Regression and Other Stories

Many textbooks on regression focus on theory and the simplest of examples. Real statistical problems, however, are complex and subtle. This is not a book about the theory of regression. It is a book about how to use regression to solve real problems of comparison, estimation, prediction, and causal inference. It focuses on practical issues such as sample size and missing data and a wide range of goals and techniques. It jumps right in to methods and computer code you can use fresh out of the box.

Key features:

- Real examples, real stories from the authors' real-world experience demonstrate what can be achieved by regression and what the limitations are
- Uses computation with the popular open-source programs R and Stan instead of deriving formulas, with all code available online
- Emphasis on using graphics and presentation to understand and check models that have been fit to data
- Practical advice for understanding assumptions and implementing methods for experiments and observational studies
- Smooth transition to logistic regression and generalized linear models
- Clear presentation of key ideas in data collection, sampling, generalization, and causal inference

The authors are experienced researchers who have published articles in hundreds of different scientific journals in fields including statistics, computer science, policy, public health, political science, economics, sociology, and engineering. They have also published articles in the *Washington Post*, *New York Times, Slate*, and other public venues. Their previous books include *Bayesian Data Analysis, Teaching Statistics: A Bag of Tricks*, and *Data Analysis and Regression Using Multilevel/Hierarchical Models*.

ANDREW GELMAN is Higgins Professor of Statistics and Professor of Political Science at Columbia University.

JENNIFER HILL is Professor of Applied Statistics at New York University.

AKI VEHTARI is Associate Professor in Computational Probabilistic Modeling at Aalto University.

Analytical Methods for Social Research

Analytical Methods for Social Research presents texts on empirical and formal methods for the social sciences. Volumes in the series address both the theoretical underpinnings of analytical techniques as well as their application in social research. Some series volumes are broad in scope, cutting across a number of disciplines. Others focus mainly on methodological applications within specific fields such as political science, sociology, demography, and public health. The series serves a mix of students and researchers in the social sciences and statistics.

Series Editors

R. Michael Alvarez, *California Institute of Technology* Nathaniel L. Beck, *New York University* Stephen L. Morgan, *Johns Hopkins University* Lawrence L. Wu, *New York University*

Other Titles in the Series

Maximum Likelihood for Social Science, by Michael D. Ward and John S. Ahlquist Computational Social Science, by R. Michael Alvarez Spatial Analysis for the Social Sciences, by David Darmofal Counterfactuals and Causal Inference, Second Edition, by Stephen L. Morgan and Christopher Winship Time Series Analysis for the Social Sciences, by Janet M. Box-Steffensmeier, John R. Freeman, Matthew P. Hitt, and Jon C. W. Pevehouse Statistical Modeling and Inference for Social Science, by Sean Gailmard Formal Models of Domestic Politics, by Scott Gehlbach Data Analysis Using Regression and Multilevel/Hierarchical Models, by Andrew Gelman and Jennifer Hill Political Game Theory: An Introduction, by Nolan McCarty and Adam Meirowitz Essential Mathematics for Political and Social Research, by Jeff Gill Spatial Models of Parliamentary Voting, by Keith T. Poole Event History Modeling: A Guide for Social Scientists, by Janet M. Box-Steffensmeier and Bradford S. Jones Ecological Inference: New Methodological Strategies, edited by Gary King, Ori Rosen, and Martin A. Tanner

Regression and Other Stories

ANDREW GELMAN Columbia University, New York

JENNIFER HILL New York University

AKI VEHTARI Aalto University, Finland

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107023987 DOI:10.1017/9781139161879

