

GOVERNING DIGITALLY INTEGRATED GENETIC RESOURCES, DATA, AND LITERATURE

The free exchange of microbial genetic information is an established public good, facilitating research on medicines, agriculture, and climate change. However, over the past quarter-century, access to genetic resources has been hindered by intellectual property claims emanating from developed countries under the World Trade Organization's TRIPS Agreement (1994) and by claims of sovereign rights from developing countries under the Convention on Biological Diversity (CBD) (1992). In this volume, the authors examine the scientific community's responses to these obstacles and advise policymakers on how to harness provisions of the Nagoya Protocol (2010) that allow multilateral measures to support research. By pooling microbial materials, data, and literature in a carefully designed transnational e-infrastructure, the scientific community can facilitate access to essential research assets while simultaneously reinforcing the open access movement. The original empirical surveys included here provide a valuable addition to the literature on governing scientific knowledge commons.

Jerome H. Reichman is the Bunyan S. Womble Professor of Law at Duke University School of Law. His research deals with the impact of intellectual property on public health, developing countries, and global science policy. He is the coauthor most recently of *Intellectual Property Rights: Legal and Economic Challenges for Development* (2014).

Paul F. Uhlir, J.D. was Director of the Board on Research Data and Information at the National Academies in Washington, DC, and of the U.S. CODATA until the end of 2014. He is currently a Scholar at the National Academy of Sciences and a consultant on data management.

Tom Dedeurwaerdere is Director of the Biodiversity Governance Unit and professor of philosophy of science at the Universite catholique de Louvain. The editor of two books on the global environmental commons, he was recently awarded a grant from the European Research Council for a project on governing the global genetic resource commons.

Governing Digitally Integrated Genetic Resources, Data, and Literature

GLOBAL INTELLECTUAL PROPERTY STRATEGIES FOR A REDESIGNED MICROBIAL RESEARCH COMMONS

JEROME H. REICHMAN

Duke University School of Law

PAUL F. UHLIR

National Academy of Sciences

TOM DEDEURWAERDERE

Université catholique de Louvain

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

More information

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107021747

© Jerome H. Reichman, Paul F. Uhlir, and Tom Dedeurwaerdere 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Reichman, J. H. (Jerome H.), 1936-, author.

Governing digitally integrated genetic resources, data, and literature: global intellectual property strategies for a redesigned microbial research commons / Jerome H. Reichman, Paul F. Uhlir, Tom Dedeurwaerdere.

p. ; cm.

Includes bibliographical references and index.

ISBN 978-1-107-02174-7 (hardback)

I. Uhlir, P. F. (Paul F.), 1954–, author. II. Dedeurwaerdere, Tom, author. III. Title.
[DNLM: 1. Genetics – legislation & jurisprudence. 2. Access to Information.
3. Intellectual Property. 4. Internationality. 5. Research. QU 33.1]

QH442

572.8-dc23 2015003104

ISBN 978-1-107-02174-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Prefe	reface page xvii				
Ackr	iowle	edgme	nts	xxi	
1	Uncertain Legal Status of Microbial Genetic Resources				
	in a	Conf	flicted Geopolitical Environment	1	
	I.	Intro	duction	1	
	II.	The	Changing Nature of Microbial Research	7	
		A.	The "Wet Lab" Era	8	
		B.	The Revolution in Genetic Science	10	
		C.	Cutting-Edge Applications of Microbiology in		
			Response to Major Global Challenges	13	
			1. Improving Human Health and Mitigating Pandemics	14	
			2. Enhancing Agricultural Production and Food Security	16	
			3. Protecting the Natural Environment and Conserving		
			Biodiversity	17	
			4. Addressing the Energy Challenge by Producing Biofuels	18	
		D.	A New Research Paradigm for the Life Sciences	19	
	III.	Limi	ts of the Emerging Movement to Digitally Integrate		
		Rese	arch Inputs into the "New Biology"	22	
		A.	Recognizing Institutional and Legal Challenges to the		
			Existing Microbial Research Infrastructure	23	
		В.	Towards a Redesigned Microbial Research Commons	27	
PAR	T Ol	NE I	NTERNATIONAL REGULATION OF GENETIC		
RES	OUF	RCES .	AND THE ASSAULT ON SCIENTIFIC RESEARCH		
2	Bet	ween	Private and Public Goods: Emergence of the		
	Tra	nsnati	ional Research Commons for Plant and Microbial		
Genetic Resources				37	

