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Introduction

This book is written for researchers and graduate students in the field of geo-
metric mechanics, especially the theory of systems with symmetries. A wider
audience might include differential geometers, algebraic geometers and singu-
larity theorists. The aim of the book is to show that differential geometry in
the sense of Sikorski is a powerful tool for the study of the geometry of spaces
with singularities. We show that this understanding of differential geometry
gives a complete description of the stratification structure of the space of
orbits of a proper action of a connected Lie group G on a manifold P . We
also show that the same approach can handle intersection singularities; see
Section 8.2.

We assume here that the reader has a working knowledge of differential
geometry and the topology of manifolds, and we use theorems in these fields
freely without giving proofs or references. On the other hand, the material
on differential spaces is developed from scratch. The results on differential
spaces are proved in detail. This should make the book accessible to graduate
students.

The book is split into two parts. In Part I, we introduce the reader to the dif-
ferential geometry of singular spaces and prove some results, which are used
in Part II to investigate concrete systems. The technique of differential geom-
etry presented here is fairly straightforward, and the reader might get a false
impression that the scope of the theory does not differ much from that of the
geometry of manifolds. However, the examples given in Part I will serve as
warnings that such an impression is false. Part II is devoted to applications of
the general theory. Each chapter in this part may be considered as an extensive
example of the use of differential geometry to deal with singularities in con-
crete problems. Since these problems occur in various theories, each chapter
begins with a section introducing elements of the underlying theory, in order
to show the reader the relevance of the problem under consideration.
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2 Introduction

The book contains no exercises, because the actual techniques involved are
very simple. In addition to the standard techniques of the differential geometry
of manifolds, we use techniques of algebraic geometry for rings of smooth
functions. The fact that algebraically defined derivations of smooth functions
admit integral curves is the main difference between differential and algebraic
geometry.

The technical details of the presentation are based on the TEX style file
chosen for the preparation of this book. Displayed results are labelled by the
number of the chapter, the number of the section in the chapter and the num-
ber of the result within the section. For example, ‘Lemma 2.1.3’ stands for
Lemma 1.3 in Chapter 2; it can also be read as the third lemma in Section 2.1.
Displayed equations are referenced by the number of the chapter and the num-
ber of the equation within the chapter. For example, ‘equation (3.21)’ stands
for equation 21 in Chapter 3.

This book is based on several years of research. Some of the results pre-
sented here were obtained by the author. Some other results have been taken
directly from the work of other researchers. The remainder corresponds to an
adaptation and reformulation of the work of other authors so that it fits into the
theory presented here. In order to keep the flow of the presentation in the sub-
sequent chapters free from obstructions, we give below a detailed description
of the content of the book and the references to the literature.

Part I is devoted to a comprehensive presentation of the current status of the
differential geometry of singular spaces. A comprehensive bibliography of the
literature on differential spaces during the period 1965–1992 was published
in 1993 by Buchner, Heller, Multarzyński and Sasin (Buchner et al., 1993).
According to these authors, the first paper on differential spaces was Sikorski
(1967). In the same year, at a meeting of the American Mathematical Society,
Aronszajn presented an extensive programme of differential-geometric study
of subcartesian spaces in terms of singular charts. Aronszajn’s subcartesian
spaces included arbitrary subspaces of Rn (see Aronszajn, 1967). In 1973, Wal-
czak showed that subcartesian spaces are special cases of differential spaces
(see Walczak, 1973).

In Section 2.1, we describe the basic definitions and constructions of Siko-
rski’s theory following his book (see Sikorski, 1972). The fundamental notion
of this theory is the differential structure C∞(S) of a space S, consisting of
functions on S deemed to be smooth. The differential structure of a space
carries all information about the geometry of the space. In particular, a map
ϕ : S → T is smooth if it pulls back smooth functions to smooth functions.
A diffeomorphism is an invertible smooth map with a smooth inverse. As in
topology, subsets, products and quotients of differential spaces are differential
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Introduction 3

spaces. However, the quotient differential space need not have the quotient
topology. Proposition 2.1.11, which gives conditions for equivalence of the
quotient differential-space topology and the quotient topology, is taken from
the work of Pasternak-Winiarski (1984) .

