

Plasticity in Sensory Systems

Plasticity is a fundamental property of neural development and learning in living organisms. It also contributes to problems associated with aging and degenerative processes. Understanding neural plasticity has huge implications for those seeking to recover from brain injury or sensory deprivation and for regular people trying to improve their skills and abilities.

Centered around three themes, this book explores the latest research in plasticity in sensory systems, with a primary focus on visual and auditory systems. This book covers a breadth of recent scientific study within the field, including research on healthy systems and diseased models of sensory processing. Topics include visual and visuomotor learning, models of how the brain codes visual information, sensory adaptations in vision and hearing as a result of partial or complete visual loss in childhood, plasticity in the adult visual system, and plasticity across the senses, as well as new techniques in vision recovery, rehabilitation, and sensory substitution of other senses when one sense is lost.

This edited volume is the fruit of the International Conference on Plastic Vision held at York University, Toronto, Ontario, Canada, in 2011. This unique collection of research reviews gives students and scientists an overview of the ongoing research related to sensory plasticity and provides perspectives on the direction of future work in the field.

Jennifer K. E. Steeves is Associate Professor of Psychology at York University, Toronto. She is a cognitive neuroscientist who works in the area of sensory plasticity.

Laurence R. Harris is Professor of Psychology and Director of the Centre for Vision Research at York University, Toronto. He is a neuroscientist with a background in sensory processes.

Plasticity in Sensory Systems

Edited by

JENNIFER K. E. STEEVES AND LAURENCE R. HARRIS

York University, Toronto, Canada

CAMBRIDGE UNIVERSITY PRESS e. New York, Melbourne, Madrid, Cape Toy

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

 $www. cambridge. org \\ Information on this title: www.cambridge. org/9781107022621$

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Plasticity in sensory systems / edited by Jennifer K. E. Steeves and Laurence R. Harris.

p.; cm.

Includes bibliographical references and indexes. ISBN 978-1-107-02262-1 (hardback)

I. Steeves, Jennifer K. E. (Jennifer Kate Evelyn), 1970— II. Harris, Laurence, 1953—
[DNLM: 1. Visual Cortex – physiology. 2. Neuronal Plasticity – physiology. 3. Vision Disorders – physiopathology. 4. Visual Pathways – physiology. 5. Visual Perception – physiology. WL 307]
612.8'4–dc23 2012025996

ISBN 978-1-107-02262-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

CONTENTS

Lis	List of Contributors	
1	Plasticity in Sensory Systems Jennifer K. E. Steeves and Laurence R. Harris	1
I	VISUAL AND VISUOMOTOR PLASTICITY	
2	The Distributed Nature of Visual Object Learning	9
	Hans P. Op de Beeck	
	Introduction	9
	Human Imaging: Partially Distributed Learning Effects	11
	Learning at the Single-Cell Level	19
	Conclusion	27
3	Motor Adaptation and Proprioceptive Recalibration	33
	Danielle Salomonczyk, Erin K. Cressman, and Denise Y. P. Henriques	
	Introduction	33
	Sensory Recalibration with Prism Displacement	34
	Sensory Recalibration with Virtual Reality	35
	Recalibrating Hand Path	36
	Recalibrating Hand Position	37
	Relationship Between Recalibration and Adaptation	44
4	Deficits and Adaptation of Eye-Hand Coordination	
	During Visually Guided Reaching Movements in People	
	with Amblyopia	49
	Ewa Niechwiej-Szwedo, Herbert C. Goltz, and Agnes M. F. Wong	
	Introduction	49

vi	Contents	
	Overview of Our Study Design	51
	Effects of Amblyopia on Saccades	52
	Effects of Amblyopia on Visually Guided Reaching	55
	Effects of Amblyopia on Temporal Eye-Hand Coordination During	
	Reaching	62
	Future Directions	66
II	PLASTICITY IN CHILDHOOD	
5	Human Visual Plasticity: Lessons from Children Treated	
	for Congenital Cataracts	75
	Daphne Maurer and Terri Lewis	
	Acuity	76
	Higher-Level Vision	78
	Summary of Experimental Findings on Human Binocular	
	Deprivation	82
	Implications for Critical Periods	82
	Unanswered Questions	86
	Summary	88
6	Living with One Eye: Plasticity in Visual and	
	Auditory Systems	94
	Krista R. Kelly, Stefania S. Moro, and Jennifer K. E. Steeves	
	Seeing with One Eye: Objects and the World Around Us	96
	Seeing with One Eye: Motion in the World Around Us	99
	Brain's Response to Losing One Eye	100
	Effect of Loss of One Eye on Nonvisual Tasks	104
	Hearing with One Eye: Locating Where Sounds Originate	105
	Living with One Eye: Putting Sights and Sounds Together	106
	Living with One Eye: Adaptive Strategies for Everyday Life	108
7	Building the Brain in the Dark: Functional and Specific	
	Crossmodal Reorganization in the Occipital Cortex of	
	Blind Individuals	114
	Olivier Collignon, Giulia Dormal, and Franco Lepore	
	Introduction	114
	Crossmodal Reorganization in Occipital Cortex of Early Blind	115
	Functional Specificity in Crossmodal Reorganization	116
	Critical Periods for Crossmodal Reorganization	121
	Putative Mechanisms for Crossmodal Reorganization	122
	Outcomes of Visual Restoration and Rehabilitation	124

