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Knots and their relatives

This book is about knots. It is, however, hardly possible to speak about knots

without mentioning other one-dimensional topological objects embedded into the

three-dimensional space. Therefore, in this introductory chapter we give basic def-

initions and constructions pertaining to knots and their relatives: links, braids and

tangles.

The table of knots provided in Table 1.1 will be used throughout the book as a

source of examples and exercises.

1.1 Definitions and examples

1.1.1 Knots

A knot is a closed non-self-intersecting curve in 3-space. In this book, we shall

mainly study smooth oriented knots. A precise definition can be given as follows.

Definition 1.1. A parametrized knot is an embedding of the circle S1 into the

Euclidean space R
3.

Recall that an embedding is a smooth map which is injective and whose differ-

ential is nowhere zero. In our case, the non-vanishing of the differential means that

the tangent vector to the curve is non-zero. In the above definition and everywhere

in the sequel, the word smooth means infinitely differentiable.

A choice of an orientation for the parametrizing circle

S1 = {(cos t, sin t) | t ∈ R} ⊂ R
2

gives an orientation to all the knots simultaneously. We shall always assume that

S1 is oriented counterclockwise. We shall also fix an orientation of the 3-space;

each time we pick a basis for R
3 we shall assume that it is consistent with the

orientation.
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2 Knots and their relatives

If coordinates x , y, z are chosen in R
3, a knot can be given by three smooth

periodic functions of one variable x(t), y(t), z(t).

Example 1.2. The simplest knot is represented by a plane circle:

x = cos t,

y = sin t,

z = 0.

Example 1.3. The curve that goes 3 times around and 2 times across a standard

torus in R
3 is called the (left) trefoil knot, or the (2, 3)-torus knot:

x = (2 + cos 3t) cos 2t,

y = (2 + cos 3t) sin 2t,

z = sin 3t.

Exercise. Give the definition of a (p, q)-torus knot. What are the appropriate

values of p and q for this definition?

It will be convenient to identify knots that only differ by a change of a

parametrization. An oriented knot is an equivalence class of parametrized knots

under orientation-preserving diffeomorphisms of the parametrizing circle. Allow-

ing all diffeomorphisms of S1 in this definition, we obtain unoriented knots.

Alternatively, an unoriented knot can be defined as the image of an embedding

of S1 into R
3; an oriented knot is then an image of such an embedding together

with the choice of one of the two possible directions on it.

We shall distinguish oriented/unoriented knots from parametrized knots in the

notation: oriented and unoriented knots usually will be denoted by capital letters,

while for the individual embeddings lowercase letters will be used. As a rule, the

word “knot” will mean “oriented knot,” unless it is clear from the context that we

deal with unoriented knots, or consider a specific choice of parametrization.

1.1.2 Isotopy

The study of parametrized knots falls within the scope of differential geometry.

The topological study of knots requires an equivalence relation which would not

only discard the specific choice of parametrization, but also model the physical

transformations of a closed piece of rope in space.

By a smooth family of maps, or a map smoothly depending on a parameter, we

understand a smooth map F : S1 × I → R
3, where I ⊂ R is an interval. Assigning

a fixed value a to the second argument of F , we get a map fa : S1 → R
3.

www.cambridge.org/9781107020832
www.cambridge.org


Cambridge University Press
978-1-107-02083-2 — Introduction to Vassiliev Knot Invariants
S. Chmutov , S. Duzhin , J. Mostovoy
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Definitions and examples 3

Definition 1.4. A smooth isotopy of a knot f : S1 → R
3, is a smooth family of

knots fu , with u a real parameter, such that for some value u = a we have fa = f .

For example, the formulae

x = (u + cos 3t) cos 2t,

y = (u + cos 3t) sin 2t,

z = sin 3t,

where u ∈ (1,+∞), represent a smooth isotopy of the trefoil knot which cor-

responds to u = 2. In the pictures below, the space curves are shown by their

projection to the (x, y) plane:

u = 2 u = 1.5 u = 1.2 u = 1

For any u > 1 the resulting curve is smooth and has no self-intersections, but as

soon as the value u = 1 is reached we get a singular curve with three coinciding

cusps1 corresponding to the values t =π/3, t =π and t = 5π/3. This curve is not

a knot.

Definition 1.5. Two parametrized knots are said to be isotopic if one can be trans-

formed into another by means of a smooth isotopy. Two oriented knots are isotopic

if they represent the classes of isotopic parametrized knots; the same definition is

valid for unoriented knots.

Example 1.6. This picture shows an isotopy of the figure eight knot into its mirror

image:

There are other notions of knot equivalence, namely, ambient equivalence and

ambient isotopy, which, for smooth knots, are the same thing as isotopy. Here are

the definitions. A proof that they are equivalent to our definition of isotopy can be

found in Burde and Zieschang (2003).