© Andrew Gelman, Jennifer Hill, and Aki Vehtari 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021 Reprinted 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-02398-7 Hardback ISBN 978-1-107-67651-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pr	reface		xi		
	Wha	t you should be able to do after reading and working through this book	xi		
	Fun	chapter titles	xii		
	Addi	tional material for teaching and learning	xiii		
Pa	rt 1:	Fundamentals	1		
1	Over	rview	3		
	1.1	The three challenges of statistics	3		
	1.2	Why learn regression?	4		
	1.3	Some examples of regression	5		
	1.4	Challenges in building, understanding, and interpreting regressions	9		
	1.5	Classical and Bayesian inference	13		
	1.6	Computing least squares and Bayesian regression	16		
	1.7	Bibliographic note	17		
	1.8	Exercises	17		
2	Data	and measurement	21		
	2.1	Examining where data come from	21		
	2.2	Validity and reliability	23		
	2.3	All graphs are comparisons	25		
	2.4	Data and adjustment: trends in mortality rates	31		
	2.5	Bibliographic note	33		
	2.6	Exercises	34		
3	Som	Some basic methods in mathematics and probability 35			
	3.1	Weighted averages	35		
	3.2	Vectors and matrices	36		
	3.3	Graphing a line	37		
	3.4	Exponential and power-law growth and decline; logarithmic and log-log relationships	38		
	3.5	Probability distributions	40		
	3.6	Probability modeling	45		
	3.7	Bibliographic note	47		
	5.0	Exercises	4/		
4	Stati	Statistical inference 4			
	4.1	Sampling distributions and generative models	49		
	4.2	Estimates, standard errors, and confidence intervals	50		
	4.5	Bias and unmodeled uncertainty	22		
	4.4	Statistical significance, hypothesis testing, and statistical errors	57		
	4.5 4.6	From the concept of statistical significance	60		
	4.0	Example of hypothesis testing: 55,000 residents need your help!	63		
	4.7	Moving beyond hypothesis testing	66		

VI		C	ONTENTS
	48	Bibliographic note	67
	4.9	Exercises	67
5	Simu	lation	69
	5.1	Simulation of discrete probability models	69
	5.2	Simulation of continuous and mixed discrete/continuous models	71
	5.3	Summarizing a set of simulations using median and median absolute deviation	73
	5.4 5.5	Eaks date simulation as a way of life	75 76
	5.5 5.6	Fake-data simulation as a way of me	70
	5.7	Exercises	76
	017		
Pa	rt 2: I	Linear regression	79
6	Back	ground on regression modeling	81
	6.1	Regression models	81
	6.2	Fitting a simple regression to fake data	82
	6.3	Interpret coefficients as comparisons, not effects	84
	6.4	Historical origins of regression	85
	6.5	The paradox of regression to the mean	87
	0.0 6 7	Exercises	90
	0.7	Exercises	91
7	Linea	ar regression with a single predictor	93
	7.1	Example: predicting presidential vote share from the economy	93
	7.2	Checking the model-fitting procedure using fake-data simulation	97
	7.3	Formulating comparisons as regression models	99
	7.4	Bibliographic note	101
	1.5	Exercises	101
8	Fittir	ng regression models	103
	8.1	Least squares, maximum likelihood, and Bayesian inference	103
	8.2	Influence of individual points in a fitted regression	107
	8.3	Least squares slope as a weighted average of slopes of pairs	108
	8.4	Comparing two fitting functions: lm and stan_glm	109
	8.5	Bibliographic note	111
	8.6	Exercises	111
9	Predi	iction and Bayesian inference	113
	9.1	Propagating uncertainty in inference using posterior simulations	113
	9.2	Prediction and uncertainty: predict, posterior_linpred, and posterior_predict	115
	9.3	Prior information and Bayesian synthesis	119
	9.4	Example of Bayesian inference: beauty and sex ratio	121
	9.5	Difform, weakly informative, and informative priors in regression	123
	9.0 9.7	Exercises	128
).1		120
10	Linea	ar regression with multiple predictors	131
	10.1	Adding predictors to a model	131
	10.2	Interpreting regression coefficients	133
	10.3	Indicator variables	134
	10.4	Formulating naired or blocked designs as a regression problem	130
	10.5	i ormanang purea or oroekea acorgno ao a regression problem	157

CONTENTS	
10.6 Example: uncertainty in predicting congressional elections	140
10.7 Mathematical notation and statistical inference	144
10.8 Weighted regression	147
10.9 Fitting the same model to many datasets	148
10.10 Bibliographic note	149
10.11 Exercises	150
11 Assumptions, diagnostics, and model evaluation	153
11.1 Assumptions of regression analysis	153
11.2 Plotting the data and fitted model	156
11.3 Residual plots	161
11.4 Comparing data to replications from a fitted model	163
11.5 Example: predictive simulation to check the fit of a time-series model	166
11.6 Residual standard deviation σ and explained variance R^2	168
11.7 External validation: checking fitted model on new data	171
11.8 Cross validation	172
11.9 Bibliographic note	180
11.10 Exercises	180
12 Transformations and regression	183
12.1 Linear transformations	183
12.2 Centering and standardizing for models with interactions	185
12.3 Correlation and "regression to the mean"	187
12.4 Logarithmic transformations	189
12.5 Other transformations	195
12.6 Building and comparing regression models for prediction	199
12.7 Models for regression coefficients	206
12.8 Bibliographic note	210
12.9 Exercises	211
Part 3: Generalized linear models	215
13 Logistic regression	217
13.1 Logistic regression with a single predictor	217
13.2 Interpreting logistic regression coefficients and the divide-by-4 rule	220
13.3 Predictions and comparisons	222
13.4 Latent-data formulation	226
13.5 Maximum likelihood and Bayesian inference for logistic regression	228
13.6 Cross validation and log score for logistic regression	230
13.7 Building a logistic regression model: wells in Bangladesh	232
13.8 Bibliographic note	237
13.9 Exercises	237
14 Working with logistic regression	241
14.1 Graphing logistic regression and binary data	241
14.2 Logistic regression with interactions	242
14.3 Predictive simulation	242
14.4 Average predictive comparisons on the probability scale	247
14.5 Residuals for discrete-data regression	253
14.6 Identification and separation	255
14.7 Bibliographic note	250
14.8 Exercises	259