	Contents	vii
8	Crossmodal Plasticity in Early Blindness	138
	Josef P. Rauschecker	
	Introduction	138
	Expansion of Whisker-Barrel System in Early-Blind Animals	138
	Sound Localization in the Blind	139
	Neural Basis of Improved Sound Localization in Blind Animals	141
	Neuroimaging of Auditory Spatial Functions in Blind Humans	143
	Conclusions	148
ш	PLASTICITY IN ADULTHOOD AND VISION	
RE	HABILITATION	
9	Visual Plasticity of the Adult Brain	155
	Robert F. Hess and Benjamin Thompson	
	Historical Preamble	155
	Monocular Visual Function	157
	Binocular Visual Function	165
	Mechanisms of Visual Plasticity	167
	Conclusions	171
10	Beyond the Critical Period: Acquiring Stereopsis	
	in Adulthood	175
	Susan R. Barry	
11	Plasticity and Restoration after Visual System Damage:	
	Clinical Applications of the "Residual Vision Activation	
	Theory"	196
	Carolin Gall and Bernhard A. Sabel	
	Spontaneous Recovery of Visual Fields after Central Visual System	
	Lesions	197
	Residual Vision at the Visual Field Border and Its Importance for	
	Recovery Prospects Following Visual Field Training	199
	Activating Residual Vision by Training	204
	Activating Residual Vision by Transorbital Alternating Current	
	Stimulation	211
	"Network" Plasticity and "Within-Systems" Plasticity: Mechanisms of	
	Vision Restoration	218
	Long-Term Potentiation and Neuronal Synchronization	220
	Conclusion	221

viii Contents

12	Applying Plasticity to Visual Rehabilitation in Adulthood	229
	Shachar Maidenbaum and Amir Amedi	
	Introduction	229
	The Challenge of Visual Rehabilitation	230
	Current Attempts at Visual Rehabilitation	232
	Importance of Time and Patience in Visual Rehabilitation	242
	Importance of Training and Learning Visual Principles	242
	Learning from Subjects and the Technological Advantage	243
	What Is the Neural Basis for these Optimistic Results?	244
	What these Lessons Teach Us About the Potential for Visual	
	Rehabilitation	248
	Conclusion	250
Aut	hor Index	255
Sub	Subject Index	

CONTRIBUTORS

Amir Amedi
Faculty of Medicine,
The Hebrew University of
Jerusalem

Susan R. Barry
Professor of Biological Sciences,
Mount Holyoke College

Olivier Collignon
Centre de Recherche en
Neuropsychologie
et Cognition (CERNEC),
Université de Montréal

Erin K. Cressman School of Human Kinetics, University of Ottawa

Giulia Dormal
Centre de Recherche en
Neuropsychologie
et Cognition (CERNEC),
Université de Montréal

Carolin Gall
Institute of Medical Psychology,
Otto-von-Guericke University of
Magdeburg Medical Faculty

Herbert C. Goltz
Department of Ophthalmology and Vision Sciences,
The Hospital for Sick Children

Laurence R. Harris
Centre for Vision Research and
Department of Psychology,
York University

Denise Y. P. Henriques
Centre for Vision Research and
Department of Kinesiology and
Health Science,
York University

Robert F. Hess McGill Vision Research, Department of Ophthalmology, McGill University

Krista R. Kelly
Centre for Vision Research and
Department of Psychology,
York University

Franco Lepore
Centre de Recherche en
Neuropsychologie
et Cognition (CERNEC),
Université de Montréal

ix

Terri Lewis
Department of Psychology,
Neuroscience and Behaviour,

McMaster University

Shachar Maidenbaum
Faculty of Medicine,
The Hebrew University of Jerusalem

Daphne Maurer
Department of Psychology,
Neuroscience and Behaviour,

McMaster University

York University

Stefania S. Moro
Centre for Vision Research and
Department of Psychology,

Ewa Niechwiej-Szwedo
Department of Ophthalmology and
Vision Sciences,
The Hospital for Sick Children

Hans P. Op de Beek Laboratory of Biological Psychology, University of Leuven Josef P. Rauschecker

Department of Physiology and

Biophysics,

Georgetown University Medical

Center

Contributors

Bernhard A. Sabel

Institute of Medical Psychology, Otto-von-Guericke University of Magdeburg Medical Faculty

Danielle Salomonczyk

Centre for Vision Research and Department of Psychology,

York University

Jennifer K. E. Steeves

Centre for Vision Research and Department of Psychology,

York University

Benjamin Thompson McGill Vision Research, Department of Ophthalmology,

McGill University

Agnes M. F. Wong

Department of Ophthalmology and

Vision Sciences,

The Hospital for Sick Children