Contents

Preface
Acknowledgements

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>page xiii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xviii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chapter plan</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1 Analog or digital?</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Analog communication</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.1.2 Digital communication</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.1.3 Why digital?</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.1.4 Why analog design remains important</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.2 A technology perspective</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1.3 The scope of this textbook</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1.4 Why study communication systems?</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1.5 Concept summary</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1.6 Notes</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2 Signals and systems</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Chapter plan</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.1 Complex numbers</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2.2 Signals</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2.3 Linear time-invariant systems</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Discrete-time convolution</td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Multi-rate systems</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2.4 Fourier series</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Fourier-series properties and applications</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2.5 The Fourier transform</td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Fourier-transform properties</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.5.2 Numerical computation using DFT</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2.6 Energy spectral density and bandwidth</td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2.7 Baseband and passband signals</td>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>2.8 The structure of a passband signal</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>2.8.1 Time-domain relationships</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>2.8.2 Frequency-domain relationships</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>2.8.3 The complex-baseband equivalent of passband filtering</td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2.8.4 General comments on complex baseband</td>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>2.9 Wireless-channel modeling in complex baseband</td>
<td></td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

2.10 Concept summary 74
2.11 Notes 75
2.12 Problems 75
Software Lab 2.1: signals and systems computations using MATLAB 80
Software Lab 2.2: modeling carrier-phase uncertainty 83
Software Lab 2.3: modeling a lamppost-based broadband network 84

3 Analog communication techniques 87
Chapter plan 88
3.1 Terminology and notation 88
3.2 Amplitude modulation 90
 3.2.1 Double-sideband (DSB) suppressed carrier (SC) 90
 3.2.2 Conventional AM 93
 3.2.3 Single-sideband modulation (SSB) 99
 3.2.4 Vestigial-sideband (VSB) modulation 104
 3.2.5 Quadrature amplitude modulation 106
 3.2.6 Concept synthesis for AM 106
3.3 Angle modulation 108
 3.3.1 Limiter–discriminator demodulation 111
 3.3.2 FM spectrum 113
 3.3.3 Concept synthesis for FM 116
3.4 The superheterodyne receiver 117
3.5 The phase-locked loop 121
 3.5.1 PLL applications 124
 3.5.2 A mathematical model for the PLL 125
 3.5.3 PLL analysis 126
3.6 Some analog communication systems 131
 3.6.1 FM radio 132
 3.6.2 Analog broadcast TV 133
3.7 Concept summary 135
3.8 Notes 138
3.9 Problems 138
Software Lab 3.1: amplitude modulation and envelope detection 149
Software Lab 3.2: frequency-modulation basics 151

4 Digital modulation 155
Chapter plan 155
4.1 Signal constellations 156
4.2 Bandwidth occupancy 160
 4.2.1 Power spectral density 160
 4.2.2 The PSD of a linearly modulated signal 162
4.3 Design for bandlimited channels 166
 4.3.1 Nyquist’s sampling theorem and the sinc pulse 166
 4.3.2 The Nyquist criterion for ISI avoidance 169
4.3.3 Bandwidth efficiency 175
4.3.4 Power–bandwidth tradeoffs: a sneak preview 175
4.3.5 The Nyquist criterion at the link level 178
4.3.6 Linear modulation as a building block 179
4.4 Orthogonal and biorthogonal modulation 179
4.5 Proofs of the Nyquist theorems 184
4.6 Concept summary 186
4.7 Notes 188
4.8 Problems 189
Software Lab 4.1: linear modulation over a noiseless ideal channel 196
Appendix 4.A Power spectral density of a linearly modulated signal 200
Appendix 4.B Simulation resource: bandlimited pulses and upsampling 202

5 Probability and random processes 207
Chapter plan 207
5.1 Probability basics 208
5.2 Random variables 214
5.3 Multiple random variables, or random vectors 220
5.4 Functions of random variables 228
5.5 Expectation 233
5.5.1 Expectation for random vectors 237
5.6 Gaussian random variables 238
5.6.1 Joint Gaussianity 245
5.7 Random processes 254
5.7.1 Running example: a sinusoid with random amplitude and phase 255
5.7.2 Basic definitions 256
5.7.3 Second-order statistics 258
5.7.4 Wide-sense stationarity and stationarity 259
5.7.5 Power spectral density 260
5.7.6 Gaussian random processes 266
5.8 Noise modeling 268
5.9 Linear operations on random processes 273
5.9.1 Filtering 274
5.9.2 Correlation 277
5.10 Concept summary 280
5.11 Notes 281
5.12 Problems 282
Appendix 5.A Q function bounds and asymptotics 297
Appendix 5.B Approximations using limit theorems 298
Appendix 5.C Noise mechanisms 299
Appendix 5.D The structure of passband random processes 302
Appendix 5.D.1 Baseband representation of passband white noise 303
Appendix 5.E SNR computations for analog modulation 304
Appendix 5.E.1 Noise model and SNR benchmark 304
Contents

6 Optimal demodulation

- **Chapter plan**
- 6.1 Hypothesis testing
 - 6.1.1 Error probabilities
 - 6.1.2 ML and MAP decision rules
 - 6.1.3 Soft decisions
- 6.2 Signal-space concepts
 - 6.2.1 Representing signals as vectors
 - 6.2.2 Modeling WGN in signal space
 - 6.2.3 Hypothesis testing in signal space
 - 6.2.4 Optimal reception in AWGN
 - 6.2.5 Geometry of the ML decision rule
- 6.3 Performance analysis of ML reception
 - 6.3.1 The geometry of errors
 - 6.3.2 Performance with binary signaling
 - 6.3.3 M-ary signaling: scale-invariance and SNR
 - 6.3.4 Performance analysis for M-ary signaling
 - 6.3.5 Performance analysis for M-ary orthogonal modulation
- 6.4 Bit error probability
- 6.5 Link-budget analysis
- 6.6 Concept summary
- 6.7 Notes
- 6.8 Problems

Software Lab 6.1: linear modulation with two-dimensional constellations

Software Lab 6.2: modeling and performance evaluation on a wireless fading channel

Appendix 6.A The irrelevance of the component orthogonal to the signal space

7 Channel coding

- **Chapter plan**
- 7.1 Motivation
- 7.2 Model for channel coding
- 7.3 Shannon’s promise
 - 7.3.1 Design implications of Shannon limits
- 7.4 Introducing linear codes
- 7.5 Soft decisions and belief propagation
- 7.6 Concept summary
- 7.7 Notes
- 7.8 Problems

Software Lab 7.1: belief propagation
8 Dispersive channels and MIMO

8.1 The single-carrier system model
- 8.1.1 The signal model
- 8.1.2 The noise model and SNR

8.2 Linear equalization
- 8.2.1 Adaptive MMSE equalization
- 8.2.2 Geometric interpretation and analytical computations

8.3 Orthogonal frequency-division multiplexing
- 8.3.1 DSP-centric implementation

8.4 MIMO
- 8.4.1 The linear array
- 8.4.2 Beamsteering
- 8.4.3 Rich scattering and MIMO-OFDM
- 8.4.4 Diversity
- 8.4.5 Spatial multiplexing

8.5 Concept summary

8.6 Notes

8.7 Problems

Software Lab 8.1: introduction to equalization in single-carrier systems
Software Lab 8.2: simplified simulation model for an OFDM link
Software Lab 8.3: MIMO signal processing

Epilogue

References

Index