

Wave Theory of Information

Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate—distortion, and degrees of freedom of bandlimited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for remote sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics, and applied mathematics looking for a fresh perspective on information theory.

Massimo Franceschetti is a Professor in the Department of Electrical and Computer Engineering at the University of California, San Diego, and a Research Affiliate of the California Institute of Telecommunications and Information Technology. He is the coauthor of *Random Networks for Communication* (Cambridge, 2008).

"This is an excellent textbook that ties together information theory and wave theory in a very insightful and understandable way. It is of great value and highly recommended for students, researchers and practitioners. Professor Franceschetti brings a highly valuable textbook based on many years of teaching and research."

Charles Elachi, California Institute of Technology and Director Emeritus of the Jet Propulsion Laboratory (NASA)

"This book is about the physics of information and communication. It could be considered to be an exposition of Shannon information theory, where information is transmitted via electromagnetic waves. Surely Shannon would approve of it."

Sanjov K. Mitter, Massachusetts Institute of Technology

"Communication and information are inherently physical. Most of the literature, however, abstracts out the physics, treating them as mathematical or engineering disciplines. Although abstractions are necessary in the design of systems, much is lost in understanding the fundamental limits and how these disciplines fit together with the underlying physics. Franceschetti breaks the disciplinary boundaries, presenting communication and information as physical phenomena in a coherent, mathematically sophisticated, and lucid manner."

Abbas El Gamal, Stanford University

Wave Theory of Information

MASSIMO FRANCESCHETTI

University of California, San Diego

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107022317

DOI: 10.1017/9781108165020

© Cambridge University Press & Assessment 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2018

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Franceschetti, Massimo, author.

Title: Wave theory of information / Massimo Franceschetti, University of California, San Diego.

Description: Cambridge: Cambridge University Press, 2017. |

Includes bibliographical references.

Identifiers: LCCN 2017032961 | ISBN 9781107022317 (hardback) Subjects: LCSH: Information theory. | Electromagnetic waves. |

Wave-motion, Theory of.

Classification: LCC Q360.F73 2017 | DDC 003/.54–dc23 LC record available at https://lccn.loc.gov/2017032961

ISBN 978-1-107-02231-7 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

About the Cover

The picture represents the electromagnetic emission from stellar dust pervading our galaxy, measured by the Planck satellite of the European Space Agency. The colors represent the intensity, while the texture reflects the orientation of the field. The intensity of radiation peaks along the galactic plane, at the center of the image, where the field is aligned along almost parallel lines following the spiral structure of the Milky Way. Cloud formations are visible immediately above and below the plane, where the field's structure becomes less regular. The emission carries information regarding the evolution of our galaxy, as the turbulent structure of the field is related to the processes taking place when stars are born.

Image copyright: European Space Agency and the Planck Collaboration. Acknowledgment: M.-A. Miville-Deschênes, CNRS, Institut d'Astrophysique Spatiale, Université Paris-XI, Orsay, France.

To my wife Isabella, opera in my head.

Contents

	Prefe	асе		page xvii
	Nota	tion		xx
1	Intro	duction		1
	1.1	The Pl	hysics of Information	1
		1.1.1	Shannon's Laws	1
		1.1.2	Concentration Behaviors	2
		1.1.3	Applications	4
	1.2	The D	imensionality of the Space	5
		1.2.1	Bandlimitation Filtering	5
		1.2.2	The Number of Degrees of Freedom	7
		1.2.3	Space–Time Fields	9
		1.2.4	Super-resolution	11
	1.3	Detern	ninistic Information Measures	13
		1.3.1	Kolmogorov Entropy	14
		1.3.2	Kolmogorov Capacity	14
		1.3.3	Quantized Unit of Information	17
	1.4	Probab	pilistic Information Measures	18
		1.4.1	Statistical Entropy	19
		1.4.2	Differential Entropy	21
		1.4.3	Typical Waveforms	22
		1.4.4	Quantized Typical Waveforms	23
		1.4.5	Mutual Information	25
		1.4.6	Shannon Capacity	26
		1.4.7	Gaussian Noise	29
		1.4.8	Capacity with Gaussian Noise	30
	1.5	Energy	y Limits	33
		1.5.1	The Low-Energy Regime	33
		1.5.2	The High-Energy Regime	34
		1.5.3	Quantized Radiation	35
		1.5.4	Universal Limits	37
	1.6	Tour d	l'Horizon	41

