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Preface

Equations and forces

Two-dimensional (2D) statistical hydrodynamics studies statistical properties

of the velocity field u(t, x) of a (imaginary) two-dimensional fluid satisfying

the stochastic 2D Navier–Stokes equations

u̇(t, x) + �u,'"u 2 ¿�u + 'p = f (t, x), div u = 0,

u = (u1, u2), x = (x1, x2).
(1)

Here ¿ > 0 is the kinematic viscosity, u = u(t, x) is the velocity of the fluid,

p = p(t, x) is the pressure, and f is the density of an external force applied

to the fluid. The space variable x belongs to a two-dimensional domain, which

in this book is supposed to be bounded. Suitable boundary conditions are

assumed. For example, one may consider the case when the domain is a rect-

angle (0, a) × (0, b), where a and b are positive numbers, and the equations

are supplemented with periodic boundary conditions; that is to say, the space

variable x belongs to the torus R
2/(aZ · bZ) (in the case of periodic boundary

conditions we will assume that space-mean values of the force f and the solu-

tion u vanish). Equations (1) are stochastic in the sense that the initial condition

u0 = u(0, x), or the force f , or both of them, are random, i.e., depend on a ran-

dom parameter. So the solutions u are random vector fields. The task is to study

various characteristics of u averaged in ensemble, or to study their properties

which hold for most values of the random parameter. In this book, we assume

that the force is random and refer the reader to [FMRT01] for a mathematical

treatment of the Navier–Stokes equations with zero (or deterministic) force and

random initial data.

The Reynolds number R of a random velocity field u(t, x) is defined as

R =
�characteristic scale for x" ·

�

EE(u)
�1/2

¿
,

ix
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x Preface

where E(u) = 1
2

�

|u(x)|1/2dx is the kinetic energy of the fluid and E denotes

the average in ensemble. Since the forces we consider are smooth, then the

solutions u of (1) are regular in x and their space-scale is of order one. So

R > ¿21(EE(u))1/2. A velocity field u is called turbulent if R " 1. Turbulent

solutions for (1) are of prime interest.

If the motion of a “physical” three-dimensional fluid is parallel to the (x1, x2)-

plane and its velocity depends only on (x1, x2), i.e., u = u(t, x1, x2) and u3 = 0,

then (u1, u2)(t, x1, x2) satisfy (1). Such flows are called two-dimensional. Tur-

bulent flows of real fluids are never two-dimensional (i.e., two-dimensional

flows are never observed in experiments with high Reynolds number). Still, the

2D equations (1) and the 2D turbulence which they describe are now inten-

sively studied by mathematicians, physicists, and engineers since, firstly, they

appear in physics outside the realm of hydrodynamics (e.g., they describe flows

of 2D films, see Figure 1 on p. xv), secondly, they provide a model1 for the

3D Navier–Stokes equations and 3D turbulence, and, thirdly, the 3D statistical

hydrodynamics in thin domains is approximately two-dimensional; see Sec-

tion 6.1 of this book. Accordingly, two-dimensional statistical hydrodynamics

is important for meteorology to model intermediate-scale flows in atmosphere

(see Figures 6.1 and 6.2 in Chapter 6).

Statistical properties of the random force f are very important. It is natural

and traditional to assume that

(a) the random field f (t, x) is smooth in x, and

(b) it is stationary in t with rapidly decaying correlations.

If the space domain is unbounded, we should also assume that

(c) the space correlations of f decay rapidly.

However, (c) is not relevant for this book since we only consider flows in

bounded domains.

In mathematics, the point of view2 that turbulence in dimensions 2 and

3 should be described by the Navier–Stokes equations with a random force

satisfying (a)–(c) goes back to A. N. Kolmogorov; see in [VF88]. Also see

that book for some results on stochastic Navier–Stokes equations in the whole

space R
d , d = 2 or 3, with a random force satisfying (a)–(c).

We consider three classes of random forces:

Kick forces. These are random fields of the form

f (t, x) = h(x) +
�

k*Z

·(t 2 Çk)·k(x), (2)

1 This model is not perfect since it is well known that the Navier–Stokes equations in
dimensions 2 and 3 are very different. Still, it may be the best available now. Another popular
model for the 3D Navier–Stokes system is the Burgers equation; see the review [BK07] by Bec
and Khanin. For the stochastic 1D Burgers equation, see [Bor12].

2 which is not at all a unique insight on turbulence!
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Preface xi

where h is a smooth deterministic function, Çk = kÇ with some Ç > 0, and {·k}
are independent identically distributed random vector functions, which we

assume to be divergence-free. For t * (Çk21, Çk) (i.e., between two consecutive

kicks) a solution u(t, x) for (1), (2) satisfies the deterministic equations (1)f =h,

and at the time Çk , when the kth kick ·k(x) comes, it has an instant increment

equal to that kick; see Section 2.3. The kick forces are singular in t and are not

stationary in t , but statistically periodic (the difference between the two notions

is not great if the time t is much longer than the period Ç between the kicks).