1A cusp of a spatial curve is a point where the curve can be represented as x = s2, y = s3, z = 0 in some
local coordinates.
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4 Knots and their relatives

Definition 1.7. Two parametrized knots, f and g, are ambient equivalent if there

is a commutative diagram

S1 f
−−−→ R

3

ϕ

⏐

⏐

�

⏐

⏐

�

ψ

S1 g
−−−→ R

3

where ϕ and ψ are orientation-preserving diffeomorphisms of the circle and the

3-space, respectively.

Definition 1.8. Two parametrized knots, f and g, are ambient isotopic if there is

a smooth family of diffeomorphisms of the 3-space ψt : R
3 → R

3 with ψ0 = id

and ψ1 ◦ f = g.

Definition 1.9. A knot, equivalent to the plane circle on page 2 is referred to as a

trivial knot, or an unknot.

Sometimes, it is not immediately clear from a diagram of a trivial knot that it is

indeed trivial:

Trivial knots

There are algorithmic procedures to detect whether a given knot diagram rep-

resents an unknot. One of them, based on W. Thurston’s ideas, is implemented in

J. Weeks’ computer program SnapPea; see Weeks (2010); another algorithm, due

to I. Dynnikov, is described in Dynnikov (2006).

Here are several other examples of knots.

Left trefoil Right trefoil Figure 8 knot Granny knot Square knot

1.1.3 Links

Knots are a special case of links.

Definition 1.10. A link is a smooth embedding S1 ⊔ · · · ⊔ S1 → R
3, where S1 ⊔

· · · ⊔ S1 is the disjoint union of several circles.
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1.2 Plane knot diagrams 5

Trivial 2-component link Hopf link Whitehead link Borromean rings

Equivalence of links is defined in the same way as for knots – with the exception

that now one may choose whether or not to distinguish between the components of

a link and thus speak about the equivalence of links with numbered or unnumbered

components.

In the future, we shall often say “knot (link)” instead of “equivalence class,” or

“topological type of knots (links).”

1.2 Plane knot diagrams

1.2.1 Knot diagrams

Knots are best represented graphically by means of knot diagrams. A knot diagram

is a plane curve whose only singularities are transversal double points (crossings),

together with the choice of one branch of the curve at each crossing. The chosen

branch is called an overcrossing; the other branch is referred to as an undercross-

ing. A knot diagram is thought of as a projection of a knot along some “vertical”

direction; overcrossings and undercrossings indicate which branch is “higher” and

which is “lower.” To indicate the orientation, an arrow is added to the knot diagram.

Theorem 1.11 (Reidemeister 1948, proofs can be found in Prasolov and Sossinsky

1997; Burde and Zieschang 2003; and Murasugi 1996). Two unoriented knots, K1

and K2, are equivalent if and only if a diagram of K1 can be transformed into

a diagram of K2 by a sequence of isotopies of the plane and local moves of the

following three types:

�1 �2 �3

Reidemeister moves

To adjust the assertion of this theorem to the oriented case, each of the three Rei-

demeister moves has to be equipped with orientations in all possible ways. Smaller

sufficient sets of oriented moves exist; one such set will be given later in terms of

Gauss diagrams (see Section 1.7.3).
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6 Knots and their relatives

Exercise. Determine the sequence of Reidemeister moves that relates the two

diagrams of the trefoil knot below:

1.2.2 Local writhe

Crossing points on a diagram come in two species, positive and negative:

Positive crossing Negative crossing

Although this sign is defined in terms of the knot orientation, it is easy to check

that it does not change if the orientation is reversed. For links with more than one

component, the choice of orientation is essential.

The local writhe of a crossing is defined as +1 or −1 for positive or negative

points, respectively. The writhe (or total writhe) of a diagram is the sum of the

writhes of all crossing points, or, equivalently, the difference between the number

of positive and negative crossings. Of course, the same knot may be represented by

diagrams with different total writhes. In Chapter 2 we shall see how the writhe can

be used to produce knot invariants.

1.2.3 Alternating knots

A knot diagram is called alternating if its overcrossings and undercrossing alter-

nate as we travel along the knot. A knot is called alternating if it has an alternating

diagram. A knot diagram is called reducible if it becomes disconnected after the

removal of a small neighbourhood of some crossing.

The number of crossings in a reducible diagram can be decreased by a move

shown in the picture:

reducible diagram reduction
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1.3 Inverses and mirror images 7

A diagram which is not reducible is called reduced. As there is no immediate

way to simplify a reduced diagram, the following conjecture naturally arises (Tait,

1898).

The Tait conjecture. A reduced alternating diagram has the minimal number of

crossings among all diagrams of the given knot.

This conjecture stood open for almost 100 years. It was proved only in 1986

(using the newly invented Jones polynomial) simultaneously and independently

by L. Kauffman (1987b), K. Murasugi (1987) and M. Thistlethwaite (1987) (see

Exercise 2.27).

1.3 Inverses and mirror images

Change of orientation (taking the inverse) and taking the mirror image are two basic

operations on knots which are induced by orientation reversing smooth involutions

on S1 and R
3 respectively. Every such involution on S1 is conjugate to the reversal

of the parametrization; on R
3 it is conjugate to a reflection in a plane mirror.