x Contents

	1.7	Summary and Further Reading	43
	1.8	Test Your Understanding	44
2	Signa	als	48
	2.1	Representations	48
	2.2	Information Content	49
		2.2.1 Bandlimited Signals	50
		2.2.2 Timelimited Signals	51
		2.2.3 Impossibility of Time–Frequency Limiting	52
		2.2.4 Shannon's Program	53
	2.3	Heisenberg's Uncertainty Principle	55
		2.3.1 The Uncertainty Principle for Signals	55
		2.3.2 The Uncertainty Principle in Quantum Mechanics	56
		2.3.3 Entropic Uncertainty Principle	58
		2.3.4 Uncertainty Principle Over Arbitrary Measurable Sets	58
		2.3.5 Converse to the Uncertainty Principle	59
	2.4	The Folk Theorem	60
		2.4.1 Problems with the Folk Theorem	61
	2.5	Slepian's Concentration Problem	63
		2.5.1 A "Lucky Accident"	65
		2.5.2 Most Concentrated Functions	66
		2.5.3 Geometric View of Concentration	68
	2.6	Spheroidal Wave Functions	70
		2.6.1 The Wave Equation	71
		2.6.2 The Helmholtz Equation	72
	2.7	Series Representations	75
		2.7.1 Prolate Spheroidal Orthogonal Representation	76
		2.7.2 Other Orthogonal Representations	78
		2.7.3 Minimum Energy Error	79
	2.8	Summary and Further Reading	81
	2.9	Test Your Understanding	83
3	Func	tional Approximation	87
	3.1	Signals and Functional Spaces	87
	3.2	Kolmogorov N-Width	88
	3.3	Degrees of Freedom of Bandlimited Signals	90
		3.3.1 Computation of the <i>N</i> -Widths	91
	3.4	Hilbert–Schmidt Integral Operators	95
		3.4.1 Timelimiting and Bandlimiting Operators	98
		3.4.2 Hilbert–Schmidt Decomposition	100
		3.4.3 Singular Value Decomposition	102
	3.5	Extensions	104
		3.5.1 Approximately Bandlimited Signals	104
		3.5.2 Multi-band Signals	105

			Contents	XÌ
		3.5.3 Signals of Multiple Variables		108
		3.5.4 Hybrid Scaling Regimes		111
	3.6	Blind Sensing		113
		3.6.1 Robustness of Blind Sensing		115
		3.6.2 Fractal Dimension		116
	3.7	Compressed Sensing		118
		3.7.1 Robustness of Compressed Sensing		119
		3.7.2 Probabilistic Reconstruction		121
		3.7.3 Information Dimension		122
	3.8	Summary and Further Reading		123
	3.9	Test Your Understanding		124
4	Elect	romagnetic Propagation		130
	4.1	Maxwell's Equations		130
	4.2	Propagation Media		132
		4.2.1 Perfectly Conductive Media		134
		4.2.2 Dielectric Media		137
	4.3	Conservation of Power		138
	4.4	Plane Wave Propagation		139
		4.4.1 Lossless Case		140
		4.4.2 Lossy Case		141
		4.4.3 Boundary Effects		142
		4.4.4 Evanescent Waves		143
	4.5	The Wave Equation for the Potentials		144
	4.6	Radiation		146
		4.6.1 The Far-Field Region		149
		4.6.2 The Fraunhofer Region		151
	4.7	Equivalence and Uniqueness		152
	4.8	Summary and Further Reading		153
	4.9	Test Your Understanding		154
5	Dete	rministic Representations		157
	5.1	The Spectral Domains		157
		5.1.1 Four Field Representations		157
		5.1.2 The Space–Frequency Spectral Domain		158
	5.2	System Representations		159
		5.2.1 Linear, Time-Invariant Systems		159
		5.2.2 Linear, Time-Invariant, Homogeneous Media		160
		5.2.3 Green's Function in Free Space for the Potential		160
		5.2.4 Green's Function in Free Space for the Field		161
		5.2.5 Green's Function for Cylindrical Propagation		162
	5.3	Discrete Radiating Elements		164
		5.3.1 Single Transmitter–Receiver Pair		164
		5.3.2 Multiple Transmitters and Receivers		166