More information

vi Contents

	I.	Historical Importance of Genetic Resources as Global	
		Public Goods	37
		A. Dependence of Wet-Lab Microbiology on Cross-Border Exchanges of Validated Reference Strains from Public	
		Culture Collections	38
		1. Formation of an International Consortium of Public	5 °
		Service Microbial Culture Collections	20
			39
		2. An Ancillary Research Commons for Influenza Viruses	44
		B. Early Efforts to Form an Agricultural Research	.6
		Commons for Plant Genetic Resources	46
		1. Emergence of an International Consortium for the	
		Preservation and Improvement of Cultivars Essential for	
		Food Security	47
		2. Short-Lived Recognition of Plant Genetic Resources as	
		the Common Heritage of Mankind	50
	II.	Impinging Intellectual Property Rights Promoted by the	
		Developed Countries	52
		A. Sui Generis Plant Breeders' Rights and Related	
		Biotechnology Patents	53
		1. Strengthened International Protection for Commercial	
		Plant Breeders	53
		2. The Developing Countries Assert Countervailing	
		Proprietary Rights of Their Own	57
		B. Mandatory Protection of Some Microbial-Related	
		Inventions Under the TRIPS Agreement of 1994	60
		1. Increasing Reliance on Patents and Trade Secrecy	
		Laws to Protect Commercial Applications of Microbial	
		Genetic Resources	65
		2. Possible Patent Thickets	70
	Ш	Mounting Impediments to Research Uses of	, -
	111.	Genetic Resources	72
		A. The Revolt Against the WHO's First Pandemic Influenza	/-
		Research Commons	75
		B. Implications for the Present Study	75 78
		b. Implications for the resent Study	/0
3	_	htening the Regulatory Grip: From the Convention on	
	Bio	logical Diversity in 1992 to the Nagoya Protocol in 2010	82
	I.	Regulatory Measures Controlling Access to Genetic Resources	
		Promoted by the Developing Countries	82
		A. Bioprospecting or Biopiracy?	84

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

		Contents	vii
	В.	Foundations of an International Regime of	
		Misappropriation to Govern Genetic Resources	87
		 Indigenous Communities (and Their State Sponsors) as Emerging Stakeholders 	87
		2. Access and Benefit Sharing Under the Convention on	07
		Biological Diversity	91
	C.	Critical Evaluation of the CBD	96
		1. The CBD as an Incomplete International Regime of	,
		Misappropriation	97
		2. The Threat to Public Scientific Research on Plant and	//
		Microbial Genetic Resources	100
		a. Selected Cases of Alleged Biopiracy Involving Academic	
		Researchers after 1992	100
II.	Doot	b. Major Weaknesses of the "Bilateral Approach" abilizing the Exchange of Plant and Microbial Genetic	106
11.		urces as Global Public Goods	111
	A.	The Public Microbial Culture Collections Consider	111
	11.	Defensive Options	112
	В.	The CGIAR's Agricultural Research Infrastructure on the	112
	ъ.	Verge of Collapse	115
III.	An I	nternational Treaty to Rescue and Expand "The Global)
		o Commons"	118
	A. 1	Basic Concepts of the International Treaty on Plant	
		Genetic Resources for Food and Agriculture (ITPGRFA)	119
	B.	Establishing the Multilateral System for Access and	,
		Benefit-Sharing	121
		1. The "Facilitated Access" Regime	123
		2. Notification, Benefit Sharing, and the Standard	
		Material Transfer Agreement	125
	C.	Strengths and Weaknesses of the International Treaty on	
		Plant Genetic Resources for Food and Agriculture	130
		1. Demonstrable Achievements	131
		2. Major Weaknesses	135
IV.		Constraints and Opportunities for Scientific Research	
		er the Nagoya Protocol	142
	A.	Clarifying the Broad Economic Scope of the CBD	146
	В.	Facilitating Scientific Research	149
		Recognizing the Link Between Public Science and	
		Commercial Benefits	150
		2. Recognizing the Importance of Non-Monetary Benefits	153

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

Contents

More information

viii

	V.	C. Prescriptions for Strict Enforcement of the Newly Codified Global Regime of Misappropriation Challenging Prospects for the Existing Microbial	155
		Research Commons	160
	RT T' MIC	WO PRESERVING THE PUBLIC RESEARCH FUNCTIONS ROBIAL GENETIC RESOURCES AFTER THE NAGOYA PROTOC	COL
4	Th	e Existing Microbial Research Commons Confronts	
	Pro	prietary Obstacles	167
	I.	Evolution of Microbial Culture Collections as Basic Scientific	
		Infrastructure	167
		A. The Pivotal Role of the World Federation for Culture	
		Collections	170
		 Aggregate Holdings and Capacity 	171
		2. Servicing the Broad Microbiological Research Community	173
		3. The Perennial Problem of Funding	177
		B. From Culture Collections to Biological Resource Centers	179
		C. Beyond the WFCC: Regional and Global Networks	
		of BRCs	186
		 Disparities Among the WFCC Member Collections a. Legacy Collections in the European Union and the 	186
		United States	187
		b. Wide Disparities Among Collections in	
		Other Regions	191
		2. The Emerging BRC Networks	198
	II.	Contractual Restrictions on Access to and Use of Upstream	
		Microbial Genetic Resources in Both Developed and	
		Developing Countries	199
		A. The Advent of a Proprietary Model in Response to	