A differential space S is subcartesian if every point of S has a neighbour-
hood diffeomorphic to a subset of some Cartesian space Rn . The category
of subcartesian differential spaces is the main object of our study. Mani-
folds are subcartesian spaces that are locally diffeomorphic to open subsets
of Rn . If M is a manifold, the collection of all local diffeomorphisms to
open subsets of Rn forms the maximal atlas on M . Differential geome-
try, understood as the study of the geometry of a space in terms of the
ring of smooth functions on that space, naturally extends from manifolds
to subcartesian spaces. We do not go beyond subcartesian spaces, because
a differential space which is not subcartesian need not have a locally finite
dimension.

In Section 2.2, we show that subcartesian spaces admit partitions of unity.
The importance of partitions of unity stems from the fact that they enable
us to globalize collections of local data. The existence of partitions of unity
on locally compact and paracompact differential spaces was first proved by
Cegiełka (1974). Here, we follow the proof of Marshall (1975a).

In Chapter 3, we discuss vector fields on subcartesian spaces. A vector field
on a manifold M can be described either as a derivation of a ring C∞(M) of
smooth functions on M or as a generator of a local one-parameter group of
local diffeomorphisms of M . These two notions are equivalent if M is a man-
ifold. However, they may be inequivalent on a subcartesian space S that is not
a manifold.

In Section 3.1, we study the basic properties of derivations of the differential
structure C∞(S) of a subcartesian space S. We show that every derivation X of
C∞(S) can be locally extended to a derivation of C∞(Rn). This result allows
the study of ordinary differential equations on subcartesian spaces, which we
discuss in Section 3.2. The existence and uniqueness theorem for integral
curves of derivations on a subcartesian space was first proved by Śniatycki
(2003a).

In Section 3.3, we discuss the tangent bundle space T S of S, defined as
the space of derivations of C∞(S) at points of S. In the literature, T S is also
called the tangent pseudobundle or the Zariski tangent bundle. Following Watts
(2006), we define the regular component Sreg of S as the set of all points p of
S at which dim Tp S is locally constant, and prove that Sreg is open and dense
in S and that the restriction T Sreg of T S to Sreg is locally spanned by global
derivations; see Lusala et al. (2010). Example 3.3.12, taken from Epstein and
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4 Introduction

Śniatycki (2006), shows that a differential space that is regular everywhere
need not be a manifold.

In Section 3.4, we study global derivations of S that generate local one-
parameter groups of local diffeomorphisms. We call such global derivations
vector fields. We show that the orbits of any family of vector fields on a
subcartesian space S are smooth manifolds immersed in S. This result, first
proved by Śniatycki (2003b), is a generalization of some theorems of Suss-
mann (1973) and Stefan (1974). In particular, it implies that orbits of the family
X(S) of all vector fields on S give a partition of S by smooth manifolds. There-
fore, every subcartesian space S has a minimal partition by smooth manifolds.
This result gives us an alternative interpretation of the strata of a minimal
stratification of a subcartesian space, which we study in Chapter 4.

In Chapter 4, we discuss stratified spaces, first investigated by Whitney
(1955), who called them ‘manifold collections’. The term ‘stratification’ is
due to Thom (1955–56). A stratified space is usually described as a topologi-
cal space partitioned in a special way by smooth manifolds. Here, we restrict
our considerations to stratified spaces that are also subcartesian differential
spaces.

In Section 4.1, we discuss stratified subcartesian spaces following the work
of Śniatycki (2003b) and Lusala and Śniatycki (2011). A stratified space is,
by definition, partitioned by smooth manifolds. The results of Chapter 3 show
that a subcartesian space is also partitioned by smooth manifolds, which are
orbits of the family of all vector fields. We show that if a stratified space S is
subcartesian and the stratification of S is locally trivial, then the partition of S
by orbits of the family of all vector fields is also a stratification of S. Moreover,
this second stratification of S is coarser than the original stratification. If the
original stratification is minimal, then it is the same as the stratification given
by the orbits of the family of all vector fields. In other words, a minimal locally
trivial stratification of a subcartesian space is completely determined by its
differential structure.