CAMBRIDGE

VIII		CONTENTS
15 Othe	r generalized linear models	26
15.1	Definition and notation	26
15.2	Poisson and negative binomial regression	26
15.3	Logistic-binomial model	27
15.4	Probit regression: normally distributed latent data	27
15.5	Ordered and unordered categorical regression	27
15.6	Robust regression using the <i>t</i> model	27
15.7	Constructive choice models	27
15.8	Going beyond generalized linear models	28
15.9	Bibliographic note	28
15.10) Exercises	28
Part 4:]	Before and after fitting a regression	28
16 Desig	gn and sample size decisions	29
16.1	The problem with statistical power	29
16.2	General principles of design, as illustrated by estimates of proportions	29
16.3	Sample size and design calculations for continuous outcomes	29
16.4	Interactions are harder to estimate than main effects	30
16.5	Design calculations after the data have been collected	30
16.6	Design analysis using fake-data simulation	30
16.7	Bibliographic note	31
16.8	Exercises	31
17 Posts	stratification and missing-data imputation	31
17.1	Poststratification: using regression to generalize to a new population	31
17.2	Fake-data simulation for regression and poststratification	32
17.3	Models for missingness	32
17.4	Simple approaches for handling missing data	32
17.5	Understanding multiple imputation	32
17.6	Nonignorable missing-data models	33
17.7	Bibliographic note	33
17.8	Exercises	33
Part 5: (Causal inference	33
18 Caus	al inference and randomized experiments	33
18.1	Basics of causal inference	33
18.2	Average causal effects	34
18.3	Randomized experiments	34
18.4	Sampling distributions, randomization distributions, and bias in estimation	34
18.5	Using additional information in experimental design	34
18.6	Properties, assumptions, and limitations of randomized experiments	35
18.7	Bibliographic note	35
18.8	Exercises	35
19 Caus	al inference using regression on the treatment variable	30
19.1	Pre-treatment covariates, treatments, and potential outcomes	30
19.2	Example: the effect of showing children an educational television show	30
19.3	Including pre-treatment predictors	30
19.4	Varying treatment effects, interactions, and poststratification	37
19.5	Challenges of interpreting regression coefficients as treatment effects	37
10.6	Do not adjust for post-treatment variables	37

CONTE	CONTENTS	
19.7	Intermediate outcomes and causal paths	376
19.8	Bibliographic note	379
19.9	Exercises	380
20 Obs	ervational studies with all confounders assumed to be measured	383
20.1	The challenge of causal inference	383
20.2	Using regression to estimate a causal effect from observational data	386
20.3	Assumption of ignorable treatment assignment in an observational study	388
20.4	Imbalance and lack of complete overlap	391
20.5	Example: evaluating a child care program	394
20.6	Subclassification and average treatment effects	397
20.7	Propensity score matching for the child care example	399
20.8	Restructuring to create balanced treatment and control groups	405
20.9	Additional considerations with observational studies	413
20.1	0 Bibliographic note	416
20.1	1 Exercises	417
21 Add	litional topics in causal inference	421
21.1	Estimating causal effects indirectly using instrumental variables	421
21.2	Instrumental variables in a regression framework	427
21.3	Regression discontinuity: known assignment mechanism but no overlap	432
21.4	Identification using variation within or between groups	440
21.5	Causes of effects and effects of causes	445
21.6	Bibliographic note	449
21.7	Exercises	450
Part 6:	What comes next?	455
22 Adv	anced regression and multilevel models	457
22.1	Expressing the models so far in a common framework	457
22.2	Incomplete data	458
22.3	Correlated errors and multivariate models	459
22.4	• Regularization for models with many predictors	459
22.5	Multilevel or hierarchical models	460
22.6	Nonlinear models, a demonstration using Stan	460
22.7	Nonparametric regression and machine learning	464
22.8	Computational efficiency	467
22.9	Bibliographic note	4/1
22.1	U Exercises	4/1
Append	lixes	473
A Cor	nputing in R	475
A.1	Downloading and installing R and Stan	475
A.2	Accessing data and code for the examples in the book	476
A.3	The basics	476
A.4	Reading, writing, and looking at data	481
A.5	Making graphs	482
A.6	Working with messy data	484
A.7	Some R programming	488
A.8	Working with rstanarm fit objects	490
A.9	Bibliographic note	492

