An Introduction to Gödel's Theorems In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book – extensively rewritten for its second edition – will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic. Peter Smith was formerly Senior Lecturer in Philosophy at the University of Cambridge. His books include *Explaining Chaos* (1998) and *An Introduction to Formal Logic* (2003), and he is also a former editor of the journal *Analysis*. # An Introduction to Gödel's Theorems Second edition Peter Smith University of Cambridge > CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9781107022843 © Peter Smith 2007, 2013 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2007 Second edition 2013 Printed and bound in the United Kingdom by the MPG Books Group Typeset by the author in Computer Modern 10/12.5 pt: system LaTeX 2ε A catalogue record for this publication is available from the British Library ISBN 978-1-107-02284-3 hardback ISBN 978-1-107-60675-3 paperback Additional resources for this publication at www.godelbook.net Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For Patsy, as ever # Contents | Pr | eface | xiii | |----|--|------| | Th | anks | XV | | 1 | What Gödel's Theorems say Basic arithmetic \cdot Incompleteness \cdot More incompleteness \cdot Some implications? \cdot The unprovability of consistency \cdot More implications? \cdot What's next? | 1 | | 2 | Functions and enumerations $ {\it Kinds of function} \cdot {\it Characteristic functions} \cdot {\it Enumerable sets} \cdot {\it Enumerating pairs of numbers} \cdot {\it An indenumerable set: Cantor's theorem} $ | 8 | | 3 | Effective computability
Effectively computable functions \cdot Effectively decidable properties and sets
\cdot Effective enumerability \cdot Another way of defining e.e. sets of numbers \cdot
The Basic Theorem about e.e. sets | 14 | | 4 | Effectively axiomatized theories Formalization as an ideal \cdot Formalized languages \cdot Formalized theories \cdot More definitions \cdot The effective enumerability of theorems \cdot Negation-complete theories are decidable | 25 | | 5 | Capturing numerical properties Three remarks on notation \cdot The language $L_A \cdot$ A quick remark about truth \cdot Expressing numerical properties and functions \cdot Capturing numerical properties and functions \cdot Expressing vs. capturing: keeping the distinction clear | 36 | | 6 | The truths of arithmetic $Sufficiently \ expressive \ languages \cdot The \ truths \ of \ a \ sufficiently \ expressive \ language \cdot Unaxiomatizability \cdot An \ incompleteness \ theorem$ | 46 | | 7 | Sufficiently strong arithmetics
The idea of a 'sufficiently strong' theory \cdot An undecidability theorem \cdot Another incompleteness theorem | 49 | | | | vii | | | | | #### Contents | 8 | Interlude: Taking stock Comparing incompleteness arguments \cdot A road-map | 53 | |------|---|-----| | 9 | Induction
The basic principle \cdot Another version of the induction principle \cdot Induction and relations \cdot Rule, schema, or axiom? | 56 | | 10 | Two formalized arithmetics $ BA, \ Baby \ Arithmetic \cdot BA \ is \ negation-complete \cdot Q, \ Robinson \ Arithmetic \cdot Which \ logic? \cdot Q \ is \ not \ complete \cdot Why \ Q \ is \ interesting $ | 62 | | 11 | What Q can prove $ \begin{array}{lllllllllllllllllllllllllllllllllll$ | 71 | | 12 | $I\Delta_0$, an arithmetic with induction $ \label{eq:lambda0} $ The formal Induction Schema \cdot Introducing $I\Delta_0$ \cdot What $I\Delta_0$ can prove \cdot $I\Delta_0$ is not complete \cdot On to $I\Sigma_1$ | 83 | | 13 | First-order Peano Arithmetic Being generous with induction \cdot Summary overview of PA \cdot Hoping for completeness \cdot Is PA consistent? | 90 | | 14 | Primitive recursive functions Introducing the primitive recursive functions \cdot Defining the p.r. functions more carefully \cdot An aside about extensionality \cdot The p.r. functions are computable \cdot Not all computable numerical functions are p.r. \cdot Defining p.r. properties and relations \cdot Building more p.r. functions and relations \cdot Further examples | 97 | | 15 | L_A can express every p.r. function