Hillslope Hydrology and Stability

Landslides occur when hillslopes become mechanically unstable, because of meteorological and geologic processes, and pose a serious threat to human environments in their proximity. The mechanical balance within hillslopes is governed by two coupled physical processes: hydrologic or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall, increasing the risk of gravity destabilizing the balance and causing a landslide.

This book presents a cutting-edge quantitative approach to understanding hydromechanical processes in hillslopes, and to the study and prediction of rainfall-induced landslides. Combining geomorphology, hydrology, and geomechanics, it provides an interdisciplinary analysis that integrates the mechanical and hydrologic processes governing landslide occurrences, across variably saturated hillslope environments. Topics covered include a historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials, and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice.

This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering, and geomechanics, and also for professionals in the fields of civil and environmental engineering, and natural hazard analysis.

Ning Lu, F. GSA, F. ASCE, is Professor of Civil and Environmental Engineering at Colorado School of Mines, and his primary research in the past decade has concentrated on hillslope hydrology and slope stability. He is the senior author of *Unsaturated Soil Mechanics* (John Wiley & Sons, 2004), and has also published extensively in peer-reviewed journals on unifying effective stress in variably saturated porous media. Professor Lu is a recipient of the Norman Medal and the Croes Medal from the American Society of Civil Engineers for his seminal work on defining suction stress in variably saturated soils.

Jonathan W. Godt is a Research Physical Scientist with the United States Geological Survey and has worked on landslide hazard problems for more than 15 years, both in the United States and around the world. His research focuses on monitoring and understanding landslide processes to improve tools for landslide hazard assessment and forecasting. He has published numerous reports, maps, and journal articles on the subject of landslide hazards.

Hillslope Hydrology and Stability

NING LU

Colorado School of Mines

JONATHAN W. GODT

United States Geological Survey

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107021068

© Ning Lu and USGS (Jonathan Godt's contributions) 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Lu, Ning, 1960-Hillslope hydrology and stability / Ning Lu, Jonathan W. Godt.

p. cm.

ISBN 978-1-107-02106-8 (hardback)

1. Mountain hydrology. 2. Slopes (Physical geography) 3. Soil erosion. 4. Soil mechanics. 5. Landslides.

6. Groundwater flow. I. Godt, Jonathan W. II. Title.

GB843.5.L8 2012 551.43'6-dc232012024783

ISBN 978-1-107-02106-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Connie, Vivian, and Shemin and Neva and Laura

Contents

Foreword by Professor Dani Or p	<i>age</i> xiii
Preface	XV
List of symbols	xvii
Part I Introduction and state of the art	1
1 Introduction	3
1.1 Landslide overview	3
1.2 Landslide classification	4
1.2.1 Landslide velocity	6
1.2.2 Illustration of landslide classification	9
1.3 Landslide occurrence	9
1.3.1 Landslide triggering mechanisms	9
1.3.2 Frequency and magnitude of landslide events	11
1.4 Socio-economic impacts of landslides	12
1.4.1 Types of costs	14
1.4.2 Historical examples of widespread landslide events	
in North America	15
1.4.3 Direct economic loss in the San Francisco Bay region in 1997-8	15
1.5 Rainfall-induced landslides	16
1.5.1 Evidence of shallow landslide occurrence in the unsaturated zone	19
1.5.2 Role of precipitation characteristics in triggering shallow landslides	22
1.5.3 Role of infiltration and unsaturated flow within hillslopes	23
1.6 Scope and organization of the book	24
1.6.1 Why does rainfall cause landslides?	24
1.6.2 Organization of the book	24
1.7 Problems	25
2 Hillslope geomorphology	27
2.1 Hillslope hydrologic cycle	27
2.1.1 Global patterns of precipitation and evaporation	27
2.1.2 Orographic precipitation enhancement	32
2.1.3 Atmospheric rivers	32
2.1.4 Monsoons	33
2.1.5 Tropical cyclones	35

