
PART ONE

Radon measures on Rn

Synopsis

In this part we discuss the basic theory of Radon measures on Rn. Roughly
speaking, if P(Rn) denotes the set of the parts of Rn, then a Radon measure µ
on Rn is a function µ : P(Rn) → [0,∞], which is countably additive (at least)
on the family of Borel sets of Rn, takes finite values on bounded sets, and is
completely identified by its values on open sets. The Lebesgue measure on
Rn and the Dirac measure δx at x ∈ Rn are well-known examples of Radon
measures on Rn. Moreover, any locally summable function on Rn, as well as
any k-dimensional surface in Rn, 1 ≤ k ≤ n − 1, can be naturally identified
with a Radon measure on Rn. There are good reasons to look at such familiar
objects from this particular point of view. Indeed, the natural notion of con-
vergence for sequences of Radon measures satisfies very flexible compactness
properties. As a consequence, the theory of Radon measures provides a unified
framework for dealing with the various convergence and compactness phenom-
ena that one faces in the study of geometric variational problems. For example,
a sequence of continuous functions on Rn that (as a sequence of Radon mea-
sures) is converging to a surface in Rn is something that cannot be handled
with the notions of convergence usually considered on spaces of continuous
functions or on Lebesgue spaces. Similarly, the existence of a tangent plane
to a surface at one of its points can be understood as the convergence of the
(Radon measures naturally associated with) re-scaled and translated copies of
the surface to the (Radon measure naturally associated with the) tangent plane
itself. This peculiar point of view opens the door for a geometrically meaning-
ful (and analytically powerful) extension of the notion of differentiability to
the wide class of objects, the family of rectifiable sets, that one must consider
in solving geometric variational problems.

Part I is divided into two main portions. The first one (Chapters 1–6) is de-
voted to the more abstract aspects of the theory. In Chapters 1–4, we introduce
the main definitions, present the most basic examples, and prove the fundamen-
tal representation and compactness theorems about Radon measures. (These
results already suffice to give an understanding of the basic theory of sets of fi-
nite perimeter as presented in the first three chapters of Part II.) Differentiation
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2 Radon measures on Rn

theory, and its applications, are discussed in Chapters 5–6. In the second
portion of Part I (Chapters 7–11), we consider Radon measures from a more
geometric viewpoint, focusing on the interaction between Euclidean geometry
and Measure Theory, and covering topics such as Lipschitz functions, Haus-
dorff measures, area formulae, rectifiable sets, and measure-theoretic differen-
tiability. These are prerequisites to more advanced parts of the theory of sets
of finite perimeter, and can be safely postponed until really needed. We now
examine more closely each chapter.

In Chapters 1–2 we introduce the notions of Borel and Radon measure. This
is done in the context of outer measures, rather than in the classical context of
standard measures defined on σ-algebras. We simultaneously develop both the
basic properties relating Borel and Radon measures to the Euclidean topology
of Rn and the basic examples of the theory that are obtained by combining
the definitions of Lebesgue and Hausdorff measures with the operations of
restriction to a set and push-forward through a function.

In Chapter 3 we look more closely at Hausdorff measures. We establish
their most basic properties and introduce the notion of Hausdorff dimension.
Next, we show equivalence between the Lebesgue measure on Rn and the n-
dimensional Hausdorff measure on Rn, and we study the relation between the
elementary notion of length of a curve, based on the existence of a parametriza-
tion, and the notion induced by one-dimensional Hausdorff measures.

In Chapter 4 we further develop the general theory of Radon measures. In
particular, the deep link between Radon measures and continuous functions
with compact support is presented, leading to the definition of vector-valued
Radon measures, of weak-star convergence of Radon measures, and to the
proof of the fundamental Riesz’s representation theorem: every bounded lin-
ear functional on C0

c (Rn;Rm) is representable as integration with respect to an
Rm-valued Radon measure on Rn. This last result, in turn, is the key to the
weak-star compactness criterion for sequences of Radon measures.

Chapters 5–6 present differentiation theory and its applications. The goal is
to compare two Radon measures ν and µ by looking, as r → 0+, at the ratios

ν(B(x, r))
µ(B(x, r))

,

which are defined at those x where µ is supported (i.e., µ(B(x, r)) > 0 for every
r > 0). The Besicovitch–Lebesgue differentiation theorem ensures that, for µ-
a.e. x in the support of µ, these ratios converge to a finite limit u(x), and that
restriction of ν to the support of µ equals integration of u with respect to µ.
Differentiation theory plays a crucial role in proving the validity of classical
(or generalized) differentiability properties in many situations.
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Synopsis 3

In Chapter 7 we study the basic properties of Lipschitz functions, proving
Rademacher’s theorem about the almost everywhere classical differentiability
of Lipschitz functions, and Kirszbraun’s theorem concerning the optimal ex-
tension problem for vector-valued Lipschitz maps.