xii Contents

		5.3.3 Singular Value Decomposition	166
	5.4	Communication Systems: Arbitrary Radiating Elements	167
		5.4.1 Hilbert–Schmidt Decomposition	168
		5.4.2 Optimal Communication Architecture	170
	5.5	Summary and Further Reading	171
	5.6	Test Your Understanding	172
6	Stoc	hastic Representations	173
	6.1	Stochastic Models	173
	6.2	Green's Function for a Random Environment	174
		6.2.1 Linear, Time-Varying Systems	174
		6.2.2 Linear, Space–Time-Varying Systems	176
	6.3	Multi-path	176
		6.3.1 Frequency-Varying Green's Function: Coherence	
		Bandwidth	179
		6.3.2 Time-Varying Green's Function: Coherence Time	181
		6.3.3 Mutual Coherence Function	183
		6.3.4 Spatially Varying Green's Function: Coherence Distance	186
	6.4	Karhunen–Loève Representation	186
		6.4.1 Time-Varying Green's Function	187
		6.4.2 Optimality of the Karhunen–Loève Representation	190
		6.4.3 Stochastic Diversity	191
		6.4.4 Constant Power Spectral Density	193
		6.4.5 Frequency-Varying Green's Function	194
		6.4.6 Spatially Varying Green's Function	195
	6.5	Summary and Further Reading	196
	6.6	Test Your Understanding	197
7	Com	munication Technologies	200
	7.1	Applications	200
	7.2	Propagation Effects	200
		7.2.1 Multiplexing	203
		7.2.2 Diversity	204
	7.3	Overview of Current Technologies	205
		7.3.1 OFDM	205
		7.3.2 MC-CDMA	205
		7.3.3 GSM	206
		7.3.4 DS-CDMA	206
		7.3.5 MIMO	207
	7.4	Principles of Operation	208
		7.4.1 Orthogonal Spectrum Division	209
		7.4.2 Orthogonal Code Division	212
		7.4.3 Exploiting Diversity	216
		7.4.4 Orthogonal Spatial Division	217

			Contents	xiii
	7.5	Network Strategies		219
		7.5.1 Multi-hop		219
		7.5.2 Hierarchical Cooperation		221
		7.5.3 Interference Alignment		222
		7.5.4 A Layered View		224
		7.5.5 Degrees of Freedom		225
	7.6	Summary and Further Reading		226
	7.7	Test Your Understanding		227
8	The S	Space–Wavenumber Domain		230
	8.1	Spatial Configurations		230
	8.2	Radiation Model		231
	8.3	The Field's Functional Space		232
	8.4	Spatial Bandwidth		233
		8.4.1 Bandlimitation Error		234
		8.4.2 Phase Transition of the Bandlimitation Error		236
		8.4.3 Asymptotic Evaluation		238
		8.4.4 Critical Bandwidth8.4.5 Size of the Transition Window		240 243
	8.5			243
	0.3	Degrees of Freedom 8.5.1 Hilbert–Schmidt Decomposition		244
		8.5.2 Sampling		248
	8.6	Cut-Set Integrals		250
	0.0	8.6.1 Linear Cut-Set Integral		251
		8.6.2 Surface Cut-Set Integral		253
		8.6.3 Applications to Canonical Geometries		256
	8.7	Backscattering		258
	8.8	Summary and Further Reading		261
	8.9	Test Your Understanding		261
9	The T	ime-Frequency Domain		265
	9.1	Frequency-Bandlimited Signals		265
	9.2	Radiation with Arbitrary Multiple Scattering		266
		9.2.1 Two-Dimensional Circular Domains		267
		9.2.2 Three-Dimensional Spherical Domains		269
		9.2.3 General Rotationally Symmetric Domains		270
	9.3	Modulated Signals		272
	9.4	Alternative Derivations		273
	9.5	Summary and Further Reading		274
	9.6	Test Your Understanding		274
10	Multi	ple Scattering Theory		275
	10.1	Radiation with Multiple Scattering		275
		10.1.1 The Basic Equation		276