An advantage of this class of random forces is that the kicks ·k may have any

statistics.

White in time forces. These are random fields of the form

f (t, x) = h(x) +
d

dt
· (t, x), (3)

where h is as above and · (t) = · (t, ·) is a Wiener process in the space of smooth

divergence-free vector functions. Such random fields are stationary and singular

in t . A disadvantage is that they must be Gaussian; see Section 2.4.

Compound Poisson processes. These are kick forces (2) for which the peri-

ods Çk 2 Çk21 between kicks are independent exponentially distributed random

variables.

A big technical advantage of these three classes of random forces is that the

corresponding solution u(t, x), regarded as a random process u(t, ·) =: u(t) in

the space of vector fields, is a Markov process. At the time of writing it is not

clear how to extend the results of this book to arbitrary smooth random forces f

satisfying (a) and (b).

What is in this book?

We are concerned with basic problems and questions, interesting for physicists

and engineers working in the theory of turbulence. Accordingly Chapters 3–5

(which form the main part of this book) end with sections where we explain

the physical relevance of the obtained results. These sections also provide brief

summaries of the corresponding chapters.

In Chapters 3 and 4, our main goal is to justify, for the 2D case, the statistical

properties of a fluid’s velocity field u(t, x) which physicists assume in their

work. We refer the reader to the books [Bat82; Fri95; Gal02], written in a

sufficiently rigorous way and where the underlying assumptions are formulated

in a clear manner.3 The first postulate in the physical theory of turbulence is that

3 Apart from a few pages at the end, the book [Bat82] is about 3D flows. But all discussions and
most of the results may be literally translated to the 2D case.
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xii Preface

statistical properties of a turbulent flow u(t, x) converge, as time goes to infinity,

to a statistical equilibrium independent of the initial data. Mathematically

speaking, this means that a process u(t, ·), defined by Eq. (1) in the space of

vector fields, has a unique stationary measure, and every solution converges to

this measure in distribution. That is, the law of the random field x �³ u(t, x)

(which is a time-dependent measure in a function space) converges, when

t ³ >, to the measure in question. Random processes possessing this property

of “short-range memory” are said to be mixing.

In Chapter 3, we study the problem of convergence to a statistical equilib-

rium for Markov processes corresponding to equations with the three classes

of random forces as above. We prove abstract theorems which establish the

exponential mixing for certain classes of Markov processes. Next we show

that these theorems apply to Eq. (1) if a random force f satisfies certain mild

non-degeneracy assumptions. This establishes the convergence to a unique

statistical equilibrium and proves that it is exponentially fast.

If the viscosity ¿ and the force f continuously depend on a parameter in such

a way that the former stays positive and the latter stays non-degenerate, then the

stationary measure continuously depends on this parameter. For any fixed initial

data u(0) the law of the corresponding solution u(t) continuously depends on the

parameter as well. In Section 4.3, we show that this continuity is uniform in time

t g 0. That is, in two space dimensions the statistical hydrodynamics is stable,

no matter how big the Reynolds number, whereas the “usual” hydrodynamics

of large Reynolds numbers is very unstable.

The mixing has a number of important consequences, well-known in physics,

but taken for granted there. Namely, consider any observable quantity F (u),

such as the first or second component of the velocity field u = (u1, u2), or

the energy E = 1
2

�

|u|2dx, or the enstrophy 1
2

�

(curl u)2dx. Then F (t) =
F (u(t, ·)) is an ergodic process. That is, its time average converges to the

ensemble average with respect to the stationary measure. We show that the

difference between the two mean values (in time and in ensemble) decays as

T 2³ , where ³ < 1/2 and T is the time of averaging; see Section 4.1.1. Next,

if the ensemble average for an observable F (u) vanishes, then the process F (t)

satisfies the central limit theorem: the law of the random variable

1
:

T

" T

0

F (t) dt

converges, as T ³ >, to a normal distribution N (0, Ã ). For non-trivial observ-

ables F , the dispersion Ã is strictly positive. In particular, for large T the

random variables T 21/2
� T

0
uj (t, x)dt , j = 1, 2, are almost Gaussian. Physi-

cists say that on large time-scales a turbulent velocity field is approximately

Gaussian. These and some other related results are proved in Chapter 4.
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Preface xiii

In Chapter 5 we study velocity fields u(t, x), corresponding to solutions

of (1) with a force (2) or (3) where h = 0, when the viscosity ¿ is small

and the Reynolds number is large. There we only discuss stationary measures

and stationary-in-time solutions u¿ (i.e., solutions u¿(t, x) such that the law

D(u¿(t)) for each t equals the stationary measure). First we observe that for a

limit of order one to exist as ¿ ³ 0, the force f should be proportional to
:

¿;

see Section 5.2.4. So the equations read as

u̇(t, x) + �u,'"u 2 ¿�u + 'p =
:

¿ f (t, x), div u = 0,

where f is the force (2) or (3) with h c 0. This is in sharp contrast with

the 3D theory, where it is believed that a limit of order one exists for the

original scaling (1), without the additional factor
:

¿ on the right-hand side.4

In that chapter we restrict ourselves to the case when the space domain is the

square torus T
2 = R

2/2ÃZ
2. The results remain true for the non-square tori

R
2/(aZ · bZ), but the argument does not apply to the equations in a bounded

domain with the Dirichlet boundary condition.