		٠	
11			
v			
	•	•	

viii	Contents			
	2.1.6 El Niño and La Niña	35		
	2.1.7 Trends in extreme precipitation	36		
	2.2 Topography	40		
	2.2.1 General topographic features	40		
	2.2.2 Digital landscapes	42		
	2.2.5 DEM methods for landslide analysis	43		
	2.5 Soil classification 2.3.1 Soil stratigraphy	43		
	2.3.1 Son stratigraphy 2.3.2 Commonly used classification systems	45		
	2.4 Hillslope hydrology and stream flow generation	46		
	2.4.1 Runoff and infiltration	46		
	2.4.2 Subsurface flow processes and runoff generation	50		
	2.4.3 Subsurface stormflow	53		
	2.4.4 Subsurface stormflow and landslide initiation	55		
	2.5 Mechanical processes in hillslopes	56		
	2.5.1 Stress variation mechanisms	58		
	2.5.2 Strength reduction mechanisms	64		
	2.5.3 Combined change in stress and strength	66		
	2.6 Problems	69		
	Part II Hillslope hydrology	71		
	3 Steady infiltration	73		
	3.1 Water movement mechanisms	73		
	3.1.1 Introduction	73		
	3.1.2 Gravitational potential	75		
	3.1.3 Pressure potential	76		
	3.1.4 Osmotic potential	78		
	3.1.5 Water vapor potential	80		
	3.1.6 Chemical potential equilibrium principle in multi-phase media	81		
	3.1./ Pressure profiles under hydrostatic conditions	83		
	3.2 Darcy's experiments	85 85		
	3.2.2 Darcy's experiments	86		
	3.2.3 Hydraulic properties	87		
	3.3 Capillary rise	90		
	3.3.1 Height of capillary rise in soils	90		
	3.3.2 Rate of capillary rise in soils	91		
	3.4 Vapor flow	92		
	3.5 Vertical flow	93		
	3.5.1 One-layer system	93		
	3.5.2 Two-layer system	98		
	3.6 Hydrologic barriers	106		
	3.0.1 Flat capillary barriers	106		

ix	Contents	
	- 2.6.2 Diaming contillour houring	110
	3.6.2 Dipping capillary barriers	110
	3.7 Problems	112
	4 Transient infiltration	117
	4.1 Governing equation for transient water flow	117
	4.1.1 Principle of mass conservation	117
	4.1.2 Transient saturated flow	119
	4.1.3 Richards equation for unsaturated flow	119
	4.2 One-dimensional transient flow	122
	4.2.1 Richards equation in hillstope setting	122
	4.2.2 The Green-Ampt minutation model	123
	4.2.5 The Silvasava and Ten initiation model 4.3 Numerical solutions for multi-dimensional problems	120
	4.4 Transient flow patterns in hillslopes	131
	4.4.1 Controlling factors for flow direction	133
	4.4.2 General conceptual model for "wetting" and "drying" states	137
	4.4.3 Flow patterns under constant rainfall intensity	138
	4.4.4 Flow patterns following the cessation of rainfall	143
	4.4.5 Flow patterns resulting from a step-function in rainfall	146
	4.4.6 Flow patterns resulting from transient rainfall	150
	4.5 Summary of flow regimes in hillslopes4.6 Problems	152 153
	Part III Total and effective stress in hillslopes	157
	5 Total stresses in hillslones	159
	5.1 Definitions of stress and strain	159
	5.1.1 Definition of total stress	159
	5.1.2 Definition of strain	162
	5.1.3 Stress-strain relationship	163
	5.2 Analysis and graphical representation of the state of stress	165
	5.2.1 Mohr circle concept	165
	5.2.2 Principal stresses	167
	5.3 Force equilibrium equations	168
	5.3.1 Equations of motion	168
	5.3.2 Theory of linear elastostatics	169
	5.4.1 Navier's field equations in terms of displacement	1/1
	5.4.2. Beltrami–Michell's field equations in terms of stress	172
	5.5 Total stress distribution in hillslopes	174
	5.5.1 Savage's two-dimensional analytical solution	174
	5.5.2 Finite-element solutions	179
	5.6 Problems	213

X	Contents	
	6 Effective stress in soil	215
	6 1 Terzachi's and Bishon's effective stress theories	215
	6.2 Coleman's independent stress variables theory	213
	6.3 Lu <i>et al</i> 's suction stress theory	217
	6.4 Unified effective stress representation	210
	6.4.1 Unified effective stress principle	220
	6.4.2 Experimental validation and determination of suction stress	224
	6.4.3 Unified equation for effective stress	228
	6.4.4 Validity of unified equation for effective stress	230
	6.5 Suction stress profile in hillslopes	232
	6.5.1 Steady-state profiles in one dimension: single layer	232
	6.5.2 Steady-state profiles in one dimension: multiple layers	234
	6.5.3 Transient state suction stress profiles in one dimension:	
	single layer	238
	6.6 Problems	241
	Part IV Hillslope material properties	245
	7 Strength of hillslope materials	247
	7.1 Failure modes and failure criteria	247
	7.1.1 Definition of strength	247
	7.1.2 Stress-strain relation	249
	7.2 Shear strength due to frictional resistance	251
	7.2.1 Friction angle concept	251
	7.2.2 Apparent cohesion concept	253
	7.2.3 Internal friction angle of sand	254
	7.3 Shear strength due to cohesion	256
	7.3.1 Drained cohesion	256
	7.3.2 Cementation cohesion	259
	7.3.3 Capillary cohesion	260
	7.4 Shear strength due to plant roots	261
	7.4.1 Role of root reinforcement in hillslope stability	261
	7.4.2 Shear strength of rooted soils	262
	7.4.3 Tensile strength of roots	266
	7.4.4 Spatial and temporal variation of root strength	267
	7.5 1 Shear strength under various drainage conditions	271
	7.5.1 Shear strength of saturated soils	2/1
	7.5.2 Consolidated-drained conditions	273
	7.5.4 Unconsolidated undrained conditions	213
	7.5.4 Unconsolidated-undrained conditions	270
	7.0 Unified treatment of snear strength of hillslope materials 7.7 Problems	278 279