xiv Contents

		10.1.2 Multi-path Propagation	277
	10.2	Multiple Scattering in Random Media	278
		10.2.1 Born Approximation	281
		10.2.2 Complete Solutions	281
		10.2.3 Cross Sections	283
	10.3	Random Walk Theory	284
		10.3.1 Radiated Power Density	289
		10.3.2 Full Power Density	289
		10.3.3 Diffusive Regime	290
		10.3.4 Transport Theory	290
	10.4	Path Loss Measurements	291
	10.5	Pulse Propagation in Random Media	292
		10.5.1 Expected Space–Time Power Response	292
		10.5.2 Random Walk Interpretation	296
		10.5.3 Expected Space–Frequency Power Response	297
		10.5.4 Correlation Functions	298
	10.6	Power Delay Profile Measurements	299
	10.7	Summary and Further Reading	300
	10.8	Test Your Understanding	301
11	Noice	Processes	202
11	11.1		303
	11.1	Measurement Uncertainty 11.1.1 Thermal Noise	303
		11.1.2 Shot Noise	303 304
		11.1.2 Shot Noise 11.1.3 Quantum Noise	304
		11.1.4 Radiation Noise	306
	11.2	The Black Body	307
	11.2	11.2.1 Radiation Law, Classical Derivation	307
		11.2.2 Thermal Noise, Classical Derivation	311
		11.2.3 Quantum Mechanical Correction	312
	11.3	Equilibrium Configurations	314
	11.0	11.3.1 Statistical Entropy	316
		11.3.2 Thermodynamic Entropy	317
		11.3.3 The Second Law of Thermodynamics	318
		11.3.4 Probabilistic Interpretation	319
		11.3.5 Asymptotic Equipartition Property	320
		11.3.6 Entropy and Noise	321
	11.4	Relative Entropy	322
	11.5	The Microwave Window	323
	11.6	Quantum Complementarity	325
	11.7	Entropy of a Black Body	326
		11.7.1 Total Energy	326
		11.7.2 Thermodynamic Entropy	327
		17	

			Contents	XV
		11.7.4 Gravitational Limits		329
	11.8	Entropy of Arbitrary Systems		329
		11.8.1 The Holographic Bound		330
		11.8.2 The Universal Entropy Bound		330
	11.9	Entropy of Black Holes		331
	11.10	Maximum Entropy Distributions		333
	11.11	Summary and Further Reading		336
	11.12	Test Your Understanding		338
12	Inform	nation-Theoretic Quantities		343
	12.1	Communication Using Signals		343
	12.2	Shannon Capacity		344
		12.2.1 Sphere Packing		347
		12.2.2 Random Coding		349
		12.2.3 Capacity and Mutual Information		350
		12.2.4 Limiting Regimes		352
		12.2.5 Quantum Constraints		354
		12.2.6 Capacity of the Noiseless Photon Channel		355
		12.2.7 Colored Gaussian Noise		356
		12.2.8 Minimum Energy Transmission		357
	12.3	A More Rigorous Formulation		358
		12.3.1 Timelimited Signals		359
		12.3.2 Bandlimited Signals		360
		12.3.3 Refined Noise Models		362
	12.4	Shannon Entropy		364
		12.4.1 Rate–Distortion Function		364
		12.4.2 Rate–Distortion and Mutual Information		366
	12.5	Kolmogorov's Deterministic Quantities		368
		12.5.1 ϵ -Coverings, ϵ -Nets, and ϵ -Entropy		369
		12.5.2 ϵ -Distinguishable Sets and ϵ -Capacity		370
		12.5.3 Relation Between ϵ -Entropy and ϵ -Capacity		370
	12.6	Basic Deterministic-Stochastic Model Relations		371
		12.6.1 Capacity		371
		12.6.2 Rate–Distortion		373
	12.7	Information Dimensionality		374
		12.7.1 Metric Dimension		374
		12.7.2 Functional Dimension and Metric Order		376
		12.7.3 Infinite-Dimensional Spaces		377
	12.8	Bandlimited Signals		378
		12.8.1 Capacity and Packing		378
		12.8.2 Entropy and Covering		378
		12.8.3 ϵ -Capacity of Bandlimited Signals		379
		12.8.4 (ϵ, δ) -Capacity of Bandlimited Signals		381

