
Hillslope Hydrology and Stability

Landslides occur when hillslopes become mechanically unstable, because of meteorological
and geologic processes, and pose a serious threat to human environments in their proximity.
The mechanical balance within hillslopes is governed by two coupled physical processes:
hydrologic or subsurface flow and stress. The stabilizing strength of hillslope materials
depends on effective stress, which is diminished by rainfall, increasing the risk of gravity
destabilizing the balance and causing a landslide.

This book presents a cutting-edge quantitative approach to understanding hydro-
mechanical processes in hillslopes, and to the study and prediction of rainfall-induced
landslides. Combining geomorphology, hydrology, and geomechanics, it provides an inter-
disciplinary analysis that integrates the mechanical and hydrologic processes governing
landslide occurrences, across variably saturated hillslope environments. Topics covered
include a historic synthesis of hillslope geomorphology and hydrology, total and effective
stress distributions, critical reviews of shear strength of hillslope materials, and different
bases for stability analysis. Exercises and homework problems are provided for students to
engage with the theory in practice.

This is an invaluable resource for graduate students and researchers in hydrology, geo-
morphology, engineering geology, geotechnical engineering, and geomechanics, and also
for professionals in the fields of civil and environmental engineering, and natural hazard
analysis.

Ning Lu, F. GSA, F. ASCE, is Professor of Civil and Environmental Engineering at Colorado
School of Mines, and his primary research in the past decade has concentrated on hillslope
hydrology and slope stability. He is the senior author of Unsaturated Soil Mechanics (John
Wiley & Sons, 2004), and has also published extensively in peer-reviewed journals on
unifying effective stress in variably saturated porous media. Professor Lu is a recipient of
the Norman Medal and the Croes Medal from the American Society of Civil Engineers for
his seminal work on defining suction stress in variably saturated soils.

Jonathan W. Godt is a Research Physical Scientist with the United States Geological Survey
and has worked on landslide hazard problems for more than 15 years, both in the United
States and around the world. His research focuses on monitoring and understanding land-
slide processes to improve tools for landslide hazard assessment and forecasting. He has
published numerous reports, maps, and journal articles on the subject of landslide hazards.
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Foreword

Even a cursory inspection of Hillslope Hydrology and Stability by Lu and Godt will
impress most professionals interested in processes at the interface between geotechnical
engineering and hydrology. This unique textbook represents an attempt to systematically
unify concepts from vadose zone hydrology and geotechnical engineering into a new hydro-
geo-mechanical approach with special emphasis on quantifying natural mechanisms for the
onset of hydrologically induced landslides. Professionals will particularly appreciate the
comprehensive coverage of concepts ranging from fundamentals of geomechanics and soil
properties to the state-of-the-art concepts of hillslope hydrology, with explicit treatment
of soil heterogeneity, layering, and vegetation mechanical and hydrologic functions. The
authors have been able to weave a coherent picture based on the cutting-edge state of
knowledge regarding landslides as natural geomorphological processes and as ubiquitous
natural hazards in mountainous regions.

Students will appreciate the lucid coverage of topics offering a systematic introduc-
tion to key ingredients essential for understanding the occurrence of landslides in their
broader natural context (often missing in technical textbooks). Students are guided through
aspects of precipitation with its instantaneous to inter-annual patterns, as well as aspects
of soil types and the geomorphological context of landslides. This provides a solid founda-
tion for introduction of more specific technical aspects of infiltration, hillslope hydrology,
and hydro-mechanical properties, and assembles the roles of these factors on a hillslope
mechanical state. Students will find clear explanations of fundamental concepts inspired by
numerical examples to help them develop appreciation for the orders of magnitude for the
quantities involved. Numerous motivating homework problems further promote self-study.

Hillslope Hydrology and Stability helps chart the boundaries of the emerging interdisci-
plinary field of soil hydromechanics. The authors offer a rigorous link between hydrology
and soil mechanics by providing a unified treatment of effective stress (suction stress)
under variably saturated conditions (Chapter 6). The authors also provide a fresh look at
well-established concepts found in textbooks from hydrology and geotechnical engineering
fused together using new crucial aspects typically glossed over in standard texts, thereby
providing a unique new perspective. For example, the interplay between hillslope subsur-
face flows and soil layering (forming hydrologic barriers), a critical mechanism for abrupt
landslide triggering, has rarely been previously discussed in a quantitative hillslope hydro-
mechanical context as done in Chapter 3. The quantitative treatment of root reinforcement
and the role of plants in the mechanical picture of natural hillslopes (Chapter 7) is another
example of the conceptual integration in the basis of the book. The wealth of information
on numerical values of key parameters and the instructive use of case studies described in
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xiv Foreword

Chapters 9 and 10 make Hillslope Hydrology and Stability an outstanding resource for stu-
dents, researchers, and practitioners alike. No doubt the test of time would add refinement
to this labor of love that contains numerous new concepts – I hope students and researchers
would be challenged and inspired by the breadth and depth offered in this unique treatise
on hydro-mechanical hillslope processes.