xi	Contents	
8	8 Hydro-mechanical properties	282
	8.1 Overall review	282
	8.1.1 Methods for measurement of suction	282
	8.1.2 Methods for measurement of hydraulic conductivity	284
	8.2 1 Working principle of TPIM	287
	8.2.1 Working principle of TRIM	287
	8.2.2 Parameter identifications by TRIM	207
	8.3 TRIM testing procedure	290
	8.4 Validation of the TRIM method	299
	8.4.1 Uniqueness of results obtained by inverse modeling	299
	8.4.2 Repeatability of TRIM tests	301
	8.4.3 Independent experimental confirmation	301
	8.5 Application of the TRIM to different soils	304
	8.5.1 TRIM test on sandy soil	304
	8.5.2 TRIM test on undisturbed silty clay soil	304
	8.5.3 TRIM test on remolded silty clay soil	305
	8.6 Quantification of SSCC using TRIM	305
	8.7 Summary	307
	8.8 Problems	308
	Part V Hillslope stability	311
9	9 Failure surface based stability analysis	313
	9.1 Classical methods of slope stability analysis	313
	9.1.1 Factor of safety for slope stability	313
	9.1.2 Infinite-slope stability model	315
	9.1.3 Culmann's finite-slope stability model	317
	9.2 Method of slices for calculating factors of safety	321
	9.2.1 Ordinary method of slices	321
	9.2.2 Bishop's simplified method of slices	323
	9.3 Landslides under steady infiltration	325
	9.3.1 Extension of classical methods to unsaturated conditions	325
	9.3.2 Impact of inflitration rate on slope stability	331
	9.5.5 Impact of molecure variation on slope stability	230 241
	9.4 Shahow landshides induced by transient initiation	341 344
	9.4.2 Stability of a medium sand hillslope	344
	9.4.2 Stability of a fine sand hillslope	347
	9.4.4 Stability of a silt hillslope	349
	9.4.5 Summary of model results	351
	9.5 Case study: Rainfall-induced shallow landslide	351
	9.5.1 Site geology, geomorphology, and monitoring program	351

xii	Contents			
	9.5.2 Numerical modeling of transient flow	352		
	9.5.3 Comparison of model results with observations	353		
	9.6 Case study: Snowmelt-induced deeply seated landslide	356		
	9.6.1 Site geology, morphology, and hydrology	356		
	9.6.2 Slope stability analysis with and without suction stress	358		
	9.6.3 Slope stability analysis with water table rise	358		
	9.7 Problems	362		
	10 Stress field based stability analysis	364		
	10.1 Hydro-mechanical framework	364		
	10.1.1 Failure modes in hillslopes	364		
	10.1.2 Unified effective stress principle	367		
	10.1.3 Hydro-mechanical framework	368		
	10.2 Scalar field of factor of safety	369		
	10.2.1 Rationale for scalar field of factor of safety	369		
	10.2.2 Definition of scalar field (or local) of factor of safety	371		
	10.2.3 Comparisons with the classical factor of safety methodologies	373		
	10.3 Transient hillslope stability analysis	381		
	10.4 Case study: Rainfall-induced landslide	387		
	10.4.1 Two-dimensional numerical model	388		
	10.4.2 Simulated hydrologic response to rainfall	389		
	10.4.3 Simulated Changes in stress and stability	392		
	10.5 Case study: Snowmelt-induced deeply seated landslide	395		
	10.5.1 Site hydrology and displacement monitoring	395		
	10.5.2 Simulated transient suction and suction stress fields	399		
	10.5.3 Simulated transient slope stability conditions	402		
	10.6 Problems	404		
	References	406		
	Index	430		

The color plates can be found between pages 216 and 217

Foreword

Even a cursory inspection of *Hillslope Hydrology and Stability* by Lu and Godt will impress most professionals interested in processes at the interface between geotechnical engineering and hydrology. This unique textbook represents an attempt to systematically unify concepts from vadose zone hydrology and geotechnical engineering into a new hydrogeo-mechanical approach with special emphasis on quantifying natural mechanisms for the onset of hydrologically induced landslides. Professionals will particularly appreciate the comprehensive coverage of concepts ranging from fundamentals of geomechanics and soil properties to the state-of-the-art concepts of hillslope hydrology, with explicit treatment of soil heterogeneity, layering, and vegetation mechanical and hydrologic functions. The authors have been able to weave a coherent picture based on the cutting-edge state of knowledge regarding landslides as natural geomorphological processes and as ubiquitous natural hazards in mountainous regions.