Chapter 8 presents the area formula, which relates the Hausdorff measure
of a set in Rn with that of its Lipschitz images into any Rm with m ≥ n. As a
consequence, the classical notion of area of a k-dimensional surface M in Rn

is seen to coincide with the k-dimensional Hausdorff measure of M. Some ap-
plications of the area formula are presented in Chapter 9, where, in particular,
the classical Gauss–Green theorem is proved.

In Chapter 10 we introduce one of the most important notions of Geometric
Measure Theory, that of a k-dimensional rectifiable set in Rn (1 ≤ k ≤ n − 1).
This is a very broad generalization of the concept of k-dimensional C1-surface,
allowing for complex singularities but, at the same time, retaining tangential
differentiability properties, at least in a measure-theoretic sense. A crucial re-
sult is the following: if the k-dimensional blow-ups of a Radon measure µ con-
verge to k-dimensional linear spaces (seen as Radon measures), then it turns
out that µ itself is the restriction of the k-dimensional Hausdorff measure to a
k-dimensional rectifiable set.

In Chapter 11, we introduce the notion of tangential differentiability of a
Lipschitz function with respect to a rectifiable set, extend the area formula to
this context, and prove the divergence theorem on C 2-surfaces with boundary.
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1

Outer measures

Denote by P(Rn) the set of all subsets of Rn. An outer measure µ on Rn is a
set function on Rn with values in [0,∞], µ : P(Rn)→ [0,∞], with µ(∅) = 0 and

E ⊂
⋃
h∈N

Eh ⇒ µ(E) ≤
∑
h∈N

µ(Eh) .

This property, called σ-subadditivity, implies the monotonicity of µ,

E ⊂ F ⇒ µ(E) ≤ µ(F) .

1.1 Examples of outer measures

Simple familiar examples of outer measures are the Dirac measure and the
counting measure. The Dirac measure δx at x ∈ Rn is defined on E ⊂ Rn as

δx(E) =
{

1 , x ∈ E ,
0 , x � E ,

while the counting measure # of E is

#(E) =
{

number of elements of E , if E is finite ,
+∞ , if E is infinite .

The two most important examples of outer measures are Lebesgue and Haus-
dorff measures.

Lebsegue measure: The Lebesgue measure of a set E ⊂ Rn is defined as

Ln(E) = inf
F

∑
Q∈F

r(Q)n ,

whereF is a countable covering of E by cubes with sides parallel to the coordi-
nate axes, and r(Q) denotes the side length of Q (the cubes Q are not assumed

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: An
Introduction to Geometric Measure Theory
Francesco Maggi
Excerpt
More information

http://www.cambridge.org/9781107021037
http://www.cambridge.org
http://www.cambridge.org


1.1 Examples of outer measures 5

to be open, nor closed). The Lebesgue measure Ln(E) is interpreted as the
n-dimensional volume of E. Usually, we write

Ln(E) = |E| ,

and refer to |E| as the volume of E. Clearly, Ln is an outer measure. Moreover,
it is translation-invariant, that is |x + E| = |E| for every x ∈ Rn, and satisfies
the scaling law |λ E| = λn|E|, λ > 0. If B = {x ∈ Rn : |x| < 1} is the Euclidean
unit ball of Rn, then we set ωn = |B|. It is easily seen that ω1 = 2.

Hausdorff measure: Let n, k ∈ N, with n ≥ 2 and 1 ≤ k ≤ n − 1. A bounded
open set A ⊂ Rk and a function f ∈ C1(Rk;Rn) define a k-dimensional
parametrized surface f (A) in Rn provided f is injective on A with J f (x) > 0
for every x ∈ A. Here J f (x) denotes the Jacobian of f at x, namely

J f (x) =
√

det(∇ f (x)∗∇ f (x)) ,

where, if k = 1, this means that J f (x) = | f ′(x)|. The condition J f (x) > 0
ensures that ∇ f (x)(Rk) is a k-dimensional subspace of Rn. The k-dimensional
area of f (A) is then classically defined as

k-dimensional area of f (A) =
∫

A
J f (x) dx . (1.1)