Government Neglect in the United States

in the United States and Its Progeny

Public Culture Collections

Collections' Organization

III. The Research Community Pushes Back

Transfer Agreements

Diffusion of a More Proprietary Approach to Other

Efforts to Negotiate More Research Friendly Material

1. The Uniform Biological Material Transfer Agreement

2. The Core MTA of the European Union Culture

B.

201

205

210

212

212

214

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

			Contents	ix
			3. The European Commission's Regulation on Access to	
			and Use of Genetic Resources	219
			a. Underlying Premises	220
			b. Basic Concepts and Methods	221
		В.	Opting Out or Opting In? Limits of the Trusted	
			Intermediary Approach	225
	IV.	From	the Bilateral to the Multilateral Approach	231
		A.	Basic Concepts of the WHO's Pandemic Influenza	
			Preparedness Framework Agreement (2011)	233
		B.	Governance and Related Issues	238
		C.	Lessons for a Redesigned Microbial Research Commons	241
			1. Trading Downstream Benefits from the Bilateral System	·
			for Essential Public Goods	24 3
			2. Opting into a Multilateral Approach in Order to	17
			Stimulate More Downstream Benefits from the Bilateral	
			System	246
			/	'
5	Fac	ilitatir	ng Transnational Exchanges of Genetic Resources within	
	a R	edesig	ned Microbial Research Infrastructure	250
	I.	Reco	nciling Upstream Research Needs with Benefit-Sharing	
		Unde	er the Nagoya Protocol	250
		A.	How the Existing Modalities of Exchange Fail the Needs	
			of Scientific Research	250
			1. Social Costs of the Case-by-Case Transactional Approach	251
			2. The Flawed Premise of the Proprietary Ethos	253
			3. Lessons from the Informal Exchange Practices	255
		В.	Formalizing the Informal Sector: Premises for a	- //
			Multilateral Regime of Facilitated Access to Microbial	
			Genetic Resources	257
	II.	Desig	gning a Third Option: Ex Ante "Take and Pay" Rules for)
			lating Research and Applications	260
		A.	Legal and Economic Foundations of a Compensatory	
			Liability Regime	261
		B.	Operational Logic of a Multilateral Common	
		Σ.	Pool Resource	265
		C.	Key Components of the Proposed Multilateral Regime	205
		0.	for Facilitated Exchanges of Microbial Genetic Resources	270
			1. Quality Standards as a Threshold Requirement	•
			2. Duty to Respect Reputational Benefits	271
			3. Tracking Mechanisms to Maintain the Chain	² 74
			of Custody	2-8
			oj Gustouy	278

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

More information

x Contents

			4. The Calculus of Royalties from Commercial	
			Applications	284
			5. An Enabling Governance Structure	289
	III.	Mode	eling a Sequence of Hypothetical Transactions	291
		A.	The Standard Deal in Six Scenarios	292
			1. Identifying and Depositing the Microbe	292
			2. Collections A and B Join the Proposed Microbial	
			Research Commons	293
			3. Microbe RURI 500/OCCI 8000 Elicits Research Interest	295
			4. Development of a Commercial Product	297
			5. Sales of the Product Trigger the Liability Rule and	//
			Distribution of Royalties	299
			6. Lottery Effects and the Possibility of Leakage	302
			a. Multiple Industrial Users of the Same Microbe Produce	,
			Multiple Royalty Streams	303
			b. Addressing the Possibility of Leakage	304
		В.	Accommodating More Complicated Transactions	307
			1. Multiple Owners and Possible Royalty Stacking	307
			2. Derivatives or Modifications that Incorporate Materials	
			Accessed from the Multilateral System	309
			3. Modifications Based on Data Pertaining to Microbial	
			Materials Accessed from the Multilateral System	310
		C.	Advantages of the Scheme	312
PAR	т т	HREE	A DIGITALLY INTEGRATED INFRASTRUCTURE	
FOI	R MI	CROB	IAL DATA AND INFORMATION	
6	Leg	gal and	I Institutional Obstacles Impeding Access to and Use of	
	Sci	entific	Literature and Data	319
	I.	Poter	ntially Boundless Scientific Opportunities in the Digital	
		Envii	ronment	319
	II.	Copy	right and Related Laws as Digital Gridlock	324
		A.	Two Conceptual Approaches in the Application of	
			Copyright Law to Science	326
			1. Harmonizing the Designated Limitations and	
			Exceptions that Weakly Defend Science in the	
			European Union	328
			2. Limits of the Fair Use Approach in the United States	330
		В.	Digital Locks and Contractual Overrides in the Online	
			Environment	334
				221