Students will appreciate the lucid coverage of topics offering a systematic introduction to key ingredients essential for understanding the occurrence of landslides in their broader natural context (often missing in technical textbooks). Students are guided through aspects of precipitation with its instantaneous to inter-annual patterns, as well as aspects of soil types and the geomorphological context of landslides. This provides a solid foundation for introduction of more specific technical aspects of infiltration, hillslope hydrology, and hydro-mechanical properties, and assembles the roles of these factors on a hillslope mechanical state. Students will find clear explanations of fundamental concepts inspired by numerical examples to help them develop appreciation for the orders of magnitude for the quantities involved. Numerous motivating homework problems further promote self-study.

Hillslope Hydrology and Stability helps chart the boundaries of the emerging interdisciplinary field of soil hydromechanics. The authors offer a rigorous link between hydrology and soil mechanics by providing a unified treatment of effective stress (suction stress) under variably saturated conditions (Chapter 6). The authors also provide a fresh look at well-established concepts found in textbooks from hydrology and geotechnical engineering fused together using new crucial aspects typically glossed over in standard texts, thereby providing a unique new perspective. For example, the interplay between hillslope subsurface flows and soil layering (forming hydrologic barriers), a critical mechanism for abrupt landslide triggering, has rarely been previously discussed in a quantitative hillslope hydromechanical context as done in Chapter 3. The quantitative treatment of root reinforcement and the role of plants in the mechanical picture of natural hillslopes (Chapter 7) is another example of the conceptual integration in the basis of the book. The wealth of information on numerical values of key parameters and the instructive use of case studies described in

xiii

xiv Foreword

Chapters 9 and 10 make *Hillslope Hydrology and Stability* an outstanding resource for students, researchers, and practitioners alike. No doubt the test of time would add refinement to this labor of love that contains numerous new concepts – I hope students and researchers would be challenged and inspired by the breadth and depth offered in this unique treatise on hydro-mechanical hillslope processes.

Professor Dani Or ETH Zurich

Preface

We strive to provide a thorough description on the cutting edge of the spatial and temporal occurrence of rainfall-induced landslides by quantifying the hydro-mechanical processes in hillslopes. Landslides are a pervasive natural phenomenon that constantly shapes the morphology of the earth's surface. Over geologic time, landslides are the result of two episodic, and broadly occurring geologic processes; tectonics and erosion. At human scale, the former operates at a uniform rate barely sensed by humans except during earthquakes. However, the latter is entirely sensible and is driven largely by rainfall. The results of these dynamic geologic processes are the infinite variety of landforms that vary remarkably in geometry; from flat plains to rolling hills, to vertical or even overhanging cliffs, and to shapes that test human's imagination.

Understanding of how landslides occur is vital to the well being of human society and our environment and has been a research focus for many disciplines such as geomorphology, hydrology, geography, meteorology, soil science, and civil and environmental engineering. While each of these disciplines tackles landslide problems from quite different perspectives, a common thread is the mechanics of landsliding. From the vantage of mechanics, no matter how complicated the morphology of the land surface, it is the mechanical balance within hillslopes that determines if they are stable or not. Two coupled physical processes govern the mechanical balance; hydrological or subsurface flow process and stress equilibrium process.

Understanding and quantifying the hydro-mechanical processes provide the key link to the knowledge gained from different disciplines and pathways for predicting the spatial and temporal occurrence of landslides. In each hillslope, driving and resisting forces dictate the state of stability. The driving or destabilizing forces are mainly provided by gravity and the resisting or stabilizing forces are mainly provided by the strength of hillslope materials. This mechanical balance is mediated by the presence of water, which varies dramatically over climatic, seasonal, and shorter time scales and has both a stabilizing and destabilizing effect. The effect of water on the stability of hillslopes is quantified using the concept of effective stress, which provides a connection between subsurface hydrologic and mechanical processes under variably saturated conditions.

In this volume, we present quantitative treatments of rainfall infiltration, effective stress, their coupling, and roles in hillslope stability. An overall introduction to landslide phenomena, their classification, and socio-economic impacts is provided in Chapter 1. The settings where landslides occur are described in Chapter 2: slope geomorphology. Subsurface hydrologic process under variably saturated conditions is systematically described in the forms of steady infiltration (Chapter 3) and transient infiltration (Chapter 4). The background stress or total stress fields driven by gravity in hillslopes are quantified under

XV

xvi

Preface

the theory of linear elastostatics in Chapter 5. A unified effective stress framework linking soil suction to effective stress is provided in Chapter 6. The pertinent material properties, both the strength of soil and vegetation roots, and hydrologic constitutive laws, are provided in Chapters 7 and 8. Integration of slope geomorphology, hydrology, and soil mechanics leads to a rigorous treatment of slope stability analysis that is described in Chapters 9 and 10. Chapter 9 provides an in-depth introduction to the classical or conventional slope stability methodologies as well as expansions to include environments under variably saturated conditions by the unified effective stress principle. Chapter 10 presents a framework departing from the conventional slope stability paradigm by employing scalar fields of suction stress and factor of safety, which has potential to reveal spatial and temporal occurrence of rainfall-induced landslides in variably saturated hillslopes. The effectiveness of the proposed hydro-mechanical framework is examined through two case studies in these chapters. The first case study is an analysis of a shallow landslide induced by rainfall and is based on a multi-year field-monitoring program where the reduction of a few kPa of suction stress eventually led to slope failure. The second case study applies the hydro-mechanical framework to analyze a deep-seated landslide that moves each year in response to melting snow.