In Section 4.2, we describe the orbit type stratification M of a manifold P
given by a proper action on P of a connected Lie group G. This stratifica-
tion is not minimal, because the union of all the strata is the manifold P . The
presentation adopted here borrows from the presentations of the same topic in
the books by Cushman and Bates (1997), Duistermaat and Kolk (2000), and
Pflaum (2001).

Section 4.3 is devoted to a discussion of the structure of the orbit space
R = P/G. We show that the projection to the orbit space R of the strata of M

is a locally trivial and minimal stratification of R. This is called the orbit type
stratification of the orbit space R. We also show that R is a subcartesian space.
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Introduction 5

The material presented in Section 4.3 is based on the results of many authors. In
particular, results of Bierstone (1975; 1980), Bochner’s Linearization Theorem
(Duistermaat and Kolk, 2000), the Hilbert–Weyl Theorem (Weyl, 1946),
Palais’s Slice Theorem (Palais, 1961), a theorem by Schwarz (1975) and the
Tarski–Seidenberg Theorem (Abraham and Robbin, 1967). The form of pre-
sentation adopted here follows that of Cushman, Duistermaat and Śniatycki
(2010). By combining the results of Sections 4.1 and 4.3, we conclude that the
strata of the orbit type stratification of the orbit space R are orbits of the family
of all vector fields on R. This result is the basis for the singular reduction of
symmetries discussed in subsequent chapters.

In Section 4.4, we study a proper action of a Lie group on a locally compact
subcartesian space. Palais’s Slice Theorem applies to this case, and we prove
that the space of orbits of the action is a locally compact differential space. We
have no extension of Bochner’s Linearization Theorem to subcartesian spaces,
and we can prove neither that the orbit space is subcartesian nor that it is strati-
fied. Nevertheless, the result obtained here suffices to prove singular reduction
by stages in Section 6.5.

Chapter 5 is devoted to a discussion of differential forms on subcartesian
spaces. We are led to three inequivalent notions of differential forms. Zariski
differential forms on S are defined as alternating multilinear maps from spaces
of pointwise derivations of C∞(S) to real numbers. Zariski differential forms
can be pulled back by smooth maps. If S is not a manifold, then exterior differ-
entials of Zariski differential forms are not defined. The second possibility is
Koszul differential forms, defined as alternating multilinear maps from spaces
of global derivations of C∞(S) to C∞(S). We can take exterior differentials of
Koszul forms, but we cannot define their pull-backs by differential maps. The
third possibility is Marshall forms, which agree with Zariski forms and Koszul
forms on the regular component Sreg of S. Marshall forms allow pull-backs,
as well as exterior differentials. The presentation adopted here follows a paper
by Marshall (1975a), Watts’ theses (Watts, 2006; 2012) and his unpublished
notes.

In Part II, we apply the general theory introduced in Part I to the problem
of reduction of the symmetries of various systems. In most cases, we make
an assumption that the action of the symmetry group G on the phase space
P of the system is proper. This assumption implies that the orbit space P/G
is stratified, and the study of reduction involves an investigation of the inter-
play between the stratification structure of P/G and the geometric structure
characterizing the system under consideration.

There is no satisfactory theory of the structure of the space of orbits of an
improper action of a Lie group on a manifold. However, if P is a symplectic
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6 Introduction

manifold and the improper action of G on P is Hamiltonian, we can show that
algebraic reduction, in terms of differential schemes, encodes a lot of informa-
tion about the action of G on P . We also show that the information obtained
by algebraic reduction may survive the process of quantization and may be
decoded on the quantum level.

The objective of symplectic reduction, discussed in Chapter 6, is to describe
the structure of the space of orbits of a Hamiltonian action of a connected
Lie group G on a symplectic manifold (P, ω). For a proper action, we know
that the orbit space R = P/G is stratified, and we investigate the interaction
between the stratification structure of R and the Poisson structure of R induced
by the symplectic structure of P . We also discuss the case when the action of
G on P fails to be proper.