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

		Contents	xi
	C.	Exclusive Rights in Noncopyrightable Collections of Data	336
III.		mated Knowledge Discovery Tools as Instruments of	
		sive Infringements	342
	A.	What Digital Science Would Really Need from Any	
		Serious Legislative Reform	344
		A Tailor-Made Exception for Scientific Research Prophing the Digital Looks	345
		2. Breaking the Digital Locks	346
		3. Disciplining Contractual Overrides Aligning Database Protection Laws with Tailor Made	349
		4. Aligning Database Protection Laws with Tailor-Made Exceptions for Science in Copyright Law	251
		5. Adjusting the International Legal Framework to	351
		Accommodate the Needs of Science	252
	В.	The Hard Reality: More, Not Less Protection, Is	352
	ъ.	on the Way	355
IV.	Instit	tutional Constraints on Digital Knowledge Resources	357
	A.	The Changing Role of Publishing Intermediaries	357 357
	В.	Impediments to the Pooling of Data and Digitally	371
		Networked Collaboration	362
V.	Fina	l Observations	367
	A.	Bridging the Disconnect Between Private Rights and	, ,
		Public Science	368
	B.	Reconciling the Goals of Innovation Policy with the	
		Needs of Science Policy	370
	C.	Towards a Digitally Integrated Infrastructure for	
		Microbial Literature and Data	371
En	ablina	the Microbiological Research Community to Control	
	_	Scholarly Publications	272
I.		onse of the Scientific Community to Restrictions on	373
		ished Research Results	373
II.		eying the Practices of the Microbiological Journals	375
	A.	Contractual Provisions of Selected Leading Journals	378
	B.	Results of Broader Survey	380
		1. A Growing Number of Open Access Microbiology	
		Journals	382
		2. Self-Archiving by Authors Who Publish in Subscription	
		Journals	388
		3. Disposition of Copyrights	389
		4. Costs of the Open-Access Option	390
		5. Postscript	301

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

More information

xii Contents

	III.	Rede	efining the Role of Publishing Intermediaries under	
		Curr	rent Institutional Constraints	393
		A.	Reflections on the Law Journal Model	396
		B.	Funders' Ability to Contractually Regulate Access to,	
			Use, and Reuse of Scientific Literature	399
		C.	Integrating Intermediaries' Functions into Transnational	
			Digital Knowledge Environments	402
8	Ful	ly Evi	ploiting Data-Intensive Research Opportunities in the	
O			ed Environment	106
	I.			406
	1.		y Release Policies to Manage the Deluge of Genomic	6
			rence Data	406
		A.	The Bermuda, Fort Lauderdale, and Toronto Data Policy	
		D	Guidelines	409
		В.	Evaluating the Mandatory Early Release Policies and	
			Their Conceptual Framework	412
			1. Selected Examples of Compliance in the Field of	
			Microbiology	414
			2. The International Human Microbiome Consortium	415
			3. Evaluating the Trend	419
	II.	Beyo	and Early Release: Diverse Networked Sharing Strategies to	
		Man	age and Exploit the Deluge of Data	421
		A.	Selected Taxonomic and Related Microbiological	
			Reference Data Collections	422
		B.	Online Aggregators of Data and Information	
			about Microbial Materials Available from	
			Public Culture Collections	425
			1. The World Data Center for Microorganisms	426
			2. The StrainInfo Bioportal	429
		C.	Understanding the Data Sharing Movement and Its	1 /
			Future Potential	431
			Benefits and Drawbacks of the Data Sharing Ethos	433
			a. The Public Goods Approach	434
			(1) Benefits	435
			(2) Disadvantages	436
			b. The Quasi-Private Goods Approach	437
			2. Beyond the Public Versus Private Distinction	440
	III.	Build	ding Transnational Open Knowledge Environments	441
		A.	Examples of Incipient Open Knowledge	
			Environments on the Frontiers of Microbiology	441