The book is truly the journal of our joint endeavor to advance the understanding of occurrence of landslides. The materials covered here have been grown out of a course, Hillslope Hydrology and Stability, taught at Colorado School of Mines, USA, EPFL-Lausanne, Switzerland, and University of Perugia, Italy over the past 6 years. From teaching, we gained much from our interactions with students and professionals. The major part of NL's contribution to the book was written while he was on sabbatical as the Shimizu Visiting Professor at Stanford University and a visiting scientist at the U.S. Geological Survey campus in Menlo Park, California office in 2010–2011. His hosts, Ronaldo Borja at Stanford and Brian Collins at the USGS provided an intellectually stimulating and productive environment. The authors benefitted greatly from contributions from the following colleagues who provide insightful, critical, and thorough reviews of parts of the manuscript: Rex Baum, Brian Collins, Richard Healy, Richard Iverson, and Mark Reid of the U.S. Geological Survey, Dalia Kirschbaum of NASA Goddard Space Flight Center, Giovanni Crosta of the University of Milano-Bicocca, William Likos of the University of Wisconsin-Madison, John McCartney of the University of Colorado-Boulder, Dani Or of ETH Zurich, Ricardo Rigon of the University of Trento, Diana Salciarini of the University of Perugia, Alexandra Wayllace of the Colorado School of Mines, and Raymond Torres of the University of South Carolina-Columbia. We extend special thanks to Rex Baum for looking at the entire proof of the book. Nonetheless, all errors and bias remain ours. Başak Sener-Kaya prepared the figures and tables for the total stress distributions in hillslope in Chapter 5. Finally, the authors would like to express our gratitude to Peter Birkeland who acts as Pe(te)casso for illustrating the essentials of our thoughts in art form at the beginning of each part.

Symbols

Symbol	Description	Units
Α	Skempton pore pressure parameter for isotropic loading	_
A_L	landslide area	m ²
Α	area; cross sectional area	m ²
a_1	root tensile strength parameter	MPa m ^{$-a2$}
a_2	root tensile strength parameter	_
В	Skempton pore pressure parameter for deviator loading	_
b	body force vector	N/m ³
b	parameter for inter-grain friction angle	_
b_1	root shear strength parameter	MPa
b_2	root shear strength parameter	MPa m ³ /kg
b_n	width of the <i>n</i> th slice in a method of slices	m
b_o	parameter for cumulative rate of root mass with depth	_
b_i	body force components	N/m ³
$C(\psi)$	specific moisture capacity as function of suction	1/kPa
C(h)	specific moisture capacity as function of head	1/m
С	cohesion	kPa
С	solute concentration	mol m ³
<i>c</i> _{<i>c</i>}	cohesion mobilized by cementation bonds	kPa
c_d	mobilized or developed cohesion along failure surface	kPa
C_o	cohesion due to grain inter-locking	kPa
C_s	cohesion mobilized by suction stress	kPa
c_u	undrained shear strength	kPa
c'	cohesion in terms of effective stress	kPa
D	diffusivity	m^2/s
D_o	free vapor diffusivity in air	m^2/s
D_v	free vapor diffusivity in porous media	m^2/s
D_r	maximum depth of landslide body	m
D_r	relative density	_
D_v	diffusion coefficient for water vapor	m^2/s
D_{10}	10% finer particle diameter	m
D_{50}	50% finer particle diameter	m
d	diameter of capillary tube	m
d	root diameter	mm

xvii

 $\textcircled{\sc c}$ in this web service Cambridge University Press

xviii		Symbols	
	Symbol	Description	Units
	d	shear strength parameter defined by cohesion and friction angle	kPa
	d_1, d_2, d_3	root shear strength growth parameters	kPa
	d_4	root shear strength growth parameter	y^{-1}
	d_5	root shear strength decay parameter	$y^{-d_{5}}$
	d_6	root shear strength decay parameter	$y^{-d_{6}}$
	Ε	Young's modulus	kPa
	Ε	inter-slice normal forces in method of slices	kN
	е	void ratio	_
	e_{max}	void ratio in loosest state	_
	e_{min}	void ratio in densest state	_
	e_s	saturation vapor pressure	hPa
	FS	factor of safety for a hillslope	_
	FS_s	shear strength based factor of safety	_
	f	infiltration capacity	cm/hr
	$f(u_a - \mathbf{u}_w), f(S)$	suction stress characteristic function	kPa
	f_c	minimum steady constant infiltration capacity	cm/hr
	f_0	initial infiltration capacity	cm/hr
	F_{ij}	force components	Ν
	G	elasticity modulus	kPa
	G_s	specific gravity of soil solids	_
	g	acceleration due to gravity	m/s^2
	g	acceleration vector due to gravity	m/s^2
	Н	Kirchhoff integral transformation	m^2/s
	H_{max}	maximum slope height of a finite slope	m
	H_{ss}	depth of sliding surface from ground surface	m
	H_{wt}	depth of water table from ground surface	m
	h	height of capillary rise; head	m
	h_a	air-entry head	m
	h_c	maximum height of capillary rise	m
	h_d	applied increment in matric suction head	m
	h_g	total gravitational head	m
	h_i	initial suction head in a soil column	m
	h_m	matric suction head	m
	h_n	height of the water table from the failure surface for slice <i>n</i>	m
	h_o	suction head at wetting front	m
	h_o	osmotic suction head	m
	h_t	total head	m
	h_{vap}	potential head of water vapor	m
	h_v	kinetic or velocity head	m