xvi Contents

		12.8.5 ϵ -Entropy of Bandlimited Signals	382
		12.8.6 Comparison with Stochastic Quantities	383
	12.9	Spatially Distributed Systems	384
		12.9.1 Capacity with Channel State Information	384
		12.9.2 Capacity without Channel State Information	387
	12.10	Summary and Further Reading	388
	12.11	Test Your Understanding	389
13	Unive	rsal Entropy Bounds	391
	13.1	Bandlimited Radiation	391
	13.2	Deterministic Signals	392
		13.2.1 Quantization Error	393
		13.2.2 Kolmogorov Entropy Bound	394
		13.2.3 Saturating the Bound	396
	13.3	Stochastic Signals	397
		13.3.1 Shannon Rate–Distortion Bound	398
		13.3.2 Shannon Entropy Bound	398
	13.4	One-Dimensional Radiation	400
	13.5	Applications	401
		13.5.1 High-Energy Limits	401
		13.5.2 Relation to Current Technologies	402
	13.6	On Models and Reality	403
	13.7	Summary and Further Reading	405
	13.8	Test Your Understanding	406
Appendix A	Eleme	ents of Functional Analysis	407
Appendix E	Vecto	or Calculus	422
Appendix (Metho	ods for Asymptotic Evaluation of Integrals	428
Appendix [Stoch	nastic Integration	433
Appendix E	Speci	al Functions	434
Appendix F	Electr	omagnetic Spectrum	437
	Biblio	ography	438
	Index		447

Preface

Claude Elwood Shannon, the giant who ignited the digital revolution, is the father of information theory and a hero for many engineers and scientists. There are many excellent textbooks describing the many facets of his work, so why add another one? The ambitious goal is to provide a completely different perspective. The writing reflects my desire to abhor duplication and to attempt to break through the compartmentalized walls of several disciplines. Rather than copying a Picasso, I have tried to frame it and place it in a broader context.

The motivation also came from my experience as a teacher. The Electrical and Computer Engineering Department of the University of California at San Diego, in the spotlight of its annual workshop on information theory and applications, attracting several hundred participants from around the world, may be considered a holy destination for graduate students in information theory. Many gifted young minds join our department every year with the ultimate goal of earning a PhD in this venerable subject. Here, thanks to the work of many esteemed colleagues, they can become experts in coding and communication theories, point-to-point and network information theories, and wired and wireless information systems. Over my years of teaching, however, I have noticed that sometimes students are missing the master plan for how these topics are tied together and how are they related to the fundamental sciences. Some questions that may catch them off guard are: How much information can be radiated by a waveform at the most fundamental level? How is the physical entropy related to the information-theoretic limits of communication? How does the energy and the quantum nature of radiation limit information? How is information theory related to other branches of mathematics besides probability theory, like functional analysis and approximation theory? On top of these, there is the overarching question, of paramount importance for the engineer, of how communication technologies are influenced by fundamental limits in a practical setting. To fill these gaps, this book focuses on information theory from the point of view of wave theory, and describes connections with different branches of physics and mathematics.