Starting the proof \cdot The idea of a β -function \cdot Finishing the proof \cdot The p.r. functions and relations are Σ_1 -expressible | 113 | | 16 | Capturing functions Capturing defined \cdot 'Weak' capturing \cdot 'Strong' capturing | 119 | | 17 | Q is p.r. adequate $ \label{eq:condition} The idea of p.r. adequacy \cdot Starting the proof \cdot Completing the proof \cdot All p.r. functions can be captured in Q by \Sigma_1 wffs$ | 124 | | 18 | Interlude: A very little about $Principia$ $Principia$'s logicism · Gödel's impact · Another road-map | 130 | | viii | | | | | C | ontents | |----|--|---------| | 19 | The arithmetization of syntax Gödel numbering \cdot Acceptable coding schemes \cdot Coding sequences \cdot Term, Atom, Wff, Sent and Prf are p.r. \cdot Some cute notation for Gödel numbers \cdot The idea of diagonalization | 136 | | 20 | Arithmetization in more detail The concatenation function \cdot Proving that $Term$ is p.r. \cdot Proving that $Atom, \ Wff$ and $Sent$ are p.r. \cdot Towards proving Prf is p.r. | 144 | | 21 | PA is incomplete Reminders · 'G is true if and only if it is unprovable' · PA is incomplete: the semantic argument · 'There is an undecidable sentence of Goldbach type' · Starting the syntactic argument for incompleteness · ω -incompleteness, ω -inconsistency · Finishing the syntactic argument · Canonical Gödel sentences and what they say | | | 22 | Gödel's First Theorem Generalizing the semantic argument \cdot Incompletability \cdot Generalizing the syntactic argument \cdot The First Theorem | 161 | | 23 | Interlude: About the First Theorem What we have proved \cdot Some ways to argue that G_T is true \cdot What doesn't follow from incompleteness \cdot What does follow from incompleteness? \cdot What's next? | 167 | | 24 | The Diagonalization Lemma $ \begin{array}{l} \text{Provability predicates} \cdot \text{An easy theorem about provability predicates} \cdot \\ \text{Proving } G \leftrightarrow \neg Prov(\ulcorner G \urcorner) \cdot \text{The Diagonalization Lemma} \cdot \text{Incompleteness} \\ \text{again} \cdot \text{`G\"{o}del sentences' again} \cdot \text{Capturing provability?} \end{array} $ | 177 | | 25 | Rosser's proof $\Sigma_{1}\text{-soundness and 1-consistency} \cdot \text{Rosser's construction: the basic idea} \cdot$ The Gödel-Rosser Theorem \cdot Improving the theorem | 185 | | 26 | Broadening the scope Generalizing beyond p.r. axiomatized theories \cdot True Basic Arithmetic can't be axiomatized \cdot Generalizing beyond overtly arithmetic theories \cdot A word of warning | | | 27 | Tarski's Theorem Truth-predicates, truth-theories \cdot The undefinability of truth \cdot Tarski's Theorem: the inexpressibility of truth \cdot Capturing and expressing again \cdot The Master Argument? | 197 | ## Contents | 28 | $\ensuremath{Speed\text{-up}}$
The length of proofs \cdot
The idea of speed-up \cdot Long proofs, via diagonalization | 201 | |----|---|-----| | 29 | Second-order arithmetics
Second-order syntax \cdot Second-order semantics \cdot The Induction Axiom again \cdot 'Neat' second-order arithmetics \cdot Introducing $PA_2 \cdot$ Categoricity \cdot Incompleteness and categoricity \cdot Another arithmetic \cdot Speed-up again | 204 | | 30 | Interlude: Incompleteness and Isaacson's Thesis Taking stock \cdot The unprovability-in-PA of Goodstein's Theorem \cdot An aside on proving the Kirby-Paris Theorem \cdot Isaacson's Thesis \cdot Ever upwards \cdot Ancestral arithmetic | 219 | | 31 | Gödel's Second Theorem for PA Defining Con \cdot The Formalized First Theorem in PA \cdot The Second Theorem for PA \cdot On ω -incompleteness and ω -consistency again \cdot So near, yet so far \cdot How should we interpret the Second Theorem? | 233 | | 32 | On the 'unprovability of consistency' Three corollaries \cdot Weaker theories cannot prove the consistency of PA \cdot PA cannot prove the consistency of stronger theories \cdot Introducing Gentzen \cdot What do we learn from Gentzen's proof? | 239 | | 33 | Generalizing the Second Theorem $ \begin{array}{c} \text{More notation} \cdot \text{The Hilbert-Bernays-L\"ob} \text{ derivability conditions} \cdot T\text{'s ignorance about what it can't prove} \cdot \text{The Formalized Second Theorem} \cdot \\ \text{Jeroslow's Lemma and the Second Theorem} \\ \end{array} $ | 245 | | 34 | Löb's Theorem and other matters Theories that 'prove' their own inconsistency · The equivalence of fixed points for ¬Prov · Consistency extensions · Henkin's Problem and Löb's Theorem · Löb's Theorem and the Second Theorem | 252 | | 35 | Deriving the derivability conditions