xix	Symbols		
	_		
	Symbol	Description	Units
	h_w	applied decrement in matric suction head	m
	$I_{1\sigma}$	first stress invariant	kPa
	i	hydraulic gradient	-
	i	initial root orientation with respect to failure plane	deg
	i, j, m, s	series indices	—
	Κ	bulk elastic modulus	kPa
	Κ	hydraulic conductivity	m/s
	K	hydraulic conductivity tensor	m/s
	K^*	dimensionless hydraulic conductivity in Laplace space	-
	K_{f}	permeability-dependent constant for infiltration capacity	hr^{-1}
	K_o	hydraulic conductivity at wetting front	m/s
	K_o	horizontal to vertical stress ratio under no horizontal	_
		displacement condition	
	K_{eq}	equivalent hydraulic conductivity of soil-HAE ceramic	m/s
		stone system	
	K_s	saturated hydraulic conductivity	m/s
	K_{sat}	saturated hydraulic conductivity	m/s
	K_s^a	saturated hydraulic conductivity for drying state	m/s
	K_s^w	saturated hydraulic conductivity for wetting state	m/s
	K_s^c	saturated hydraulic conductivity of HAE ceramic stone	m/s
	K_x, K_y, K_z	hydraulic conductivity in the x , y , and z directions	m/s
	L	diversion width for capillary barrier	m
	L	soil layer thickness	m
		length of soil body in infinite-slope model	m
		depth of the water table from ground surface	m
	L_r	length of the surface of rupture of a landslide body	m
	l	sample height plus thickness of HAE ceramic stone	m
	l_1, l_s	sample height	m
	l_2, l_c	langth of the base of align r	m
	l_n	shows strongth momentum defined by internal friction angle	m
	M	subal strength parameter defined by internal includingle	—
	IVI _r	total number of aligns in a method of aligns	—
	m	slope stability number for assessing stability of finite	—
	m	slope	
	111	root mass per unit volume of the reinforced soil	ka/m ²
	m	mass of solid	kg/m
	N	index variable	т <u>б</u> _
	N	normal force	N
	N.,	normal reacting force	N
	n	Corey's 1954 hydraulic conductivity model narameter	_
	n	norosity	_
		Porocity.	

SymbolDescriptionU n SWCC modeling constant n^d SWCC modeling constant for drying state n^w SWCC modeling constant for wetting state n series index n unit directional vector on boundary n_x, n_y, n_z components of unit directional vector on boundary	Units - - -
SymbolDescriptionU n SWCC modeling constant- n^d SWCC modeling constant for drying state- n^w SWCC modeling constant for wetting state- n series index- n unit directional vector on boundary- n_x , n_y , n_z components of unit directional vector on boundary-	Units - - -
n SWCC modeling constant- n^d SWCC modeling constant for drying state- n^w SWCC modeling constant for wetting state- n series index- n unit directional vector on boundary- n_x , n_y , n_z components of unit directional vector on boundary-	-
n^d SWCC modeling constant for drying state- n^w SWCC modeling constant for wetting state- n series index- n unit directional vector on boundary- n_x, n_y, n_z components of unit directional vector on boundary-	-
n^w SWCC modeling constant for wetting state- n series index- n unit directional vector on boundary- n_x, n_y, n_z components of unit directional vector on boundary-	-
n series index $ \mathbf{n}$ unit directional vector on boundary $ n_x, n_y, n_z$ components of unit directional vector on boundary $-$	-
n unit directional vector on boundary $-$ n_x, n_y, n_z components of unit directional vector on boundary $-$	
n_x, n_y, n_z components of unit directional vector on boundary –	-
	-
n_a air-filled porosity %	%
n _p porosity –	-
P annual precipitation n	nm
PET annual potential evaporation n	nm
p landslide probability density n	n^{-2}
Q dimensionless flow variable –	-
<i>Q</i> diversion capacity for capillary barrier n	n^2/s
Q total cumulative infiltration n	n
q fluid flow velocity n	n/s
$\hat{q}_d(l,t)$ simulated outflow rate during drying n	n/s
$\hat{q}_d^{\exp}(l,t)$ experimental outflow rate during drying n	n/s
$\hat{q}_w(l, t)$ simulated inflow rate during wetting n	n/s
$\hat{q}_w^{\exp}(l,t)$ experimental inflow rate during wetting n	n/s
q_{in} total inflow rate of water into a unit cell k	cg/s
q_{out} total outflow rate of water out of a unit cell k	cg/s
q_v vapor flow velocity n	n/s
q fluid velocity vector n	n/s
R universal gas constant J.	/mol K
R radius of Mohr circle k	cPa
R resultant force N	N
RDD relative dry density –	-
R_{max} maximum resultant force	N
R_r root shear strength conversion factor –	-
REV representative elementary volume n	m ³
r radius of circular failure surface n	n
<i>r</i> equivalent or mean pore radius	um
<i>r_u</i> pore-water pressure parameter in infinite-slope model –	-
S degree of saturation %	%
S cross section n	n ²
S_{xy} cross section perpendicular to z axis n	n ²
S_{xz} cross section perpendicular to y axis n	n ²
S_{vz} cross section perpendicular to x axis n	m ²
S shear force N	N
S_{max} maximum shear force N	N
S_e effective degree of saturation %	%
S_n mobilized shear resistance along the base of the <i>n</i> th slice N	