David Hilbert, studying functional representations in terms of orthogonal basis sets in early twentieth-century Germany, contributed to underpinning the mathematical concept of information associated with a waveform. After Shannon's breakthrough work, his approach was later followed by the Soviet mathematician Andrey Kolmogorov, who developed information-theoretic concepts in a purely deterministic setting, and by Shannon's colleagues at Bell Laboratories: Henry Landau, Henry Pollack, and David

xviii

Preface

Slepian. Their mathematical works are the basis of the wave theory of information presented in this book. We expand upon them, and place them in the context of communication with electromagnetic waves.

From the physics perspective, much has been written on the relationship between thermodynamics and information theory. Parallels between the statistical mechanics of Boltzmann and Gibbs and Shannon's definition of entropy led to many important advancements in the analysis and design of complex engineering systems. Once again, repetita iuvant, sed continuata secant. We briefly touch upon these topics, but focus on the less beaten path, uncovering the relationship between information theory and the physics of Heisenberg, Maxwell, and Planck. We describe how information physically propagates using waves, and what the limitations are for this process. What was first addressed in the pioneering works of Dennis Gabor and Giuliano Toraldo di Francia is revisited here in the rigorous setting of the theory of functional approximation. Using these tools we provide, for the first time in a book, a complete derivation of the information-theoretic notion of degrees of freedom of a wave starting from the Maxwell equations, and relate it to the concept of entropy, and to the principles of quantized radiation and of quantum indeterminacy. We also provide analogous derivations for stochastic processes and discuss communication technologies from the point of view of functional representations, which turns out to be very useful to uncover the core architectural ideas fundamental to communication systems. When these are viewed in the context of physical limits, one realizes that there still is "plenty of room at the bottom." Engineers are far from reaching the limits that nature imposes on communication: our students have a bright future in front of them!

Now, a word on style and organization. Although the treatment requires a great deal of mathematics and assumes that the reader has some familiarity with probability theory, stochastic processes, and real analysis, this is not a mathematics book. From the outset, I have made the decision to avoid writing a text as a sequence of theorems and proofs. Instead, I focus on describing the ideas that are behind the results, the relevant mathematical techniques, and the philosophy behind their arguments. When not given, rigorous proofs should follow easily once these basic concepts are grasped. This approach is also reflected in the small set of exercises provided at the end of each chapter. They are designed to complement the text, and to provide a more in-depth understanding of the material. When given, solutions are often sketchy, emphasize intuition over rigor, and encourage the reader to fill in the details. Pointers to research papers for further reading are also provided at the end of each chapter.

A grouping into an introductory sequence of topics (Chapters 1–6), central results (Chapters 8 and 9), and an in-depth sequence (Chapters 10–13) is the most natural for using the book to teach a two-quarter graduate course. The demarcation line between these topics can be somewhat shifted, based on the taste of the instructor. The book could also be used in a one-semester course with a selection of the in-depth topics, and limiting the exposition of some of the details of the central results. Within this organization, Chapter 7 is an *intermezzo*, focusing on wireless communication technologies, and on how they exploit information-theoretic representations. Of course, this can only scratch the surface of a large field of study, and the interested reader should

Preface

xix

refer to the wide range of literature for a more in-depth account. A *tour d'horizon* of the book's content is provided at the end of the first chapter.