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

	Contents	xiii
	TI C	
	The Genomic Standards Consortium (GSC) – Let work in Part I and Ot on Account word	
	Interactive Portal and Open Access Journal	441
	2. The Community Cyber-Infrastructure for Advanced	
	Marine Microbial Ecology Research and Analysis	
	(CAMERA) The Systems Rielean Knowledgeb and (VR and) of the	445
	3. The Systems Biology Knowledgebase (KBase) of the	
	U.S. Department of Energy	44 7
	4. The Program on Microbiology of the BUILT	
D	Environment (MoBe) The Future of Once Versuledge Environments	451
В.	The Future of Open Knowledge Environments	453
	1. Lessons from the Empirical Models	453
	2. Operationalizing the Core Concepts	456 458
	a. Licensing Data and Toolsb. Benefits of Integrating the Microbiological Literature	458 462
	3. Funding and Other Governance Considerations	465
C.	Linking the Open Knowledge Environment to the	400
G.	Materials Infrastructure	467
		1 /
PART FOUR	GOVERNING PUBLIC KNOWLEDGE ASSETS WITHIN	
	NED MICROBIAL RESEARCH COMMONS	
II REDESIGI	VED MICKODINE RESEMANT COMMONS	
9 Instituti	ional Models for a Transnational Research Commons	473
I. The	eoretical Reflections on Designing a Knowledge Commons	476
A.	Applying Commons Theory to the Microbial Research	
	Infrastructure	480
	1. Distinctive Characteristics of Genetic Materials as a	·
	Common-Pool Resource	484
	2. Factoring in the Unprecedented Power of	
	Digital Networks	486
	3. Potential Payoffs from a Well-Designed	•
	Governance Model	489
В.	Three Governance Prototypes for Globally Pooled	. /
	Research Assets	492
II. Sel	ected Empirically Relevant Governance Approaches	494
A.	The Global Crop Commons: A Treaty-Based	171
	Intergovernmental Entity	496
	A Two-Headed Governance Construct	496
	2. Implementation of the Multilateral Regime	499
	a. The Viral License	499 499
	b. The Digital Component	501

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

More information

xiv Contents

		c. Long-Term Funding Arrangementsd. Compliance and Dispute Settlement	502 504
	B.	Hybrid Pooling Arrangements Among Governments,	
		Para-Statal Entities, and Nongovernmental Stakeholders	504
		1. The World Federation for Culture Collections (WFCC)	505
		a. Objectives and Membership	505
		b. Governance	507
		c. Funding	508
		d. Future Prospects: The WFCC at a Turning Point	509
		2. The Global Biodiversity Information Facility (GBIF)	510
		a. Objectives and Membership	510
		b. Governance	511
		c. Funding	512
		d. Intellectual Property Policies	513
		e. Future Prospects	514
		3. The Group on Earth Observations (GEO)	514
		a. Objectives and Membership	514
		b. Governance	516
		c. Funding d. Intellectual Property Policies	517 517
		e. Future Prospects	51/ 518
		4. The International Human Microbiome Consortium	510
		(IHMC)	51 0
		a. Objectives and Membership	519
		b. Governance	519 521
		c. Funding	522
		d. Data and Intellectual Property Policies	523
		e. Future Prospects	525
	C.	The Market-Like Nongovernmental Enterprise	526
		The Global Biological Resource Centers Network	
		(GBRCN) Demonstration Project	528
		a. Objectives and Membership	528
		b. Proposed Governance Structure	532
		c. Funding and the Business Model	533
		2. A Questionable Blueprint for the Future	538
		3. The Next Step: The Microbial Resource Infrastructure	7,7"
		(MIRRI) as a European Stepping Stone to the GBRCN	E 41
III.	In So	arch of a Politically Acceptable and Scientifically	541
111.		· · · · · · · · · · · · · · · · · · ·	
		active Operational Framework	544
	A.	Evaluating the Existing Legal and Institutional Landscape 1. Comparing Science-Managed NGOs with a	544
		Treaty-Based IGO	545