х			CONTENTS
В	B 10 quick tips to improve your regression modeling		
	B .1	Think about variation and replication	493
	B.2	Forget about statistical significance	493
	B.3	Graph the relevant and not the irrelevant	493
	B .4	Interpret regression coefficients as comparisons	494
	B.5	Understand statistical methods using fake-data simulation	494
	B.6	Fit many models	495
	B .7	Set up a computational workflow	495
	B.8	Use transformations	496
	B.9	Do causal inference in a targeted way, not as a byproduct of a large regression	n 496
	B .10	Learn methods through live examples	496
References			497
Author Index			516
Subject Index			522

Preface

Existing textbooks on regression typically have some mix of cookbook instruction and mathematical derivation. We wrote this book because we saw a new way forward, focusing on understanding regression models, applying them to real problems, and using simulations with fake data to understand how the models are fit. After reading this book and working through the exercises, you should be able to simulate regression models on the computer and build, critically evaluate, and use them for applied problems.

The other special feature of our book, in addition to its wide range of examples and its focus on computer simulation, is its broad coverage, including the basics of statistics and measurement, linear regression, multiple regression, Bayesian inference, logistic regression and generalized linear models, extrapolation from sample to population, and causal inference. Linear regression is the starting point, but it does not make sense to stop there: once you have the basic idea of statistical prediction, it can be best understood by applying it in many different ways and in many different contexts.

After completing Part 1 of this book, you should have access to the tools of mathematics, statistics, and computing that will allow you to work with regression models. These early chapters should serve as a bridge from the methods and ideas you may have learned in an introductory statistics course. Goals for Part 1 include displaying and exploring data, computing and graphing linear relations, understanding basic probability distributions and statistical inferences, and simulation of random processes to represent inferential and forecast uncertainty.

After completing Part 2, you should be able to build, fit, understand, use, and assess the fit of linear regression models. The chapters in this part of the book develop relevant statistical and computational tools in the context of several applied and simulated-data examples. After completing Part 3, you should be able to similarly work with logistic regression and other generalized linear models. Part 4 covers data collection and extrapolation from sample to population, and in Part 5 we cover causal inference, starting with basic methods using regression for controlled experiments and then considering more complicated approaches adjusting for imbalances in observational data or capitalizing on natural experiments. Part 6 introduces more advanced regression models, and the appendixes include some quick tips and an overview on software for model fitting.

What you should be able to do after reading and working through this book

This text is structured through models and examples, with the intention that after each chapter you should have certain skills in fitting, understanding, and displaying models:

- Part 1: Review key tools and concepts in mathematics, statistics, and computing.
 - Chapter 1: Have a sense of the goals and challenges of regression.
 - Chapter 2: Explore data and be aware of issues of measurement and adjustment.
 - *Chapter 3:* Graph a straight line and know some basic mathematical tools and probability distributions.
 - *Chapter 4:* Understand statistical estimation and uncertainty assessment, along with the problems of hypothesis testing in applied statistics.
 - Chapter 5: Simulate probability models and uncertainty about inferences and predictions.