Professor Dani Or
ETH Zurich
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Preface

We strive to provide a thorough description on the cutting edge of the spatial and temporal
occurrence of rainfall-induced landslides by quantifying the hydro-mechanical processes
in hillslopes. Landslides are a pervasive natural phenomenon that constantly shapes the
morphology of the earth’s surface. Over geologic time, landslides are the result of two
episodic, and broadly occurring geologic processes; tectonics and erosion. At human scale,
the former operates at a uniform rate barely sensed by humans except during earthquakes.
However, the latter is entirely sensible and is driven largely by rainfall. The results of these
dynamic geologic processes are the infinite variety of landforms that vary remarkably in
geometry; from flat plains to rolling hills, to vertical or even overhanging cliffs, and to
shapes that test human’s imagination.

Understanding of how landslides occur is vital to the well being of human society and our
environment and has been a research focus for many disciplines such as geomorphology,
hydrology, geography, meteorology, soil science, and civil and environmental engineering.
While each of these disciplines tackles landslide problems from quite different perspectives,
a common thread is the mechanics of landsliding. From the vantage of mechanics, no matter
how complicated the morphology of the land surface, it is the mechanical balance within
hillslopes that determines if they are stable or not. Two coupled physical processes govern
the mechanical balance; hydrological or subsurface flow process and stress equilibrium
process.

Understanding and quantifying the hydro-mechanical processes provide the key link to
the knowledge gained from different disciplines and pathways for predicting the spatial and
temporal occurrence of landslides. In each hillslope, driving and resisting forces dictate
the state of stability. The driving or destabilizing forces are mainly provided by gravity
and the resisting or stabilizing forces are mainly provided by the strength of hillslope
materials. This mechanical balance is mediated by the presence of water, which varies
dramatically over climatic, seasonal, and shorter time scales and has both a stabilizing and
destabilizing effect. The effect of water on the stability of hillslopes is quantified using the
concept of effective stress, which provides a connection between subsurface hydrologic and
mechanical processes under variably saturated conditions.

In this volume, we present quantitative treatments of rainfall infiltration, effective stress,
their coupling, and roles in hillslope stability. An overall introduction to landslide phe-
nomena, their classification, and socio-economic impacts is provided in Chapter 1. The
settings where landslides occur are described in Chapter 2: slope geomorphology. Sub-
surface hydrologic process under variably saturated conditions is systematically described
in the forms of steady infiltration (Chapter 3) and transient infiltration (Chapter 4). The
background stress or total stress fields driven by gravity in hillslopes are quantified under

xv
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xvi Preface

the theory of linear elastostatics in Chapter 5. A unified effective stress framework linking
soil suction to effective stress is provided in Chapter 6. The pertinent material properties,
both the strength of soil and vegetation roots, and hydrologic constitutive laws, are provided
in Chapters 7 and 8. Integration of slope geomorphology, hydrology, and soil mechanics
leads to a rigorous treatment of slope stability analysis that is described in Chapters 9
and 10. Chapter 9 provides an in-depth introduction to the classical or conventional slope
stability methodologies as well as expansions to include environments under variably satu-
rated conditions by the unified effective stress principle. Chapter 10 presents a framework
departing from the conventional slope stability paradigm by employing scalar fields of
suction stress and factor of safety, which has potential to reveal spatial and temporal occur-
rence of rainfall-induced landslides in variably saturated hillslopes. The effectiveness of
the proposed hydro-mechanical framework is examined through two case studies in these
chapters. The first case study is an analysis of a shallow landslide induced by rainfall and is
based on a multi-year field-monitoring program where the reduction of a few kPa of suction
stress eventually led to slope failure. The second case study applies the hydro-mechanical
framework to analyze a deep-seated landslide that moves each year in response to melting
snow.