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

			Contents	XV
			2. Advantages of a Hybrid International Framework	
			Agreement	550
		В.	Reconciling National Sovereignty over Microbial	
			Genetic Resources with a Global Public Goods Approach	554
			 Avoiding the Wrong Incentives 	555
			2. Facilitated Access to Upstream Research Assets and	
			Benefit-Sharing Under a Multilateral System	560
		C.	Toward a More Science-Driven Organizational Model	
			for the Digital Age	563
			1. Avoiding an Unduly Narrow Scientific Mission	564
			2. Giving Scientists a Voice in the Decision-Making Process	566
10	Go	vernii	ng Digitally Integrated Genetic Resources, Data,	
	anc	Lite	rature	568
	I.	Pren	nises for Constructing a Common Pool Resource	568
		A.	The Political Economy of a Global Approach	568
		В.	The Critical Role of Effective Leadership	574
		C.	The Need for Political Cover	576
	II.	Orga	anizational and Structural Considerations	579
		A.	Membership and Decision Making	581
		В.	Ancillary Membership Issues	585
		C.	Observer Status	587
		D.	The Core Institutional Components	589
			1. A Governing Body and an Executive Committee	591
			2. A Scientific Coordination Council (SCC) and a Small	
			Secretariat	593
			3. Advisory Committees	597
	III.	Imp	lementing the Multilateral Regime for Facilitated Access to	
		Ex S	Situ Microbial Genetic Resources	598
		A.	Promoting and Certifying Quality Standards	599
		В.	Defining the Conditions of Legitimate Exchange	601
		C.	Drafting an SMTA to Establish the Compensatory	
			Liability Regime: The Critical Issues	603
			1. The Question of a Users' Surcharge	605
			2. Quantum and Duration of Royalties	607
			3. Protocols for the Distribution of Royalties	609
			4. New Uses of Pre-1992 Microbial Materials	613
			5. Genetic Sequences and Other Related Data	614
			6. Prescribing Minimum Conditions of Recibrocity	615

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere Frontmatter

More information

Index

Contents xvi 7. Mediation and Dispute Resolution 618 8. Recognizing the Importance of Nonmonetary Benefits 622 D. Digitally Integrating Knowledge Assets Available from the Multilateral System 624 1. The Core Project 624 628 2. Optional Longer Term Projects E. Relations with Developing Countries 628 F. Other Issues for the Governing Body to Consider 632 1. Devising Policies for Earlier Release of Materials Used in Basic Research 632 2. Possible Negotiations Concerning Access to In Situ Microbial Genetic Resources 634 3. Biosafety and Security Considerations 635 IV. Funding and Institutional Stability 637 A. The Need for Adequate and Dependable Funding 637 Hidden Costs of Not Funding a Redesigned Microbial B. Research Commons 642 Concluding Observations 645

651

Preface

This is a book about science policy in a conflicted world, torn between the demands of both the global North and the global South for strengthened protection of their respective intellectual property rights. It presents a strategy and devises new legal and institutional models for making microbiological genetic materials and digital resources readily available from a multilateral regime of facilitated access consistent with the Convention on Biological Diversity (CBD) of 1992.

Tom Dedeurwaerdere, one of the co-authors of this book, is both a science and a law professor who has long been a consultant to leading public microbial culture collections in the European Union. The project began when he consulted Jerome Reichman and Paul Uhlir, the other co-authors of this volume, for two main reasons. He knew that the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) of 2001 had adopted a version of Professor Reichman's Compensatory Liability Regime—a "take and pay" automatic royalty scheme initially devised for subpatentable innovations. He wanted to know how this regime might become suitable for exchanges of *ex situ* genetic materials from networks of existing microbial culture collections. He also wanted to know more about data pooling and related digital research issues, about which Reichman and Uhlir had written extensively in the past and in which Paul Uhlir was deeply involved as head of the Board on Research Data and Information at the National Academies

As the three of us began to engage with these issues, the dimensions of the topic kept expanding in different directions. The holistic New Biology paradigm for the life sciences, as set forth by the National Research Council (NRC) in 2009, made microbiology a central focus in the genomic era. As we note in our book, any shortcomings in the NRC's visionary project are not necessarily to be found in science itself, but rather in tacit assumptions about the enabling nature

¹ National Research Council, A New Biology for the 21st Century (Natl' Acads. Press, 2009).

xvii

xviii Preface

of the external environment in which the desired integration of the life sciences would be rooted. To achieve this unifying goal, researchers working in the relevant scientific subdisciplines must have ready access to essential upstream knowledge assets. Life scientists and microbiologists, in particular, will need to obtain countless biological materials collected and validated from all parts of the world; to make use of vast amounts of data from genomic studies, bioecology, systematics, and from other observational and experimental life-science initiatives; and to access all the knowledge gleaned from an ever-expanding body of scholarly literature.

Although none of us is a microbiologist, we soon found that microbiology has been under stress from numerous sources and for many years. The "soft infrastructure" that currently governs these essential inputs tends to fragment and compartmentalize the building blocks of science in ways that are not conducive to enabling the integrated vision to which the life sciences now aspire. We describe those trends in detail in this volume – from organizational, economic, political, and especially different legal perspectives.

Caught in these cross-currents, the scientific community risks incurring major impediments to public research based on ready access to both *ex situ* and *in situ* microbial genetic materials and related digital resources. A failure to address the threat of privatizing genetic resources previously residing in the public domain for research purposes would have a serious impact on human welfare owing to lost research opportunities. At the same time, these opportunity costs are difficult to quantify or otherwise measure by standard law and economics approaches.