ххі	Symbols			
	Symbol	Description	Units	
	S	regidual degree of seturation	0/	
	Sr S	residual degree of saturation	°∕0 1 /ma	
	S _s	sorptivity	$m/s^{1/2}$	
	3 T	absolute temperature	Ш/S К	
	T T	dimensionless time	-	
	T T	surface tension	N/m	
	t s	time	s	
	t_x	traction or stress component in the x direction at boundary	Pa	
	t_y	traction or stress component in the <i>y</i> direction at boundary	Pa	
	t_z	traction or stress component in the z direction at boundary	Ра	
	и	pore-water pressure	kPa	
	u_x, u_y, u_z	displacement components	m	
	$\bar{u}_x, \bar{u}_y, \bar{u}_z$	displacement components at boundary	m	
	u_a	pore air pressure; air pressure	kPa	
	u_b	air-entry (bubbling) pressure	kPa	
	u_c	pore pressure due to isotropic stress loading	kPa	
	u_d	pore pressure due to deviatoric stress loading	kPa	
	u_{ij}	displacement components	m	
	u_{sat}	saturated vapor pressure	kPa	
	u_{v0}	saturated vapor pressure	kPa	
	u_w	pore-water pressure; water pressure	kPa	
	$(u_a - u_w)$	matric suction	kPa 2	
	V	volume of landslide body	m ³	
	V_t	volume of soil specimen	m	
	v	discharge velocity	m/s	
	v_v	volume of void in REV	m ³	
	$\mathcal{V}_{\mathcal{S}}$	volume of solid in REV	m ³	
	v_w	volume of water in REV	m ³	
	v_w	molar volume of water	m ² /kmo	
	W	virtual work due to effective stress	J N	
	W	weight of soil body	IN N	
	W_n	weight of slice <i>n</i>	IN I	
	W_{σ}	which of soil column nor unit gross section area	J NI/ma2	
	X^{W_v}	maximum displacement of failure zone along failure surface	m	
	X	inter-slice shear forces in method of slices	kN	
	x. v. 7	Cartesian coordinate directions	m	
	x, y, z.	Cartesian coordinate aligned with sloping direction	m	
	···*, ** 7	dimensionless distance		

xxii	Symbols			
	_			
	Symbol	Description	Units	
	Ζ	wetting from position	m	
	Ζ	thickness of failure zone	m	
	z_w	depth of loose or weathering zone	m	
	α	rotational angle on Mohr circle	deg	
	α	local topographic slope	_	
	α	pore size distribution index; SWCC modeling constant	1/kPa	
	$lpha^d$	pore size distribution index for drying state	1/kPa	
	$lpha^w$	pore size distribution index for wetting state	1/kPa	
	α_n	angle of slice <i>n</i>	Ν	
	α_s	bulk compressibility of soil	m^2/N	
	eta	rotational angle on Mohr circle	deg	
	eta	angle of failure surface with respect to horizontal direction	deg	
	eta	pore size distribution index; SWCC modeling constant	1/m	
	${eta}_w$	compressibility of water	m^2/N	
	χ	coefficient of matric suction	_	
	$\chi(u_a-u_w)$	suction stress (capillary stress)	kPa	
	ε	strain	%	
	$\varepsilon_x, \varepsilon_{xy}$	strain components	%	
	ϕ	angle of internal friction	deg	
	ϕ	angle of dip for capillary barrier	deg	
	ϕ_c	inter-grain friction angle	deg	
	ϕ_d	angle of internal friction at dry state	deg	
	ϕ_0,ϕ_{100}	angle of internal friction at 0 and 100% relative dry density	deg	
	$oldsymbol{\phi}'$	effective angle of internal friction	deg	
	$oldsymbol{\phi}_d'$	developed or mobilized effective friction angle	deg	
	ϕ_{CU}	friction angle under consolidation undrained condition	deg	
	ϕ_{NC}'	effective friction angle under normal consolidation condition	deg	
	ϕ'_{OC}	effective friction angle under overly consolidation condition	deg	
	γ	bulk (total) unit weight	kN/m ³	
	γ dmax, γ dmin	maximum or minimum dry unit weight	kN/m ³	
	γ	slope angle	deg	
	γ_{xy}	strain components for angle of distortion	radian	
	γ_w	unit weight of water	kN/m ³	
	Λ_n	<i>n</i> th positive root of pseudoperiodic characteristic equation for K^*	_	
	λ	latent heat of vaporization	J/kg	
	λ	slope stability number for assessing soil unit weight	_	

