co.uk)
NTSB	National Transportation Safety Board, United States (www.ntsb.gov)
RAeS	The Royal Aeronautical Society (www.aerosociety.org)
SAE	Society of Automotive Engineers (www.sae.org)
SAWE	Society of Allied Weight Engineers (www.sawe.org)

Acronyms Used in This Book

ACT	Additional Centre Tank
AEO	All Engines Operating
AF	Activity Factor

xxiii

xxiv Nomenclature

APU Auxiliary Power Unit

ASDA Accelerate-Stop Distance Available

ASI Air Speed Indicator

ASK Available Seat per Kilometre

ATC Air Traffic Control AUW All-Up Weight

BFL Balanced Field Length

BPR By-pass Ratio

BRGW Brake-Release Gross Weight

CAS Calibrated Air Speed

CASK Cost per Available Seat per Kilometre

CDA Continuous Descent Approach

CG Centre of Gravity

CTOL Conventional Take-off and Landing

DOC Direct Operating Costs

DOCG Dry Operating Centre of Gravity

DOF Degree of Freedom
DOW Dry Operating Weight
EAS Equivalent Air Speed
EBF Externally Blown Flap

ECS Environmental Conditioning System

EGT Exhaust Gas Temperature

EPNdB Effective Perceived Noise, in dB
EPNL Effective Perceived Noise Level
ETOPS Extended Twin-Engine OPerationS
FADEC Full Authority Digital Engine Control

FCA Final Cruise Altitude

FCOM Flight Crew Operating Manual

FDR Flight Data Recorder
FL Fuselage Line; Flight Level
FLS Flight Level Separation
FMS Flight Management System
GPS Global Positioning System
GPU Ground Power Unit
GRW Gross Ramp Weight

GRW Gross Ramp Weight
GTOW Gross Take-off Weight
IAS Indicated Air Speed
ICA Initial Cruise Altitude
ICW Initial Cruise Weight
IDA Initial Descent Altitude

IGE In Ground Effect

ILS Instrument Landing System

ISA International Standard Atmosphere
KCAS Calibrated Air Speed in knots
KEAS Equivalent Air Speed in knots
KIAS Indicated Air Speed in knots

> Nomenclature XXV

KTAS True Air Speed in knots LRM Long-Range Mach number MAC Mean Aerodynamic Chord MBGW Maximum Brake-Release Weight **MCP** Maximum Continuous Power **MEW** Manufacturer's Empty Weight Military Standards (USA) MIL MLW Maximum Landing Weight Maximum-Range Mach number MRM MRW Maximum Ramp Weight Maximum Structural Payload MSP **MTOP** Maximum Take-off Power MTOW Maximum Take-off Weight **MZFW** Maximum Zero-Fuel Weight

Noise Abatement Departure Procedure **NADP**

Overall Sound Pressure Level **OASPL** OAT Outside Air Temperature **ODE** Ordinary Differential Equation **OEI** One Engine Inoperative

OEW Operating Empty Weight **OGE** Out of Ground Effect Overall Pressure Ratio OPR

PAX Passengers

PNL Perceived Noise Level

PNLT Perceived Noise Level, Tone Corrected **PWL** One-third octave band Power Level

SAR Specific Air Range SAT Static Air Temperature **SEL** Sound Exposure Level **SEP** Specific Excess Power Specific Fuel Consumption **SFC**

SHP Shaft Horse Power

International Units System SI

S/L Sea Level

SPL Sound Pressure Level **STOL** Short Take-off and Landing

TAS True Air Speed

TAT Total Air Temperature Terminal Manoeuvre Area **TMA TOCG** Take-off Centre of Gravity

TOD Top Of Descent

Take-off Distance Available **TODA TODR** Take-Off Distance Required **TOGA** Take-off and Go-Around **TORA** Take-off Distance Required **TORR** Take-Off Run Required

xxvi Nomenclature

TOW	Take-off Weight
TSFC	Thrust-Specific Fuel Consumption
ULD	Unit Load Device
VMC	Minimum Control Speed
VMCA	Minimum Control Speed in Air
VMGC	Minimum Control Speed on the Ground
VMO	Maximum Operating Speed
VNE	Velocity Not to Exceed
WAT	Weight-Altitude-Temperature
WBM	Weight and Balance Manual
ZFCG	Zero-Fuel Centre of Gravity
ZFW	Zero-Fuel Weight

The U.S. Department of Defense and NATO publish a dictionary of acronyms and aviation jargon. A detailed list of symbols follows each chapter.

Technology Warning

This book makes reference to real flight vehicles in realistic flight conditions. The data used to model these vehicles have been extracted, elaborated, interpolated or otherwise inferred from documents available in the public domain. These documents are either published by the manufacturer or the operators, or both. They are supplemented with official data published by several aviation authorities at the national and international level. Many of these documents are freely available to the public in electronic format from the manufacturers, through their websites, or the websites of their customers, or by third parties. No commercial, sensitive or restricted data have been disclosed anywhere. All sources have been cited when appropriate. There is no implication that the data refer to any particular aircraft owned or operated by any organisation. The flight performance shown is often validated, but sometimes it is not. Whenever figures or tables report the term "simulated" or "validated", they refer to simulations carried out with the comprehensive performance code FLIGHT and its related software technology (available from the author).

Readers should be made aware that the statements made in this book are the author's own. Readers should use judgement before making technical, commercial, military, marketing or business decisions. The author cannot take responsibility for any action resulting in damage, accident or loss, as a consequence of statements made in this book. None of the graphs, figures and tables shown in this book can be used to make a final judgement on any airplane, any manufacturer, any flight, any service or any design. **Use of the graphs for flight planning is prohibited.** If you are in doubt, please consult the author, or use the performance codes from the aircraft manufacturers.

xxvii