The book is truly the journal of our joint endeavor to advance the understanding of
occurrence of landslides. The materials covered here have been grown out of a course,
Hillslope Hydrology and Stability, taught at Colorado School of Mines, USA, EPFL-
Lausanne, Switzerland, and University of Perugia, Italy over the past 6 years. From teach-
ing, we gained much from our interactions with students and professionals. The major part
of NL’s contribution to the book was written while he was on sabbatical as the Shimizu
Visiting Professor at Stanford University and a visiting scientist at the U.S. Geological
Survey campus in Menlo Park, California office in 2010–2011. His hosts, Ronaldo Borja
at Stanford and Brian Collins at the USGS provided an intellectually stimulating and
productive environment. The authors benefitted greatly from contributions from the fol-
lowing colleagues who provide insightful, critical, and thorough reviews of parts of the
manuscript: Rex Baum, Brian Collins, Richard Healy, Richard Iverson, and Mark Reid of
the U.S. Geological Survey, Dalia Kirschbaum of NASA Goddard Space Flight Center,
Giovanni Crosta of the University of Milano-Bicocca, William Likos of the University of
Wisconsin-Madison, John McCartney of the University of Colorado-Boulder, Dani Or of
ETH Zurich, Ricardo Rigon of the University of Trento, Diana Salciarini of the University
of Perugia, Alexandra Wayllace of the Colorado School of Mines, and Raymond Torres
of the University of South Carolina-Columbia. We extend special thanks to Rex Baum for
looking at the entire proof of the book. Nonetheless, all errors and bias remain ours. Başak
Şener-Kaya prepared the figures and tables for the total stress distributions in hillslope in
Chapter 5. Finally, the authors would like to express our gratitude to Peter Birkeland who
acts as Pe(te)casso for illustrating the essentials of our thoughts in art form at the beginning
of each part.
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Symbols

Symbol Description Units

A Skempton pore pressure parameter for isotropic loading –
AL landslide area m2

A area; cross sectional area m2

a1 root tensile strength parameter MPa m−a2

a2 root tensile strength parameter –
B Skempton pore pressure parameter for deviator loading –
b body force vector N/m3

b parameter for inter-grain friction angle –
b1 root shear strength parameter MPa
b2 root shear strength parameter MPa m3/kg
bn width of the nth slice in a method of slices m
bo parameter for cumulative rate of root mass with depth –
bi body force components N/m3

C(ψ) specific moisture capacity as function of suction 1/kPa
C(h) specific moisture capacity as function of head 1/m
c cohesion kPa
c solute concentration mol m3

cc cohesion mobilized by cementation bonds kPa
cd mobilized or developed cohesion along failure surface kPa
co cohesion due to grain inter-locking kPa
cs cohesion mobilized by suction stress kPa
cu undrained shear strength kPa
c′ cohesion in terms of effective stress kPa
D diffusivity m2/s
Do free vapor diffusivity in air m2/s
Dv free vapor diffusivity in porous media m2/s
Dr maximum depth of landslide body m
Dr relative density –
Dv diffusion coefficient for water vapor m2/s
D10 10% finer particle diameter m
D50 50% finer particle diameter m
d diameter of capillary tube m
d root diameter mm

xvii
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xviii Symbols

Symbol Description Units

d shear strength parameter defined by cohesion and friction
angle

kPa

d1, d2, d3 root shear strength growth parameters kPa
d4 root shear strength growth parameter y−1

d5 root shear strength decay parameter y−d5

d6 root shear strength decay parameter y−d6

E Young’s modulus kPa
E inter-slice normal forces in method of slices kN
e void ratio –
emax void ratio in loosest state –
emin void ratio in densest state –
es saturation vapor pressure hPa
FS factor of safety for a hillslope –
FSs shear strength based factor of safety –
f infiltration capacity cm/hr
f (ua – uw), f(S) suction stress characteristic function kPa
fc minimum steady constant infiltration capacity cm/hr
f0 initial infiltration capacity cm/hr
Fij force components N
G elasticity modulus kPa
Gs specific gravity of soil solids –
g acceleration due to gravity m/s2

g acceleration vector due to gravity m/s2

H Kirchhoff integral transformation m2/s
Hmax maximum slope height of a finite slope m
Hss depth of sliding surface from ground surface m
Hwt depth of water table from ground surface m
h height of capillary rise; head m
ha air-entry head m
hc maximum height of capillary rise m
hd applied increment in matric suction head m
hg total gravitational head m
hi initial suction head in a soil column m
hm matric suction head m
hn height of the water table from the failure surface for

slice n
m

ho suction head at wetting front m
ho osmotic suction head m
ht total head m
hvap potential head of water vapor m
hv kinetic or velocity head m
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xix Symbols

Symbol Description Units

hw applied decrement in matric suction head m
I1σ first stress invariant kPa
i hydraulic gradient –
i initial root orientation with respect to failure plane deg
i, j, m, s series indices –
K bulk elastic modulus kPa
K hydraulic conductivity m/s
K hydraulic conductivity tensor m/s
K∗ dimensionless hydraulic conductivity in Laplace space –
Kf permeability-dependent constant for infiltration capacity hr−1