In Section 6.1, we give a brief review of Hamiltonian actions of a Lie group
G on a symplectic manifold (P, ω), the properties of the momentum map
J : P → g∗, and the Poisson algebra structure of C∞(P) induced by the sym-
plectic form ω on P . We begin with a discussion of the co-adjoint action of G
on co-adjoint orbits in g∗ and describe the Kirillov–Kostant–Souriau symplec-
tic form of a co-adjoint orbit (Kirillov, 1962; Kostant, 1966; Souriau, 1966).
Moreover, we show that the momentum map for a co-adjoint orbit is the inclu-
sion of the orbit in g∗. This introductory material is included here in order to
establish the notation and to introduce the problem to readers who might be
unfamiliar with symplectic geometry.

Symplectic reduction for a free and proper action was introduced by Meyer
(1973) and Marsden and Weinstein (1974). It is known as regular reduction
or Marsden–Weinstein reduction. The first study of the structure of the orbit
space for a proper non-free Hamiltonian action of the symmetry group was the
paper of Arms, Marsden and Moncrief (Arms et al., 1981), who showed that
the zero level of the momentum map is stratified.

The technique of singular reduction in terms of the Poisson algebra structure
was initiated by Cushman (1983), and later formalized by Arms, Cushman and
Gotay (Arms et al., 1991). The role of Sikorski’s theory of differential spaces in
singular reduction was first described by Cushman and Śniatycki (2001). Com-
prehensive presentations of singular reduction have been given in the books by
Cushman and Bates (1997) and Ortega and Ratiu (2004). Our discussion of
singular reduction is contained in Sections 6.2–6.6. Our presentation differs
from the presentations in Cushman and Bates (1997) and Ortega and Ratiu
(2004) because we have the general theory developed in Part I at our disposal.
Nevertheless, it has many points in common with earlier approaches.

In Section 6.2, we describe the structure of the orbit space R = P/G in
terms of the structure of the ring C∞(R) of smooth functions on R. Using
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Introduction 7

the results of Chapter 4, we describe strata of the orbit type stratifications of
P/G as orbits of the family of all vector fields X(R) on R. For each stra-
tum of R, the Poisson structure on C∞(R) induces the structure of a Poisson
manifold. Since Poisson derivations of C∞(R) are vector fields on R, orbits
of the family P(R) of all Poisson derivations of C∞(R) give foliations of
strata of R by symplectic leaves. A proof that a Poisson manifold is singularly
foliated by symplectic leaves was given in the book by Libermann and Marle
(1987).

In Section 6.3, we show that for each μ ∈ g∗, the projection to R of the level
set J−1(μ) is a stratified space with symplectic strata, which are symplecto-
morphic to the corresponding symplectic leaves of strata of R. In Section 6.4,
we obtain similar results for projections to R of J−1(O), provided that the
co-adjoint orbit O is locally closed.1 The main results obtained in Sections 6.3
and 6.4 are not new. However, the proofs of these results are new.

In Section 6.5, we apply the results of Section 4.4 to the case when the
symmetry group G of (P, ω) has a normal subgroup H . In this case, we can
first reduce the action of H . The result is a stratified Poisson space P/H
with symmetry group G/H . Following Lusala and Śniatycki (to appear), we
prove that the structure of the orbit space (P/H)/(G/H) is isomorphic to
that of P/G. This result is called ‘reduction by stages’ in the literature; see
the book by Marsden, Misiołek, Ortega, Perlmutter and Ratiu (Marsden et al.,
2007).

In Section 6.6, we discuss the process of shifting, which gives rise to an
equivalence between the reduction of J−1(O) and the reduction at zero for
a shifted momentum map on P × O , where O is a co-adjoint orbit. This is
essential for the extension to non-zero co-adjoint orbits of the results on the
commutation of quantization and reduction of J−1(0) discussed in the next
chapter. Shifting was introduced for a free and proper action by Guillemin and
Sternberg (1984). For a proper non-free action, shifting was first proved by
Bates, Cushman, Hamilton and Śniatycki (Bates et al., 2009).

In Section 6.7, we restrict singular reduction to the case when the action
of G on P is free and proper. As a corollary, we obtain the results of the
Marsden–Weinstein reduction (Marsden and Weinstein, 1974).