The second derivability condition for PA \cdot The third derivability condition for PA \cdot Generalizing to nice* theories \cdot The Second Theorem for weaker arithmetics | 258 | | 36 | 'The best and most general version' There are provable consistency sentences \cdot The 'intensionality' of the Second Theorem \cdot Reflection \cdot The best version? \cdot Another route to accepting a Gödel sentence? | 262 | Χ | | (| ontents | |----|---|---------| | 37 | Interlude: The Second Theorem, Hilbert, minds and machines 'Real' vs. 'ideal' mathematics · A quick aside: Gödel's caution · Relating the real and the ideal · Proving real-soundness? · The impact of Gödel · Minds and computers · The rest of this book: another road-map | | | 38 | $\mu\text{-Recursive functions}$ Minimization and $\mu\text{-recursive functions}$ · Another definition of $\mu\text{-recursive-ness}$ · The Ackermann–Péter function · Ackermann–Péter is $\mu\text{-recursive-but not p.r.}$ · Introducing Church's Thesis · Why can't we diagonalize out? · Using Church's Thesis | | | 39 | Q is recursively adequate Capturing a function defined by minimization \cdot The recursive adequacy theorem \cdot Sufficiently strong theories again \cdot Nice theories can <i>only</i> capture μ -recursive functions | | | 40 | Undecidability and incompleteness Some more definitions \cdot Q and PA are undecidable \cdot The $Entscheidungs-problem$ \cdot Incompleteness theorems for nice' theories \cdot Negation-complete theories are recursively decidable \cdot Recursively adequate theories are not recursively decidable \cdot Incompleteness again \cdot True Basic Arithmetic is not r.e. | | | 41 | Turing machines
The basic conception \cdot Turing computation defined more carefully \cdot Some simple examples \cdot 'Turing machines' and their 'states' | 310 | | 42 | Turing machines and recursiveness $\mu\text{-Recursiveness entails Turing computability} \cdot \mu\text{-Recursiveness entails}$ Turing computability: the details \cdot Turing computability entails μ -recursiveness \cdot Generalizing | | | 43 | Halting and incompleteness Two simple results about Turing programs \cdot The halting problem \cdot The $Entscheidungsproblem$ again \cdot The halting problem and incompleteness \cdot Another incompleteness argument \cdot Kleene's Normal Form Theorem \cdot A note on partial computable functions \cdot Kleene's Theorem entails Gödel's First Theorem | | | 44 | The Church–Turing Thesis Putting things together \cdot From Euclid to Hilbert \cdot 1936 and all that \cdot What the Church–Turing Thesis is and is not \cdot The status of the Thesis | 338 | | 45 | Proving the Thesis? | 348 | | | | xi | ## Contents Vagueness and the idea of computability \cdot Formal proofs and informal demonstrations \cdot Squeezing arguments – the very idea \cdot Kreisel's squeezing argument \cdot The first premiss for a squeezing argument \cdot The other premisses, thanks to Kolmogorov and Uspenskii \cdot The squeezing argument defended \cdot To summarize | 46 Looking back | 367 | |-----------------|-----| | Further reading | 370 | | Bibliography | 372 | | Index | 383 | χij # Preface In 1931, the young Kurt Gödel published his First and Second Incompleteness Theorems; very often, these are referred to simply as 'Gödel's Theorems' (even though he proved many other important results). These Incompleteness Theorems settled – or at least, seemed to settle – some of the crucial questions of the day concerning the foundations of mathematics. They remain of the greatest significance for the philosophy of mathematics, though just what that significance is continues to be debated. It has also frequently been claimed that Gödel's