Ko hydraulic conductivity at wetting front m/s
Ko horizontal to vertical stress ratio under no horizontal

displacement condition
–

Keq equivalent hydraulic conductivity of soil-HAE ceramic
stone system

m/s

Ks saturated hydraulic conductivity m/s
Ksat saturated hydraulic conductivity m/s
K s

d saturated hydraulic conductivity for drying state m/s
K s

w saturated hydraulic conductivity for wetting state m/s
K s

c saturated hydraulic conductivity of HAE ceramic stone m/s
Kx, Ky, Kz hydraulic conductivity in the x, y, and z directions m/s
L diversion width for capillary barrier m
L soil layer thickness m
L length of soil body in infinite-slope model m
L depth of the water table from ground surface m
Lr length of the surface of rupture of a landslide body m
l sample height plus thickness of HAE ceramic stone m
l1, ls sample height m
l2, lc thickness of HAE ceramic stone m
ln length of the base of slice n m
M shear strength parameter defined by internal friction angle –
Mr cumulative mass fraction in depth z –
m total number of slices in a method of slices –
m slope stability number for assessing stability of finite

slope
–

mr root mass per unit volume of the reinforced soil kg/m3

ms mass of solid kg
N index variable –
N normal force N
Nn normal reacting force N
n Corey’s 1954 hydraulic conductivity model parameter –
n porosity –
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xx Symbols

Symbol Description Units

n SWCC modeling constant –
nd SWCC modeling constant for drying state –
nw SWCC modeling constant for wetting state –
n series index –
n unit directional vector on boundary –
nx, ny, nz components of unit directional vector on boundary –
na air-filled porosity %
np porosity –
P annual precipitation mm
PET annual potential evaporation mm
p landslide probability density m−2

Q dimensionless flow variable –
Q diversion capacity for capillary barrier m2/s
Q total cumulative infiltration m
q fluid flow velocity m/s
q̂d (l, t) simulated outflow rate during drying m/s
q̂

exp
d (l, t) experimental outflow rate during drying m/s

q̂w (l, t) simulated inflow rate during wetting m/s
q̂

exp
w (l, t) experimental inflow rate during wetting m/s

qin total inflow rate of water into a unit cell kg/s
qout total outflow rate of water out of a unit cell kg/s
qv vapor flow velocity m/s
q fluid velocity vector m/s
R universal gas constant J/mol K
R radius of Mohr circle kPa
R resultant force N
RDD relative dry density –
Rmax maximum resultant force N
Rr root shear strength conversion factor –
REV representative elementary volume m3

r radius of circular failure surface m
r equivalent or mean pore radius µm
ru pore-water pressure parameter in infinite-slope model –
S degree of saturation %
S cross section m2

Sxy cross section perpendicular to z axis m2

Sxz cross section perpendicular to y axis m2

Syz cross section perpendicular to x axis m2

S shear force N
Smax maximum shear force N
Se effective degree of saturation %
Sn mobilized shear resistance along the base of the nth slice N
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xxi Symbols

Symbol Description Units

Sr residual degree of saturation %
Ss specific storage 1/m
s sorptivity m/s1/2

T absolute temperature K
T dimensionless time –
Ts surface tension N/m
t time s
tx traction or stress component in the x direction at

boundary
Pa

ty traction or stress component in the y direction at
boundary

Pa

tz traction or stress component in the z direction at boundary Pa
u pore-water pressure kPa
ux, uy, uz displacement components m
ūx, ūy, ūz displacement components at boundary m
ua pore air pressure; air pressure kPa
ub air-entry (bubbling) pressure kPa
uc pore pressure due to isotropic stress loading kPa
ud pore pressure due to deviatoric stress loading kPa
uij displacement components m
usat saturated vapor pressure kPa
uv0 saturated vapor pressure kPa
uw pore-water pressure; water pressure kPa
(ua – uw) matric suction kPa
V volume of landslide body m3

Vt volume of soil specimen m3

v discharge velocity m/s
vv volume of void in REV m3

vs volume of solid in REV m3

vw volume of water in REV m3

vw molar volume of water m3/kmol
W virtual work due to effective stress J
W weight of soil body N
Wn weight of slice n N
W σ

s virtual work due to suction stress stress J
Wv weight of soil column per unit cross section area N/m2

X maximum displacement of failure zone along failure
surface

m

X inter-slice shear forces in method of slices kN
x, y, z Cartesian coordinate directions m
x∗, z∗ Cartesian coordinate aligned with sloping direction m
Z dimensionless distance –
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xxii Symbols