XII

PREFACE

- *Part 2:* Build linear regression models, use them in real problems, and evaluate their assumptions and fit to data.
 - *Chapter 6:* Distinguish between descriptive and causal interpretations of regression, understanding these in historical context.
 - Chapter 7: Understand and work with simple linear regression with one predictor.
 - *Chapter 8:* Gain a conceptual understanding of least squares fitting and be able to perform these fits on the computer.
 - *Chapter 9:* Perform and understand probabilistic prediction and simple Bayesian information aggregation, and be introduced to prior distributions and Bayesian inference.
 - Chapter 10: Build, fit, and understand linear models with multiple predictors.
 - *Chapter 11:* Understand the relative importance of different assumptions of regression models and be able to check models and evaluate their fit to data.
 - Chapter 12: Apply linear regression more effectively by transforming and combining predictors.
- Part 3: Build and work with logistic regression and generalized linear models.
 - Chapter 13: Fit, understand, and display logistic regression models for binary data.
 - *Chapter 14:* Build, understand, and evaluate logistic regressions with interactions and other complexities.
 - *Chapter 15:* Fit, understand, and display generalized linear models, including the Poisson and negative binomial regression, ordered logistic regression, and other models.
- Part 4: Design studies and use data more effectively in applied settings.
 - *Chapter 16:* Use probability theory and simulation to guide data-collection decisions, without falling into the trap of demanding unrealistic levels of certainty.
 - *Chapter 17:* Use poststratification to generalize from sample to population, and use regression models to impute missing data.
- Part 5: Implement and understand basic statistical designs and analyses for causal inference.
 - *Chapter 18:* Understand assumptions underlying causal inference with a focus on randomized experiments.
 - *Chapter 19:* Perform causal inference in simple settings using regressions to estimate treatment effects and interactions.
 - *Chapter 20:* Understand the challenges of causal inference from observational data and statistical tools for adjusting for differences between treatment and control groups.
 - *Chapter 21:* Understand the assumptions underlying more advanced methods that use auxiliary variables or particular data structures to identify causal effects, and be able to fit these models to data.
- Part 6: Become aware of more advanced regression models.
 - *Chapter 22:* Get a sense of the directions in which linear and generalized linear models can be extended to attack various classes of applied problems.
- Appendixes:
 - *Appendix A:* Get started in the statistical software R, with a focus on data manipulation, statistical graphics, and fitting and using regressions.
 - Appendix B: Become aware of some important ideas in regression workflow.

After working through the book, you should be able to fit, graph, understand, and evaluate linear and generalized linear models and use these model fits to make predictions and inferences about quantities of interest, including causal effects of treatments and exposures.

PREFACE

Fun chapter titles

The chapter titles in the book are descriptive. Here are more dramatic titles intended to evoke some of the surprise you should feel when working through this material:

- Part 1:
 - Chapter 1: Prediction as a unifying theme in statistics and causal inference.
 - Chapter 2: Data collection and visualization are important.
 - Chapter 3: Here's the math you actually need to know.
 - Chapter 4: Time to unlearn what you thought you knew about statistics.
 - Chapter 5: You don't understand your model until you can simulate from it.
- Part 2:
 - Chapter 6: Let's think deeply about regression.
 - Chapter 7: You can't just do regression, you have to understand regression.
 - Chapter 8: Least squares and all that.
 - Chapter 9: Let's be clear about our uncertainty and about our prior knowledge.
 - Chapter 10: You don't just fit models, you build models.
 - Chapter 11: Can you convince me to trust your model?
 - Chapter 12: Only fools work on the raw scale.
- Part 3:
 - Chapter 13: Modeling probabilities.
 - Chapter 14: Logistic regression pro tips.
 - Chapter 15: Building models from the inside out.
- Part 4:
 - Chapter 16: To understand the past, you must first know the future.
 - Chapter 17: Enough about your data. Tell me about the population.
- Part 5:
 - Chapter 18: How can flipping a coin help you estimate causal effects?
 - Chapter 19: Using correlation and assumptions to infer causation.
 - Chapter 20: Causal inference is just a kind of prediction.
 - *Chapter 21:* More assumptions, more problems.
- Part 6:
 - Chapter 22: Who's got next?
- Appendixes:
 - Appendix A: R quick start.
 - Appendix B: These are our favorite workflow tips; what are yours?

In this book we present many methods and illustrate their use in many applications; we also try to give a sense of where these methods can fail, and we try to convey the excitement the first time that we learned about these ideas and applied them to our own problems.

Additional material for teaching and learning

Data for the examples and homework assignments; other teaching resources

The website www.stat.columbia.edu/~gelman/regression contains pointers to data and code for the examples and homework problems in the book, along with some teaching materials.

PREFACE

Prerequisites

XIV

This book does not require advanced mathematics. To understand the linear model in regression, you will need the algebra of the intercept and slope of a straight line, but it will not be necessary to follow the matrix algebra in the derivation of least squares computations. You will use exponents and logarithms at different points, especially in Chapters 12–15 in the context of nonlinear transformations and generalized linear models.