In the study of geometric variational problems we need to extend this defini-
tion of k-dimensional area to more general sets than k-dimensional C1-images.
Hausdorffmeasures are introduced to this end. To avoid the use of parametriza-
tions the definition is based on a covering procedure, as in the construction of
the Lebesgue measure. Given n, k ∈ N, δ > 0, the k-dimensional Hausdorff
measure of step δ of a set E ⊂ Rn is defined as

Hk
δ (E) = inf

F

∑
F∈F

ωk

(diam(F)
2

)k
, (1.2)

where F is a countable covering of E by sets F ⊂ Rn such that diam(F) < δ;
see Figure 1.1. The k-dimensional Hausdorff measure of E is then

Hk(E) = sup
δ∈(0,∞]

Hk
δ (E) = lim

δ→0+
Hk

δ (E) . (1.3)

It is trivial to see that, for every δ ∈ (0,∞], Hk
δ is an outer measure. As

an immediate consequence, Hk is an outer measure too. In a similar way
one proves that Hk is translation-invariant and that it satisfies the scaling law
Hk(λ E) = λkHk(E), λ > 0. The fact that Hk( f (A)) agrees with the classical
notion of area on a k-dimensional parametrized surface f (A) as defined in (1.1)
is the content of the important area formula, discussed in Chapter 8.
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6 Outer measures

E

δ

Figure 1.1 When computingH k
δ (E) one sums up, corresponding to each ele-

ment F of a covering F of E, the k-dimensional measure of a k-dimensional
ball of diameter diam(F). The minimization process used to computeH k

δ (E)
does not detect any “deviation from straightness” of E taking place at a scale
smaller than δ; see also Remark 1.1. Hence, one takes the limit δ→ 0+.

Remark 1.1 The idea behind the definition of Hausdorff measures is readily
understood by considering the following statements concerning the case k = 1,
n = 2 (see Chapter 3 for proofs).

(i) If E is a segment, then, for every δ > 0,H1
δ (E) andH1(E) coincide with

the Euclidean length of E. If E is a polygonal curve composed of finitely
many segments of length at least d, then, for every δ ∈ (0, d), H1

δ (E) and
H1(E) both agree with the Euclidean length of E.

(ii) If E is a curve of diameter d and δ ≥ d, thenH1
δ (E) ≤ d (use the covering

F = {E} of E in (1.2)), while, of course, the length of E can be arbitrarily
large. It is only in the limit δ → 0+ that H1

δ (E) approaches the length of
E; see Section 3.2.

(iii) If E is countable (hence, zero-dimensional), thenH1(E) = 0.
(iv) If E is an open set of R2 (i.e., a two-dimensional set), thenH1(E) = ∞.

Remark 1.2 Given s ∈ [0,∞), the s-dimensional Hausdorff measures H s
δ

and H s are defined by simply replacing k with s in (1.2) and (1.3). The nor-
malization constant ωk is replaced by

ωs =
πs/2

Γ(1 + s/2)
, s ≥ 0 ,

where Γ : (0,∞)→ [1,∞) is the Euler Gamma function

Γ(s) =
∫ ∞

0
ts−1e−tdt , s > 0 .

This is consistent asωk = π
k/2Γ(1+k/2)−1 for k ∈ N, k ≥ 1. Once againH s

δ and
H s are translation-invariant outer measures, withH s(λ E) = λsH s(E), λ > 0.
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1.2 Measurable sets and σ-additivity 7

Exercise 1.3 Clearly, in the definition of H s
δ (E), we may equivalently con-

sider coverings of E by subsets of E. Similarly,

(i) we may use coverings of E by closed convex sets intersecting E: indeed,
the diameter of a set is the same as the diameter of its closed convex hull,
and, if a set in F does not intersect E, it is convenient to discard it;

(ii) we may use coverings of E by open sets intersecting E: indeed, for every
F ⊂ Rn and ε > 0, the ε-neighborhood of F,

Iε(F) =
{
x ∈ Rn : dist(x, F) < ε

}
, (1.4)

is open, contains F, and is such that diam(Fε) ≤ diam(F) + 2ε.