Theorems have a much wider impact on very general issues about language, truth and the mind. This book gives proofs of the Theorems and related formal results, and touches – necessarily briefly – on some of their implications. Who is the book for? Roughly speaking, for those who want a lot more fine detail than you get in books for a general audience (the best of those is Franzén, 2005), but who find the rather forbidding presentations in classic texts in mathematical logic (like Mendelson, 1997) too short on explanatory scene-setting. I assume only a modest amount of background in logic. So I hope philosophy students will find the book useful, as will mathematicians who want a more accessible exposition. But don't be misled by the relatively relaxed style; don't try to browse through too quickly. We do cover a lot of ground in quite a bit of detail, and new ideas often come thick and fast. Take things slowly! I originally intended to write a shorter book, leaving many of the formal details to be filled in from elsewhere. But while that plan might have suited some readers, I soon realized that it would seriously irritate others to be sent hither and thither to consult a variety of textbooks with different terminologies and different notations. So, in the end, I have given more or less full proofs of most of the key results we cover ($^{\circ}\boxtimes$ ' serves as our end-of-proof marker, as we want the more usual $^{\circ}\square$ ' for another purpose). However, my original plan shows through in two ways. First, some proofs are still only partially sketched in. Second, I try to signal very clearly when the detailed proofs I do give can be skipped without much loss of understanding. With judicious skimming, you should be able to follow the main formal themes of the book even if you have limited taste for complex mathematical arguments. For those who want to fill in more details and test their understanding there are exercises on the book's website at www.godelbook.net, where there are also other supplementary materials. As we go through, there is also an amount of broadly philosophical commentary. I follow Gödel in believing that our formal investigations and our general xiii #### Preface reflections on foundational matters should illuminate and guide each other. I hope that these brief philosophical discussions – relatively elementary though certainly not always uncontentious – will also be reasonably widely accessible. Note however that I am more interested in patterns of ideas and arguments than in being historically very precise when talking e.g. about logicism or about Hilbert's Programme. Writing a book like this presents many problems of organization. For example, we will need to call upon a number of ideas from the general theory of computation – we will make use of both the notion of a 'primitive recursive function' and the more general notion of a ' μ -recursive function'. Do we explain these related ideas all at once, up front? Or do we give the explanations many chapters apart, when the respective notions first get put to use? I've mostly adopted the second policy, introducing new ideas as and when needed. This has its costs, but I think that there is a major compensating benefit, namely that the way the book is organized makes it clearer just what depends on what. It also reflects something of the historical order in which ideas emerged. How does this second edition differ from the first? This edition is over twenty pages longer, but that isn't because there is much new material. Rather, I have mostly used the extra pages to make the original book more reader-friendly; there has been a lot of rewriting and rearrangement, particularly in the opening chapters. Perhaps the single biggest change is in using a more traditional line of proof for the adequacy of Robinson Arithmetic (Q) for capturing all the primitive recursive functions. I will probably have disappointed some readers by still resisting the suggestion that I provide a full-blown, warts-and-all, proof of the Second Theorem, though I do say rather more than before. But after all, this is supposed to be a