In Section 6.8, we discuss the case when the action of G on P is not
proper. In this case, the ring of G-invariant functions on P need not sepa-
rate the orbits, and singular reduction is not applicable. At present, there is
no satisfactory theory of the structure of the space of orbits of an improper

1 An example of a co-adjoint orbit which is not locally closed was first given by Pukanszky
(1971). Here, we do not study such co-adjoint orbits; however, they were discussed by Ortega
and Ratiu (2004).
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8 Introduction

action of a Lie group on a manifold. However, in our case, P is a symplectic
manifold and the improper action of G on P is Hamiltonian, which allows
algebraic reduction as discussed in Section 6.9. Algebraic reduction gives
rise to a Poisson algebra defined in terms of differential schemes, which are
differential-geometry analogues of schemes in algebraic geometry. The Pois-
son algebra of algebraic reduction encodes a lot of information about the action
of G on P . The problem arises as to how to decode the information encoded
in algebraic reduction and use it in applications. We return to this question in
Chapter 7.

Algebraic reduction of the zero level of the momentum map was introduced
by Śniatycki and Weinstein (1983). Algebraic reduction at non-zero co-adjoint
orbits was introduced independently by Wilbour (1993) and Kimura (1993).
Theorem 6.9.6 (the shifting theorem) was proved by Arms (1996). Example
6.9.4 was first investigated in the context of algebraic reduction by Arms,
Gotay and Jennings (Arms et al., 1990). Example 6.9.7 was first outlined in
Śniatycki and Weinstein (1983); a full analysis of this example was given in
Śniatycki (2005). Lemma 3.8.1 was proved by Bates (2007).

Chapter 7 is devoted to the problem of commutation of geometric quanti-
zation and reduction. The term ‘geometric quantization’ is used in mechanics
and in representation theory. In both cases, it describes essentially the same
mathematical procedure, but its starting points and aims are different in the
two cases. In representation theory, quantization is a technique for obtaining a
unitary representation of a connected Lie group from its action on a symplectic
manifold. In quantum mechanics, geometric quantization provides a geometric
way to transition from the classical to the quantum description of a physical
system.

In physics, we often study a quantum subsystem of a classical system.
This is usually done by starting with a classical description of the whole sys-
tem and then imposing constraints to single out the subsystem, followed by
reduction of spurious degrees of freedom and subsequent quantization. We
expect that the physical results obtained will be the same as the results of a
study of the subsystem in terms of quantization of the whole system. This
expectation can be rephrased as the principle that quantization commutes with
reduction.

The importance of commutation of quantization and reduction was real-
ized in the study of the quantization of gauge theories and general relativity.
According to Noether’s Second Theorem (Noether, 1918), the presence of a
gauge symmetry leads to a constraint in the theory, given by J = 0, where
J is the momentum map for the gauge group action (Binz et al., 2006). In

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02271-3 - Differential Geometry of Singular Spaces and Reduction of Symmetry
J. Śniatycki
Excerpt
More information

http://www.cambridge.org/9781107022713
http://www.cambridge.org
http://www.cambridge.org


Introduction 9

the studies by Bleuler (1950) and Gupta (1950) of the quantization of electro-
dynamics, these authors quantized the full space of the Cauchy data for the
electromagnetic field and imposed an appropriate constraint on the space of
quantum states. On the other hand, Dirac’s study of the quantization of gravity
led to a distinction between first-class and second-class constraints (Dirac,
1964). First-class constraints could be imposed on the quantum level, whereas
second-class constraints had to be imposed on the classical level.

It is rather difficult to give a definite answer in the framework of quantum
field theory to the question of whether quantization and reduction commute.
Guillemin and Sternberg (1982) proved that geometric quantization commutes
with reduction provided that some strong technical assumptions are satis-
fied. Their approach was formulated in the framework of the representation
theory of Lie groups. Geometric quantization has its roots in the work of Kir-
illov (1962), Auslander and Kostant (1971), Kostant (1966; 1970) and Souriau
(1966). A comprehensive bibliography was given in a book by Woodhouse
(1992).

We begin with a discussion of the significance of commutation of quantiza-
tion and reduction in the framework of representation theory. In Section 7.1,
we give a review of geometric quantization following Śniatycki (1980).