Denote by ¿¿ the unique stationary measure. We show that the set of measures

{¿¿, 0 < ¿ f 1} is tight (i.e., relatively compact) and that any limit point ¿0 =
lim¿j ³0 ¿¿j

is a non-trivial invariant measure for the Euler system

u̇(t, x) + �u,'"u + 'p = 0, div u = 0.

It is supported by the set of divergence-free vector fields from the Sobolev

space H 2 of order two. This result agrees well with the popular belief that

the Euler equation is “responsible” for 2D turbulence. We do not know if

a limiting measure ¿0 is unique, i.e., if ¿0 = lim¿³0 ¿¿ . But we know that

the measures ¿¿ satisfy, uniformly in ¿ > 0, infinitely many algebraical rela-

tions, called the balance relations. These relations depend only on two scalar

characteristics of the force f . This indicates some universality features of 2D

turbulence. Such universality is another physical belief. In Section 5.1.3, we use

the balance relations to prove that for any t and x the random variables u¿(t, x)

and curl u¿(t, x) have finite exponential moments uniformly in ¿ g 0. In Sec-

tion 5.2, we study further properties of the limiting measures ¿0. In particular,

we establish that any ¿0 has no atoms and that its support is an infinite-

dimensional set.

The results of Chapter 5 provide a foundation of the mathematical theory

of space-periodic 2D turbulence. In Section 5.3, we discuss the relation of

these results with the existing heuristic theory of 2D turbulence, originated by

Batchelor and Kraichnan.

4 Note that for the small-viscosity Burgers equation the right scaling of the force is also trivial,
i.e., without any additional factor; see [BK07; Bor12].
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xiv Preface

The difference between 2D turbulence and real physical 3D turbulence is very

great. In Chapter 6, we discuss a few rigorous results on 3D turbulence, related

to the 2D theory presented in the preceding sections. Namely, in Section 6.1

we discuss (without proof) the convergence of the statistical characteristics of

a flow in a thin 3D layer, corresponding to the 3D Navier–Stokes system with a

random kick force, to those of a 2D flow in the limiting 2D surface. In contrast

with similar deterministic results, the convergence holds uniformly in time. So

a class of anisotropic 3D turbulent flows may be approximated by 2D flows like

those which we consider in our book. Section 6.2 contains a discussion of results

due to Da Prato, Debussche, and Odasso, and Flandoli and Romito, showing

that weak solutions of the stochastic 3D Navier–Stokes system perturbed by a

white-in-time random force (which a priori are non-unique) may be arranged

as a Markov process. This process is mixing if the force is rough as a function

of the space variable. Finally, in Section 6.3, we invoke the methods of control

theory to study further properties of stationary measures for Eqs. (1), (3).

Other equations

The abstract theorems from Chapters 3 and 4 and the methods developed there

to study the solutions of Eq. (1) apply to many other stochastic equations. For

instance, one can consider the stochastic complex Ginzburg–Landau equation

with a conservative nonlinearity,

u̇ + i�u 2 i|u|2mu = �u 2 u + f (t, x), (4)

where x * T
d , d f 3. If d = 1 or 2, then m g 0, while if d = 3, then one

can take, say, m * [0, 1]. Such equations describe optical turbulence. If f is a

bounded kick force, then direct analogues of the theorems in Chapters 3 and 4

remain true for (4) with the same proof.

However, if the force f is white in time, then the methods of Chapters 3

and 4 apply only to Eq. (4) with m = 1 if d = 1 and m < 1 if d g 2 (while the

equation defines a good Markov process for any m as above). That is, for some

deep reason, the arguments developed to treat the stochastic Navier–Stokes

equations (1) with white-in-time forces apply only to PDEs with conservative

nonlinearities of degree f 3;5 see Section 3.5.5.

Readers of this book

The book is aimed at mathematicians and physicists with some background

in PDEs and in stochastic methods. Standard university courses on these sub-

jects are sufficient since the book is provided with preliminaries on function

5 But the method applies to Eq. (4) with m > 1 if we add a strong nonlinear damping 2|u|2m�
u,

m� g m, on the right-hand side.
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Preface xv

Figure 1 The onset of 2D turbulence. Panels 1–4 represent the down-motion of a soap film,

punctured by a comb at the top. The Reynolds number is increasing from panel to panel.

This is 2D turbulent motion described by the 2D Navier–Stokes system (1). Reprinted with

permission from [Rut96]. Copyright 1996, American Institute of Physics.

spaces (Section 1.1), on the 2D Navier–Stokes equations (Chapter 2), and on

stochastics (Sections 1.2 and 1.3). There the reader will find all the needed

non-standard results.
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