Fortunately, after a lengthy period in which the needs and role of public science were largely ignored by negotiators for both the developed and developing counties, in 2010 the drafters of the Nagoya Protocol to the Convention on Biological Diversity (CBD) of 1992 reopened the door for access to genetic resources and data for public research purposes. The Nagoya Protocol expressly recognizes the importance of scientific research as a provider of both monetary and nonmonetary benefits under the CBD. It expressly validates the multilateral system for facilitated exchanges of plant genetic resources for food and agriculture, for research and breeding purposes, and as a legal alternative to the bilateral access and benefit sharing modalities normally required by the CBD. Above all, the Protocol implicitly invites the microbiological community to follow the path opened by the ITPGRFA and similarly adopt a multilateral regime of facilitated access to microbial genetic resources for public scientific research purposes.

The drafters of the Nagoya Protocol, whose primary task was to tighten the international regime governing misappropriation of genetic resources from biodiversity rich countries under the CBD, thus took a major step to legitimize facilitated access to *ex situ* microbial genetic resources for research and applications under an appropriately designed multilateral regime. The

Preface xix

challenges it presented were how to accommodate the existing microbiological infrastructure, built around the World Federation of Culture Collections (WFCC), to the legal pathways provided by the Nagoya Protocol, and how to make that infrastructure more productive in the light of theoretical and empirical knowledge about common pool resources in general that had been emerging from a growing literature.

The point of departure was our realization that science policymakers needed to adapt to the opportunities that the CBD now made available under specified conditions. If public service is to be maintained, it must comply with the Nagoya Protocol. A number of other seminal developments, beyond the legal dictates of the Nagoya Protocol, subsequently informed our investigations and bear emphasizing here.

With regard to microbiological data (also covered by the CBD) and related literature, we analyzed the growing capabilities of digitally networked technologies and their interplay with intellectual property law, as well as institutional models for publishing research results. We undertook an empirical study of more than 300 journals in microbiology to obtain a detailed overview of their open access or subscription approaches. We found a surprisingly large number of open access or partially open publications, which were nonetheless undermined by the legal and institutional hangovers of the print paradigm.

We also examined the policies of both government entities and the academic community with respect to databases compiled for microbial genetic resources and taxonomy, and we looked at some of the costs and benefits of making these data resources more openly available for research purposes. From our analysis of these and other digital publishing developments, we identified a holistic, online approach to complex research endeavors in microbiology and elsewhere that we refer to as Open Knowledge Environments. Efforts to encourage these promising initiatives can be linked to the formation and management of a multilateral knowledge commons for microbial genetic materials.

Finally, we looked at the growing area of infrastructure and knowledge commons theory, as well as at other existing international scientific pooling endeavors, for lessons that they might offer for our project. Of particular interest was a major European demonstration project in transnational microbiology – the Global Biological Research Center Network (GBRCN) – which ended in 2011. The GBRCN endeavored to implement, on a pilot basis, the OECD's earlier proposals to upgrade the WFCC's microbial culture collections – including their digital microbiological resources – in a network of Biological Research Centers. Although laudable in its attempts to implement this major science policy vision, the scheme was flawed – at least initially – by efforts to commercialize upstream microbial genetic resources and related data that the WFCC otherwise provides as a public good. Nevertheless,

xx Preface

GBRCN took important first steps toward organizing a multilateral regime needed to shelter within the ambit of the Nagoya Protocol.

We then combined all these different threads in an effort to propose a redesigned international microbial research commons, building on the WFCC's existing network that would serve the interests of the global public research community, while complying with the Nagoya Protocol to the CBD and supporting downstream commercial users. We conclude this volume with some ideas about how to make such an ambitious international construct sustainable over time.

In addition to presenting our work at numerous conferences in the United States and Europe in the past several years, we organized an international symposium at the National Academies in Washington, DC, which gave us authoritative inputs and led to an initial publication in 2011: viz., *Designing the Microbial Research Commons*.² In so doing, we consulted with leading microbiologists, lawyers, economists, and science policymakers about the challenges facing the international research community in this area. We also presented some of our initial findings and proposed solutions and received their sage advice.

How to reconcile the needs of publicly funded microbiological researchers in both the developed and developing world with the new opportunities made available by the Nagoya Protocol is thus the task we undertook in writing this book. We hope that, by explaining the implications of these new and important developments, we can help the public scientific community find a way through a thicket of proprietary claims, in order to implement the visionary goals of the New Biology paradigm that inspired us from the outset.

² Designing the Microbial Research Commons: Proceedings of an International Symposium (P.F. Uhlir ed., Nat'l Acad. Press 2011).