Symbol Description Units

Z wetting from position m
Z thickness of failure zone m
zw depth of loose or weathering zone m

α rotational angle on Mohr circle deg
α local topographic slope –
α pore size distribution index; SWCC modeling constant 1/kPa
αd pore size distribution index for drying state 1/kPa
αw pore size distribution index for wetting state 1/kPa
αn angle of slice n N
αs bulk compressibility of soil m2/N
β rotational angle on Mohr circle deg
β angle of failure surface with respect to horizontal

direction
deg

β pore size distribution index; SWCC modeling constant 1/m
βw compressibility of water m2/N
χ coefficient of matric suction –
χ (ua – uw) suction stress (capillary stress) kPa
ε strain %
εx, εxy strain components %
φ angle of internal friction deg
φ angle of dip for capillary barrier deg
φc inter-grain friction angle deg
φd angle of internal friction at dry state deg
φ0, φ100 angle of internal friction at 0 and 100% relative dry

density
deg

φ′ effective angle of internal friction deg
φ′

d developed or mobilized effective friction angle deg
φCU friction angle under consolidation undrained condition deg
φ′

NC effective friction angle under normal consolidation
condition

deg

φ′
OC effective friction angle under overly consolidation

condition
deg

γ bulk (total) unit weight kN/m3

γ dmax, γ dmin maximum or minimum dry unit weight kN/m3

γ slope angle deg
γ xy strain components for angle of distortion radian
γ w unit weight of water kN/m3


n nth positive root of pseudoperiodic characteristic
equation for K∗

–

λ latent heat of vaporization J/kg
λ slope stability number for assessing soil unit weight –
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xxiii Symbols

Symbol Description Units

λ Boltzmann transformation variable –
λ Lamé elastic constant kPa
δij identity tensor –
ν Poisson’s ratio –
μt total chemical potential J/kg
μ0 chemical potential of reference state J/kg
μv chemical potential of water vapor J/kg
π osmotic pressure kPa
� effective water content (effective degree of saturation) %
θ volumetric water content %
θ mobilized friction angle deg
θ angle of shear distortion with respect to initial root

orientation
deg

θ maximum mobilized friction angle deg
θ angle of potential failure surface with respect to

horizontal direction
deg

θ1 angle of distortion for element �x radian
θ2 angle of distortion for element �z radian
θ cr critical angle of potential failure surface deg
θ r residual volumetric water content %
θ r

d residual volumetric water content for drying state %
θ r

w residual volumetric water content for wetting state %
θ s saturated volumetric water content %
θ s

d saturated volumetric water content for drying state %
θ s

w saturated volumetric water content for wetting state %
θ i initial volumetric water content %
θo volumetric water content at wetting front %
ρv density of water vapor (absolute humidity) kg/m3

ρw density of water kg/m3

σ total normal stress kPa
σ o normal stress kPa
σ cap suction stress component due to capillarity kPa
σ pc suction stress component due to physico-chemical forces kPa
σ C counterbalance stress to suction stress due to Born

repulsion
kPa

σ c cementation bonding stress kPa
σ ′ effective stress kPa
σ r root tensile strength kPa
σ ri root i’s tensile strength kPa
σ s suction stress (capillary cohesion) kPa
σ xi stress components kPa
σ 1 major principal stress kPa
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xxiv Symbols

Symbol Description Units

σ 2 intermediate principal stress kPa
σ 3 minor principal stress kPa
σ n total normal stress kPa
σ ′

n effective normal stress kPa
σ tia isotropic tensile strength kPa
σ tua uniaxial tensile strength kPa
(σ −ua) net normal stress kPa
(σ f – ua)f net normal stress on failure plane at failure kPa
τ shear stress kPa
τ xy, τ xz, τ zy shear stress components kPa
τmax maximum shear stress at a point kPa
τ d mobilized or developed shear stress along failure surface kPa
τ f shear stress at failure kPa
τ rs root shear strength mobilized by root tensile strength kPa
ωw molecular mass of water kg/mol
ωv molecular mass of water vapor kg/mol
ω capillary barrier efficiency –
ω parameter for defining van Genuchten’s SWRC model –
ψ composite contact or dilation angle deg
ψ suction kPa
ψ rupture root orientation with respect to failure plane deg
ψm matric suction kPa
ψo osmotic suction kPa
ψo matric suction beyond wetting front kPa
ψ t total suction kPa
RH relative humidity %
HCF hydraulic conductivity function
SSCC suction stress characteristic curve
SWCC soil water characteristic curve
SWRC soil water retention curve (also called SWCC)
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