In Section 7.2, we discuss in general terms the problem of commutation of
geometric quantization and singular reduction. This problem has been stud-
ied by Bates, Cushman, Hamilton and Śniatycki (Bates et al., 2009), using
an algebraic approach based on Śniatycki’s earlier results on commutation of
quantization and algebraic reduction (Śniatycki, 2012). The approach to the
problem of commutation of geometric quantization and singular reduction, as
well as many of the results presented in this section, is new.

In Section 7.3, we discuss various special cases. We begin with the case of
a Kähler quantization of a compact symplectic manifold (P, ω) with a Hamil-
tonian action of a compact connected Lie group G, investigated by Guillemin
and Sternberg (1982) and by Sjamaar (1995). We discuss which of the results
of Guillemin and Sternberg and of Sjamaar follow from our general approach,
and which of these results are specific to the approach that they used. Our
results also hold when the symplectic manifold P and the Lie group G are not
compact, and agree with the results of Huebschmann (2006). Next, we discuss
conditions for commutation of singular reduction and quantization with respect
to a real polarization. For a free and proper action of G on P , these conditions
were first introduced by Śniatycki (1983), and subsequently studied by Duval,
Elhadad, Gotay, Śniatycki and Tuynman; see Duval et al. (1990; 1991) and the
references therein.
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10 Introduction

In Section 7.4, we discuss commutation of quantization and reduction at
non-zero quantizable co-adjoint orbits using the shifting trick described in
Section 6.6. The approach adopted here follows Śniatycki (2012).

In Section 7.5, we discuss the problem of commutation of geometric quan-
tization and algebraic reduction. In fact, algebraic reduction was invented for
this problem. In 1980, at a conference in Banff, Guillemin presented some
unpublished results from his work with Sternberg. This lecture motivated
the present author to investigate possible ways to generalize the results of
Guillemin and Sternberg to singular momentum maps. In 1981, the author
presented at a conference in Clausthal a paper discussing some examples in
quantum mechanics which could be interpreted as quantum reduction of sin-
gular constraints (Śniatycki, 1983). Weinstein’s reaction to this lecture led to
a collaboration, which culminated in publication of a joint paper (Śniatycki
and Weinstein, 1983). We discuss some special cases when the polarization is
Kähler or real, and obtain results similar to the results for singular reduction.
We conclude with some partial results on commutation of quantization and
reduction for an improper action of the symmetry group.

Chapter 8 contains two more examples of reduction of symmetry. In
Section 8.1, we discuss reduction of symmetry for a proper action of the sym-
metry group G of a non-holonomically constrained Hamiltonian system. We
begin with a description of the distributional Hamiltonian formulation of con-
strained dynamics, following Bates and Śniatycki (1993). Next, we reformulate
the distributional Hamiltonian formulation in terms of the almost-Poisson
formulation of van der Schaft and Maschke (1994). This encodes the distri-
butional Hamiltonian structure of the theory in the structure of C∞(P). The
space C∞(P)G of G-invariant functions is an almost-Poisson subalgebra of
C∞(P). Since the differential structure C∞(P/G) of the orbit space P/G is
isomorphic to C∞(P)G , it inherits an almost-Poisson algebra structure, which
was first used to discuss reduction by Koon and Marsden (1998).

The almost-Poisson bracket is a derivation and gives rise to a family
P(P/G) of almost-Poisson vector fields on P/G. The orbits of this family
are manifolds. Each orbit Q carries a generalized distribution DQ spanned by
the restriction of P(P/G) to Q. Moreover, DQ carries a symplectic form �Q

defined by the almost-Poisson structure of C∞(Q). A comprehensive presen-
tation of the current state of the geometry of non-holonomically constrained
Hamiltonian systems can be found in a recent book by Cushman, Duistermaat
and Śniatycki (Cushman et al., 2010).

In Section 8.2, we discuss reduction of symmetries for a proper action of the
symmetry group G of a Dirac structure. A Dirac structure on a manifold P is
a maximal isotropic subbundle D of the Pontryagin bundle P = T Q ×Q T ∗Q
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