1.2 Measurable sets and σ-additivity

Given a family F of subsets of Rn, we say that the outer measure µ on Rn is
σ-additive on F , provided

µ
(⋃

h∈N
Eh

)
=

∑
h∈N

µ(Eh) ,

for every disjoint sequence {Eh}h∈N ⊂ F (i.e., Eh ∩ Ek = ∅ if h � k). Ac-
cordingly to our naive intuition about the notion of measure, we would expect
any reasonable measure to be σ-additive on P(Rn). However, this fails even in
the case of the Lebesgue measure L1 on R. To show this, let us consider the
classical Vitali’s example. Define an equivalence relation ≈ on (0, 1), so that
x ≈ y if and only if x − y is rational. By the axiom of choice, there exists a set
E ⊂ (0, 1) containing exactly one element from each of the equivalence classes
defined by ≈ on (0, 1). If {xh}h∈N = Q ∩ (0, 1), then the sequence of sets

Eh =
(
xh +

(
E ∩ (0, 1 − xh)

))
∪

(
(xh − 1) +

(
E ∩ (1 − xh, 1)

))
is, by construction of E, disjoint. By the translation invariance of L1,

|Eh| = |E ∩ (0, 1 − xh)| + |E ∩ (1 − xh, 1)| = |E| ,

with (0, 1) =
⋃

h∈N Eh. The σ-additivity of L1 on {Eh}h∈N would then imply

1 = |(0, 1)| =
∑
h∈N
|E| ,

against |E| ∈ [0,∞]. Hence, L1 is not σ-additive on P(R). As we are going to
prove in Section 2.1, L1 is, however, σ-additive on a large family of subsets
of Rn. A first step towards this kind of result is the following theorem, which
provides, given outer measure µ, a natural domain of σ-additivity for µ.
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8 Outer measures

Theorem 1.4 (Carathéodory’s theorem) If µ is an outer measure on Rn, and
M(µ) is the family of those E ⊂ Rn such that

µ(F) = µ(E ∩ F) + µ(F \ E) , ∀F ⊂ Rn , (1.5)

thenM(µ) is a σ-algebra, and µ is a measure onM(µ).

Remark 1.5 We recall that M ⊂ P(Rn) is a σ-algebra on Rn if E ∈ M
implies Rn \E ∈ M, {Eh}h∈N ⊂ M implies

⋃
h∈N Eh ∈ M, and Rn ∈ M. IfM is

a σ-algebra, then a set function µ : M→ [0,∞] is a measure onM if µ(∅) = 0
and µ is σ-additive onM.

Remark 1.6 A set E belongs toM(µ) if it can be used to divide any test set
F ⊂ Rn into two parts on which µ is additive. Notice that, by σ-subadditivity
of µ, E ∈ M(µ) if and only if

µ(F) ≥ µ(F \ E) + µ(F ∩ E) , ∀F ⊂ Rn s.t. µ(F) < ∞ . (1.6)

Elements ofM(µ) are called µ-measurable sets.

Proof Step one: We prove thatM(µ) is a σ-algebra. Clearly, ∅ ∈ M(µ) and
E ∈ M(µ) implies Rn \ E ∈ M(µ). We now let {Eh}h∈N ⊂ M(µ), set E =⋃

h∈N Eh, and prove that E ∈ M(µ). Given F ⊂ Rn, as E0 ∈ M(µ), we have

µ(F) = µ(F \ E0) + µ(F ∩ E0) .

As E1 ∈ M(µ) we also have

µ(F \ E0) = µ
(
(F \ E0) \ E1

)
+ µ

(
(F \ E0) ∩ E1

)
= µ

(
F \ (E0 ∪ E1)

)
+ µ

(
(F \ E0) ∩ E1

)
,

and thus µ(F) = µ(F \ (E0 ∪E1))+µ((F \E0)∩E1)+µ(F ∩E0). By induction,

µ(F) = µ
(

F \
k⋃

h=0

Eh

)
+

k∑
h=0

µ
( (

F \
h−1⋃
j=0

E j

)
∩ Eh

)
, (1.7)

for every k ∈ N, k ≥ 1. Since F \ E ⊂ F \⋃k
h=0 Eh, by monotonicity we find

µ(F) ≥ µ(F \ E) +
k∑

h=0

µ
( (

F \
h−1⋃
j=0

E j

)
∩ Eh

)
.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: An
Introduction to Geometric Measure Theory
Francesco Maggi
Excerpt
More information

http://www.cambridge.org/9781107021037
http://www.cambridge.org
http://www.cambridge.org


1.3 Measure Theory and integration 9

Letting first k → ∞, and then using σ-subadditivity, we find E ∈ M(µ), as

µ(F) ≥ µ(F \ E) +
∑
h∈N

µ
( (

F \
h−1⋃
j=0

E j

)
∩ Eh

)
(1.8)

≥ µ(F \ E) + µ
( ⋃

h∈N

(
F \

h−1⋃
j=0

E j

)
∩ Eh

)
= µ(F \ E) + µ(F ∩ E) .