Acknowledgments

There are numerous individuals who played an important role in the completion of this book, both in producing the manuscript as well as in researching and reviewing it. Each of the authors had several research assistants who found references, checked footnotes, suggested edits, and generally helped prepare the book, as well as reviewers who helped strengthen our arguments throughout.

We first would like to thank the National Human Genome Research Institute's Center of Excellence for ELSI research, which provided most of the generous funding for this project under NIH Grant No. P50 HG00339 to Duke University's Center for Public Genomics. Jerome Reichman was one of the Principal Investigators under that grant, which was obtained and administered by Duke University in 2005, under the leadership of Robert Cook-Deegan and his colleagues. That grant also paid for the consulting services of Paul Uhlir, and supported the travel expenses of both Paul Uhlir and Jerome Reichman in connection with this project.

We are also grateful for supplementary funding provided by Barry Silverstein and the William James Foundation at a critical point in our work, as well as to David Levi and Kate Bartlett, Dean and former dean of the Duke University School of Law, who consistently supported Professor Reichman's research endeavors.

By far the most assistance for research and references was provided by students and former students at the Duke University School of Law. In particular, the authors are indebted to Heather Ritch, Carla Rydholm, William Ryan, Melissa Turcios, Bill Warren, and Alisha Mehta. Professor Reichman also wishes to thank the dedicated personnel who staff the Reference Desk in the Goodson Library at Duke Law School.

Paul Uhlir engaged the help of several summer Fellows at the National Research Council (NRC), particularly in conjunction with the International Symposium his Board organized on this topic. Lucy Yang and Tania Dutta were instrumental in compiling the database of microbiology journal publishing policies presented in Chapter 7. Other NRC staff who provided some substantive and administrative support for the International Symposium – and by extension, this book – included

978-1-107-02174-7 - Governing Digitally Integrated Genetic Resources, Data, and Literature: Global Intellectual Property Strategies for a Redesigned Microbial Research Commons Jerome H. Reichman, Paul F. Uhlir and Tom Dedeurwaerdere

Frontmatter More information

xxii

Acknowledgments

Dan Cohen, Subhash Kuvelker, and Cheryl Levey, all of the Board on Research Data and Information, and Fran Sharples of the Board on Life Sciences.

At the Université catholique de Louvain, Louvain-la-Neuve, Belgium, Tom Dedeurwaerdere received assistance from research fellows hired under two EU grants dealing with the governance of global science commons, viz., GENCOMMONS (ERC grant agreement 284) and MICRO B3 (FP7 grant agreement 28758), and under co-funding from a grant by the National Science Foundation, Belgium (F.R.S.-FNRS/MIS Incentive Grant on Governing Global Science Commons). In particular, Christine Frison, Arianna Broggiato, and Arul Scaria provided substantial research inputs to the chapters on the Consultative Group on Int'l Agricultural Research (CGIAR) and the World Federation for Culture Collections (WFCC). These grants also provided for the travel expenses of Tom Dedeurwaerdere in connection with this project. We also thank Heike Rämer and Caroline Van Schendel for their effective assistance with bibliographical research and analysis of survey data.

The authors are also indebted to the many individuals who provided informal reviews, comments, and insights pertaining to different sections and iterations of the evolving manuscript. Microbiologists who were consulted in such capacities included: Joan Bennett, Kevin McCluskey, MA Juncai, Micah Krichevsky, Dagmar Fritze, David Smith, Gerard Verkleij, Stephen McCormack, Philippe Desmeth, Paul De Vos, Peter Dawyndt, Jean Swings, and Lenie Dijkshoorn. We also received guidance on the Crop Commons and CGIAR from Michael Halewood, Emile Frison, and Shakeel Bhatti.

Economic and political insights were provided by Paul David, Anita Eisenstadt, Minna Allarakhia, Daniel Drell, Lita Proctor, and Larry Helfer. Reviews of the legal dimensions were given by Brett Frischman, Jorge Contreras, Katherine Strandburg, Michael Madison, Michael Carroll, James Boyle, and Peter Lee, among many others.

We also would like to express our appreciation to the team at Cambridge University Press, who produced this volume. They included John Berger, Stephen Acerra, Nishanthini Vetrivel, Laura Lawrie, and their colleagues.

Finally, and most important, we are greatly appreciative of Patricia Reichman's unstinting – and voluntary – support of the entire project. Not only did she digitally process the entire manuscript many times over, which consumed enormous amounts of time, but she provided substantive and structural advice throughout the nine years of this endeavor.

For these and many other reasons, we wish to thank her and everyone else who contributed to this project. Needless to say, the views expressed in this volume are those of the authors and not of the institutions with which they are, or were, affiliated at the time of writing.