The material has been tested over the course of seven years in the annual graduate course I have taught at the University of California at San Diego. I wish to thank the many students who attended the course and provided feedback on the lecture notes, which were early incarnations of this book, especially the students in my research group, Taehyung Jay Lim and Hamed Omidvar, who read many sections in detail and provided invaluable comments. I also enjoyed interactions with my colleague Young-Han Kim, who read parts of the manuscript and provided detailed feedback. The presentation of blind sensing and compressed sensing in Chapter 3 has been enriched by conversations with my colleague Rayan Saab. Recurrent visits to the group led by Bernard Fleury at Aalborg University, Denmark, influenced the presentation of the material on stochastic models and their relationship to communication systems presented in Chapters 6 and 10. Sergio Verdú of Princeton University kindly offered some stylistic suggestions to improve the presentation of the material in Chapters 1 and 12. Many exchanges with Edward Lee of the University of California at Berkeley and with my colleague George Papen on the physical meaning of information helped to shape the presentation in Chapter 13. Interactions with Sanjoy Mitter of the Massachusetts Institute of Technology also stimulated many of the physical questions addressed in the book. My editors Phil Meyler and Julie Lancashire at Cambridge University Press were very patient with my eternal postponement of manuscript delivery, and provided excellent professional advice throughout.

A final "thank you" goes to my family, who patiently accepted, with "minimal" complaint, my lack of presence, due to the long retreats in my downstairs hideout.

Massimo Franceschetti

Notation

Asymptotics

```
f(x) \sim g(x) as x \to x_0 \iff \lim_{x \to x_0} f(x)/g(x) = 1

f(x) = o(g(x)) as x \to x_0 \iff \lim_{x \to x_0} f(x)/g(x) = 0

f(x) = O(g(x)) as x \to x_0 \iff \lim_{x \to x_0} |f(x)/g(x)| < \infty
```

Approximations

```
f(x) \simeq g(x) g(x) is a finite-degree Taylor polynomial of f(x)

f(x) \approx g(x) f(x) is approximately equal to g(x) in some numerical sense f(x) \gg g(x) f(x) is much greater than g(x) in some numerical sense f(x) \ll g(x) f(x) is much smaller than g(x) in some numerical sense
```

Domains

$t \in \mathbb{R}$	time
$\omega \in \mathbb{R}$	angular frequency
$\mathbf{r} \in \mathbb{R}^3$	spatial
$\mathbf{k} \in \mathbb{R}^3$	wavenumber
$\phi \in [0, 2\pi]$	angular
$\lambda \in \mathbb{R}^+$	wavelength
$w \in \mathbb{R}^+$	scalar wavenumber
$f(t) \leftrightarrow F(\omega)$	time-angular frequency Fourier transform pairs
$f(\mathbf{r}) \leftrightarrow \widehat{f}(\mathbf{k})$	space-wavenumber Fourier transform pairs
$f(\phi) \leftrightarrow \widehat{f}(w)$	angle-wavenumber Fourier transform pairs

Notation

xxi

Signals

Ω	angular frequency bandwidth
W	wavenumber bandwidth
sinc (t)	waveform $(\sin t)/t$
rect(t/T)	rectangular waveform of support T and unitary amplitude
U(t)	Heaviside's step function: $U(t) = 0$ for $t < 0$, $U(t) = 1$ for $x \ge 0$
$\delta(t)$	Dirac's impulse distribution

Complex Numbers

\dot{j}	imaginary unit
$f^*(\cdot)$	conjugate of complex signal f
$\Re f(\cdot)$	real part of complex signal f
$\Im f(\cdot)$	imaginary part of complex signal f
\mathbf{M}^{\dagger}	conjugate transpose of matrix M

Functional Spaces

L^2	square-integrable signals
\mathscr{B}_{Ω}	bandlimited signals of spectral support $[-\Omega, \Omega]$
\mathscr{T}_T	timelimited signals of time support $[-T/2, T/2]$
N_0	Nyquist number, $N_0 = \Omega T / \pi$
$\alpha^2(T)$	fraction of a signal's energy in $[-T/2, T/2]$
$\beta^2(\Omega)$	fraction of a signal's energy in $[-\Omega, \Omega]$
$\mathscr{E}(\epsilon_T)$	the set of ϵ_T -concentrated, bandlimited signals
•	norm
$\langle \cdot \rangle$	inner product
$\mathcal{S}_n \subset \mathcal{S}$	an <i>n</i> -dimensional subspace of the space $\mathcal S$
$D_{\mathscr{S}_n}(\mathscr{A})$	deviation of the set \mathscr{A} from \mathscr{S}_n
$d_n(\mathscr{A},\mathscr{S})$	Kolmogorov <i>n</i> -width of the set \mathscr{A} in \mathscr{S}
$N_{\epsilon}(\mathcal{A})$	number of degrees of freedom at level ϵ of the set ${\mathscr A}$