Software

Previous knowledge of programming is not required. You will do a bit of programming in the general-purpose statistical environment R when fitting and using the models in this book, and some of these fits will be performed using the Bayesian inference program Stan, which, like R, is free and open source. Readers new to R or to programming should first work their way through Appendix A.

We fit regressions using the stan_glm function in the rstanarm package in R, performing Bayesian inference using simulation. This is a slight departure from usual treatments of regression (including our earlier book), which use least squares and maximum likelihood, for example using the lm and glm functions in R. We discuss differences between these different software options, and between these different modes of inference, in Sections 1.6, 8.4, and 9.5. From the user's perspective, switching to stan_glm doesn't matter much except in making it easier to obtain probabilistic predictions and to propagate inferential uncertainty, and in certain problems with collinearity or sparse data (in which case the Bayesian approach in stan_glm gives more stable estimates), and when we wish to include prior information in the analysis. For most of the computations done in this book, similar results could be obtained using classical regression software if so desired.

Suggested courses

The material in this book can be broken up in several ways for one-semester courses. Here are some examples:

- *Basic linear regression*: Chapters 1–5 for review, then Chapters 6–9 (linear regression with one predictor) and Chapters 10–12 (multiple regression, diagnostics, and model building).
- *Applied linear regression*: Chapters 1–5 for review, then Chapters 6–12 (linear regression), Chapters 16–17 (design and poststratification), and selected material from Chapters 18–21 (causal inference) and Chapter 22 (advanced regression).
- *Applied regression and causal inference*: Quick review of Chapters 1–5, then Chapters 6–12 (linear regression), Chapter 13 (logistic regression), Chapters 16–17 (design and poststratification), and selected material from Chapters 18–21 (causal inference).
- *Causal inference*: Chapters 1, 7, 10, 11, and 13 for review of linear and logistic regression, then Chapters 18–21 in detail.
- *Generalized linear models*: Some review of Chapters 1–12, then Chapters 13–15 (logistic regression and generalized linear models), followed by selected material from Chapters 16–21 (design, poststratification, and causal inference) and Chapter 22 (advanced regression).

Acknowledgments

We thank the many students and colleagues who have helped us understand and implement these ideas, including everyone thanked on pages xxi–xxii of our earlier book, *Data Analysis Using Regression and Multilevel/Hierarchical Models*. In addition, we thank Pablo Argote, Bill Behrman, Ed Berry, Danilo Bzdok, Andres Castro, Devin Caughey, Zhengchen Cai, Zad Chow, Doug Davidson, Dick De Veaux, Vince Dorie, Mark Fisher, Matěj Grabovsky, Sander Greenland, Daphna Harel, Omri Har-Shemesh, Merlin Heidemanns, Christian Hennig, Nathan Hoffmann, David Kane, Yoav

PREFACE

xv

Kessler, Katharine Khanna, Lydia Krasilnikova, A. Solomon Kurz, Stefano Longo, Gal Matijevic, Michael McLaren, Vicent Modesto, Eam O'Brien, Desislava Petkova, Jenny Pham, Eric Potash, Phil Price, Justin Reppert, Malgorzata Roos, Braden Scherting, Ravi Shroff, Noah Silbert, Michael Sobel, Melinda Song, Scott Spencer, Kenneth Tay, Mireia Triguero, Juliette Unwin, Jasu Vehtari, Jacob Warren, Zane Wolf, Lizzie Wolkovich, Adam Zelizer, Shuli Zhang, and students and teaching assistants from several years of our classes for helpful comments and suggestions, Alan Chen for help with Chapter 20, Andrea Cornejo, Zarni Htet, and Rui Lu for helping to develop the simulation-based exercises for the causal chapters, Ben Silver for help with indexing, Beth Morel and Clare Dennison for copy editing, Luke Keele for the example in Section 21.3, Kaiser Fung for the example in Section 21.5, Mark Broadie for the golf data in Exercise 22.3, Michael Betancourt for the gravity-measuring demonstration in Exercise 22.4, Jerry Reiter for sharing ideas on teaching and presentation of the concepts of regression, Lauren Cowles for many helpful suggestions on the structure of this book, and especially Ben Goodrich and Jonah Gabry for developing the rstanarm package which allows regression models to be fit in Stan using familiar R notation.

We also thank the developers of R and Stan, and the U.S. National Science Foundation, Institute for Education Sciences, Office of Naval Research, Defense Advanced Research Projects Agency, Google, Facebook, YouGov, and the Sloan Foundation for financial support.

Above all, we thank our families for their love and support during the writing of this book.