relatively introductory book. Below, I acknowledge the help that I have so generously been given by so many. But here I must express thanks of a quite different order to Patsy Wilson-Smith, without whose continuing love and support neither edition of this book would ever have been written. This book is for her. xiv # **Thanks** 'Acknowledgements' is far too cold a word. I have acquired many intellectual debts in the course of writing this book: with great kindness, a lot of people have given me comments, suggestions and corrections. As a result, the book – whatever its remaining shortcomings – is so much better than it might have been My colleague Michael Potter has been an inspiring presence ever since I returned to Cambridge. Many thanks are due to him and to all those who gave me advice on draft extracts while I was writing the first edition, including the late Torkel Franzén, Tim Button, Luca Incurvati, Jeffrey Ketland, Aatu Koskensilta, Christopher Leary, Mary Leng, Toby Ord, Alex Paseau, Jacob Plotkin, José F. Ruiz, Kevin Scharp, Hartley Slater, and Tim Storer. I should especially mention Richard Zach, whose comments were particularly extensive and particularly helpful. I no longer have a list of all those who found errors in the first printing. But Arnon Avron, Peter Milne, Saeed Salehi, and Adil Sanaulla prompted the most significant changes in content that made their way into corrected reprints of the first edition. Orlando May then spotted some still remaining technical errors, as well as a distressing number of residual typos. Jacob Plotkin, Tony Roy and Alfredo Tomasetta found further substantive mistakes. Again, I am very grateful. It is an oddity that the books which are read the most – texts aimed at students – are reviewed the least in the journals: but Arnon Avron and Craig Smoryński did write friendly reviews of the first edition, and I have now tried to meet at least some of their expressed criticisms. When I started working on this second edition, I posted some early parts on my blog Logic Matters, and received very useful suggestions from a number of people. Encouraged by that, at a late stage in the writing I experimentally asked for volunteers to proof-read thirty-page chunks of the book: the bribe I offered was tiny, just a mention here! But over forty more people took up the invitation, so every page was looked at again three or four times. Many of these readers applied themselves to the task with quite extraordinary care and attention, telling me not just about the inevitable typos, but about ill-phrased sentences, obscurities, phrases that puzzled a non-native speaker of English, and more besides. A handful of readers – I report this with mixed feelings – also found small technical errors still lurking in the text. The experiment, then, was a resounding success. So warm thanks are due to, among others, Sama Agahi, Amir Anvari, Bert Baumgaertner, Alex Blum, Seamus Bradley, Matthew Brammall, Benjamin Briggs, ΧV #### **Thanks** Catrin Campbell-Moore, Jordan Collins, Irena Cronin, Matthew Dentith, Neil Dewar, Jan Eißfeldt, Özge Ekin, Nicolas Fillion, Stefan Daniel Firth, Joshua P. Fry, Marc Alcobé García, André Gargoura, Jaime Gaspar, Jake Goritski, Scott Hendricks, Harrison Hibbert, Daniel Hoek, Anil Joshi, Abolfazl Karimi, Amir Khamseh, Baldur Arnviður Kristinsson, Jim Laird, S. P. Lam, Jim Lippard, Carl Mummett, Fredrick Nelson, Robert Rynasiewicz, Noah David Schweber, Alin Soare, Shane Steinert-Threlkeld, Andrew Stephenson, Alexander auf der Straße, S. P. Suresh, Andrew Tedder, Arhat Virdi, Benjamin Wells, John Wigglesworth, and Andrew Withy. I am very grateful to them all! Three more readers require special mention. David Auerbach's many suggestions have uniformly made for significant improvements. Matthew Donald has also given me extremely helpful comments on the whole book. Frank Scheld has proof-read successive versions with enthusiasm and an eagle's eye. Again, very warm thanks. Finally, I must thank Hilary Gaskin at Cambridge University Press, who initially accepted the book for publication and then offered me the chance to write a second edition. xvi