xxiii	Symbols			
	Symbol	Description	Units	
	2	Poltzmann transformation variable		
	λ	Boltzmann transformation variable	- lrDo	
	л 8	identity tensor	KI d	
	o _{ij}	Poisson's ratio	_	
	V	total chemical notential	– I/ka	
	μ_t	chemical potential of reference state	J/Kg I/kg	
	μ_0	chemical potential of vater vapor	J/Kg	
	$\mu_v = \pi$	osmotio pressure	J/Kg l/Do	
	л Q	offective water content (offective degree of seturation)	кга 0/	
	0	volumetrie water content	70 0/	
	0	wohilized friction angle	70 dag	
	0	angle of shear distortion with respect to initial rest	deg	
	Ø	orientation	ueg	
	θ	maximum mobilized friction angle	deg	
	θ	angle of potential failure surface with respect to horizontal direction	deg	
	θ_1	angle of distortion for element Δx	radian	
	θ_2	angle of distortion for element Δz	radian	
	θ_{cr}	critical angle of potential failure surface	deg	
	θ_r	residual volumetric water content	%	
	θ_r^d	residual volumetric water content for drying state	%	
	θr^w	residual volumetric water content for wetting state	%	
	θ_s	saturated volumetric water content	%	
	$\theta \frac{d}{s}$	saturated volumetric water content for drying state	%	
	θs^w	saturated volumetric water content for wetting state	%	
	θ_i	initial volumetric water content	%	
	θ_{o}	volumetric water content at wetting front	%	
	ρ_v	density of water vapor (absolute humidity)	kg/m ³	
	ρ_w	density of water	kg/m ³	
	σ	total normal stress	kPa	
	σ_o	normal stress	kPa	
	σ_{cap}	suction stress component due to capillarity	kPa	
	σ_{pc}	suction stress component due to physico-chemical forces	kPa	
	σ_C	counterbalance stress to suction stress due to Born	kPa	
	σ_c	cementation bonding stress	kPa	
	σ'	effective stress	kPa	
	- σ.	root tensile strength	kPa	
	σ_{ri}	root <i>i</i> 's tensile strength	kPa	
	σ^s	suction stress (capillary cohesion)	kPa	
	σ:	stress components	kPa	
	σ_{xi}	maior principal stress	k Pa	
	01	major principar suces	мa	

xxiv	Symbols			
	Symbol	Description	Units	
	σ_2	intermediate principal stress	kPa	
	σ_3	minor principal stress	kPa	
	σ_n	total normal stress	kPa	
	σ'_n	effective normal stress	kPa	
	σ_{tia}	isotropic tensile strength	kPa	
	σ_{tua}	uniaxial tensile strength	kPa	
	$(\sigma - u_a)$	net normal stress	kPa	
	$(\sigma_f - u_a)_{\rm f}$	net normal stress on failure plane at failure	kPa	
	τ	shear stress	kPa	
	$\tau_{xy}, \tau_{xz}, \tau_{zy}$	shear stress components	kPa	
	τ_{max}	maximum shear stress at a point	kPa	
	$ au_d$	mobilized or developed shear stress along failure surface	kPa	
	$ au_f$	shear stress at failure	kPa	
	τ_{rs}	root shear strength mobilized by root tensile strength	kPa	
	ω_w	molecular mass of water	kg/mo	
	ω_v	molecular mass of water vapor	kg/mo	
	ω	capillary barrier efficiency	_	
	ω	parameter for defining van Genuchten's SWRC model	_	
	ψ	composite contact or dilation angle	deg	
	ψ	suction	kPa	
	ψ	rupture root orientation with respect to failure plane	deg	
	ψ_m	matric suction	kPa	
	ψ_o	osmotic suction	kPa	
	ψ_o	matric suction beyond wetting front	kPa	
	ψ_t	total suction	kPa	
	RH	relative humidity	%	
	HCF	hydraulic conductivity function		
	SSCC	suction stress characteristic curve		
	SWCC	soil water characteristic curve		
	SWRC	soil water retention curve (also called SWCC)		