Step two: We show that µ is σ-additive on M(µ). Let {Eh}h∈N be a disjoint
sequence in M(µ). Setting F = E =

⋃
h∈N Eh in (1.8), we find that µ(E) ≥∑

h∈N µ(Eh). As µ is σ-subadditive, we conclude the proof of the theorem. �

Exercise 1.7 If µ and ν are outer measures on Rn, then µ + ν is an outer
measure on Rn, withM(µ) ∩M(ν) ⊂ M(µ + ν).

Exercise 1.8 If µ is an outer measure on Rn and {Eh}h∈N ⊂ M(µ), then

Eh ⊂ Eh+1 , ∀h ∈ N ⇒ µ
(⋃

h∈N
Eh

)
= lim

h→∞
µ(Eh) ,{

Eh+1 ⊂ Eh , ∀h ∈ N
µ(E1) < ∞ , ⇒ µ

(⋂
h∈N

Eh

)
= lim

h→∞
µ(Eh) .

1.3 Measure Theory and integration

By Theorem 1.4, every outer measure on Rn can be seen as a measure on a
σ-algebra on Rn. In this way, various classical results from Measure Theory
are immediately recovered in the context of outer measures. For the sake of
clarity, in this chapter we gather those definitions and statements that will be
used in the rest of the book. Let µ be a measure on the σ-algebra M on Rn

(if µ is an outer measure on Rn, then we take by convention M = M(µ)). A
function u : E → [−∞,∞] is a µ-measurable function on Rn if its domain E
covers µ-almost all of Rn, that is µ(Rn \ E) = 0, and if, for every t ∈ R, the
super-level sets

{u > t} =
{
x ∈ E : u(x) > t

}
belong toM. We say that u is a µ-simple function on Rn if u is µ-measurable
and the image of u is countable. For a non-negative, µ-simple function u, the
integral of u with respect to µ is defined in [0,∞] as the series∫

Rn
u dµ =

∑
t∈u(Rn)

t µ
(
{u = t}

)
,
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10 Outer measures

with the convention that 0 · ∞ = 0. When u is µ-simple, and either
∫
Rn u+ dµ or∫

Rn u− dµ is finite (here, u+ = max{u, 0}, u− = max{−u, 0}), we say that u is a
µ-integrable simple function, and set∫

Rn
u dµ =

∫
Rn

u+ dµ −
∫
Rn

u− dµ .

The upper and lower integrals with respect to µ of a function u whose do-
main covers µ-almost all of Rn, and which takes values in [−∞,∞], are∫ ∗

Rn
u dµ = inf

{ ∫
Rn
v : v ≥ u µ-a.e. on Rn

}
,∫

∗Rn
u dµ = sup

{ ∫
Rn
v : v ≤ u µ-a.e. on Rn

}
,

where v ranges over the family of µ-integrable simple functions on Rn. If u is
µ-measurable and its upper and lower integrals coincide, then we say that u
is a µ-integrable function, and this common value is called the integral of u
with respect to µ, denoted by

∫
Rn u dµ. The following example suggests that

µ-integrable functions define a large subfamily of µ-measurable functions.

Example 1.9 If u is µ-measurable on Rn and u ≥ 0 µ-a.e. on Rn, then u is
µ-integrable. Indeed, if µ({u = ∞}) > 0, then for every t > 0 we have∫

∗Rn
u dµ ≥ t µ

(
{u = ∞}

)
,

so that, in particular, u is µ-integrable with
∫
Rn u dµ = ∞. If, instead, u(x) < ∞

for µ-a.e. x ∈ Rn, then given t > 1 we may construct a partition {Eh}h∈Z of
µ-almost all of Rn by setting Eh = {th ≤ u < th+1}, h ∈ Z. By looking at the
µ-simple functions

∑
h∈Z th1Eh and

∑
h∈Z th+11Eh , we thus conclude that∫ ∗

Rn
u dµ ≤ t

∫
∗Rn

u dµ , ∀t > 1 .

Finally, u is a locally µ-summable function, or u ∈ L1
loc(Rn, µ), if it is µ-

measurable and
∫

K |u| dµ < ∞ for every compact set K ⊂ Rn; it is µ-summable,
u ∈ L1(Rn, µ), if

∫
Rn |u| dµ < ∞. The Lp-spaces Lp(Rn, µ) and Lp

loc(Rn, µ), 1 <

p ≤ ∞, are defined as usual. We shall also set for brevity Lp(Rn) = Lp(Rn,Ln).

Theorem (Monotone convergence theorem) If {uh}h∈N is a sequence of µ-
measurable functions uh : Rn → [0,∞] such that uh ≤ uh+1 µ-a.e. on Rn, then

lim
h→∞

∫
Rn

uh dµ =
∫
Rn

sup
h∈N

uh dµ .
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