xxii

Notation

Fields

$\bar{\mathbf{x}},\bar{\mathbf{y}},\bar{\mathbf{z}}$	unit vectors along the coordinate axes
f(x, y, z)	a scalar field
$\mathbf{f}(x,y,z)$	a vector field: $f_x(x,y,z)\bar{\mathbf{x}} + f_y(x,y,z)\bar{\mathbf{y}} + f_z(x,y,z)\bar{\mathbf{z}}$
∇f	gradient
$ abla \cdot \mathbf{f}$	divergence
$ abla imes \mathbf{f}$	curl
$\nabla^2 f$	scalar Laplacian
$ abla^2\mathbf{f}$	vector Laplacian
$\mathbf{g}(\mathbf{r},t)$	dyadic space-time Green's function
$\mathbf{G}(\mathbf{r},\omega)$	dyadic space-frequency Green's function

Physical Constants

$\ell_{ m p}$	Planck's length [m]
\hbar	reduced Planck's constant [J s]
$k_{ m B}$	Boltzmann's constant [J K ⁻¹]
ϵ_0	permittivity of the vacuum [F m ⁻¹]
μ_0	permeability of the vacuum [H m ⁻¹]
$\epsilon = \epsilon_r \epsilon_0$	permittivity of the medium [F m ⁻¹]
$\mu = \mu_{\rm r}\mu_0$	permeability of the medium [H m ⁻¹]
σ	conductivity of the medium [S m ⁻¹]
$c = 1/\sqrt{\epsilon \mu}$	propagation speed of electromagnetic wave [m s ⁻¹]
$\beta = 2\pi/\lambda = \omega/c$	propagation coefficient [m ⁻¹]

Probability

\mathscr{A}	a set
$ \mathscr{A} $	cardinality of the set \mathscr{A}
Z	a random variable
$\mathbb{P}(Z \in \mathscr{A})$	probability that realization of random variable Z is in \mathcal{A}
$\mathbb{E}(Z)$	expected value of Z
$f_{Z}(z)$	probability density function of random variable Z
Z(t)	a random process
$s_{Z}(t,t')$	autocorrelation of $Z(t)$
$s_{Z}(\tau)$	autocorrelation of wide-sense stationary process $Z(t)$
$S_{Z}(\omega)$	power spectral density of wide-sense stationary process $Z(t)$

Notation

xxiii

Entropy and Capacity

H_{C}	Thermodynamic entropy [J K ⁻¹]
$H_{ m B}$	Boltzmann entropy [J K ⁻¹]
H_{G}	Gibbs entropy $[J K^{-1}]$
H	Shannon entropy [bits]
H_{ϵ}	Kolmogorov ϵ -entropy [bits]
$ar{H}_{\epsilon}$	Kolmogorov ϵ -entropy per unit time [bits s ⁻¹]
R_N	Shannon rate distortion function [bits s ⁻¹]
C	Shannon capacity [bits s ⁻¹]
C_ϵ	Kolmogorov ϵ -capacity [bits]
$ar{C}_\epsilon$	Kolmogorov ϵ -capacity per unit time [bits s ⁻¹]
C_{ϵ}^{δ}	ϵ -delta capacity [bits]
$egin{array}{c} C^\delta_\epsilon \ ar{C}^\delta_\epsilon \end{array}$	ϵ -delta capacity per unit time [bits s ⁻¹]
h(f)	differential entropy of probability density function f
D(p q)	relative entropy between probability mass functions p and q
I(X;Y)	mutual information between random variables X and Y