Let K be a knot. Composing the parametrization reversal of S1 with the map

f : S1 → R
3 representing K , we obtain the inverse K ∗ of K . The mirror image of

K , denoted by K , is a composition of the map f : S1 → R
3 with a reflection in

R
3. Both change of orientation and taking the mirror image are involutions on the

set of (equivalence classes of) knots. They generate a group isomorphic to Z2 ⊕Z2;

the symmetry properties of a knot K depend on the subgroup that leaves the knot

invariant. The group Z2 ⊕ Z2 has five (not necessarily proper) subgroups, which

give rise to five symmetry classes of knots.

Definition 1.12. A knot is called:

• invertible, if K ∗ = K,

• plus-amphicheiral, if K = K,

• minus-amphicheiral, if K = K∗,

• fully symmetric, if K = K ∗ = K = K
∗
,

• totally asymmetric, if all knots K , K∗, K , K
∗

are different.

The word amphicheiral means either plus- or minus-amphicheiral. For invertible

knots, this is the same. Amphicheiral and non-amphicheiral knots are also referred

to as achiral and chiral knots, respectively.

The five symmetry classes of knots are summarized in the following table. The

word “minimal” means “with the minimal number of crossings”; σ and τ denote

the involutions of taking the mirror image and the inverse respectively. The notation

for concrete knots in the last column will be explained in the next section.
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8 Knots and their relatives

Stabilizer Orbit Symmetry type Min example

{1} {K , K , K ∗, K
∗
} totally asymmetric 932, 933

{1, σ } {K , K ∗} +amphicheiral, non-inv 12a
427

{1, τ } {K , K } invertible, chiral 31

{1, σ τ } {K , K ∗} −amphicheiral, non-inv 817

{1, σ, τ, στ } {K } fully symmetric 41

Example 1.13. The trefoil knots are invertible, because the rotation through 180◦

around an axis in R
3 changes the direction of the arrow on the knot.

The existence of non-invertible knots was first proved by H. Trotter (1964). The

simplest instance of Trotter’s theorem is a pretzel knot with parameters (3, 5, 7):

Among the knots with up to eight crossings (see Table 1.1) there is only one non-

invertible knot: 817, which is, moreover, minus-amphicheiral. These facts were

proved by A. Kawauchi (1979).

Example 1.14. The trefoil knots are not amphicheiral, hence the distinction

between the left and the right trefoil. A proof of this fact, based on the calculation

of the Jones polynomial, will be given in Section 2.4.

Remark 1.15. Knot tables only list knots up to taking inverses and mirror images.

In particular, there is only one entry for the trefoil knots. Either of them is often

referred to as the trefoil.

Example 1.16. The figure eight knot is amphicheiral. The isotopy between this

knot and its mirror image is shown in Example 1.6.

Among the 35 knots with up to eight crossings shown in Table 1.1, there are

exactly seven amphicheiral knots: 41, 63, 83, 89, 812, 817, 818, out of which 817

is minus-amphicheiral, the rest, as they are invertible, are both plus- and minus-

amphicheiral.

The simplest totally asymmetric knots appear in nine crossings, they are 932

and 933. The following are all non-equivalent:
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1.4 Knot tables 9

933 9∗
33 933 9

∗

33

Here is the simplest plus-amphicheiral non-invertible knot, together with its

inverse:

12a
427 12a∗

427

In practice, the easiest way to find the symmetry type of a given knot or link is

by using the computer program Knotscape (Hoste and Thistlethwaite 1999), which

can handle link diagrams with up to 49 crossings.

1.4 Knot tables

1.4.1 Connected sum

There is a natural way to fuse two knots into one: cut each of the two knots at

some point, then connect the two pairs of loose ends. This must be done with some

caution: first, by a smooth isotopy, both knots should be deformed so that for a

certain plane projection they look as shown in the picture below on the left, then

they should be changed inside the dashed disk as shown on the right:

The connected sum makes sense only for oriented knots. It is well-defined and

commutative on the equivalence classes of knots. The connected sum of knots K1

and K2 is denoted by K1#K2.

Definition 1.17. A knot is called prime if it cannot be represented as the connected

sum of two nontrivial knots.

Each knot is a connected sum of prime knots, and this decomposition is unique

(see Crowell and Fox (1963) for a proof). In particular, this means that a trivial

www.cambridge.org/9781107020832
www.cambridge.org


Cambridge University Press
978-1-107-02083-2 — Introduction to Vassiliev Knot Invariants
S. Chmutov , S. Duzhin , J. Mostovoy
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Knots and their relatives

knot cannot be decomposed into a sum of two nontrivial knots. Therefore, in order

to classify all knots, it is enough to have a table of all prime knots.

1.4.2 Knot tables

Prime knots are tabulated according to the minimal number of crossings that their

diagrams can have. Within each group of knots with the same crossing number,

knots are numbered in some, usually rather arbitrary, way. In Table 1.1, we use

the widely adopted numbering that goes back to the table compiled by Alexander

and Briggs (1926/1927), then repeated (in an extended and modified way) by

D. Rolfsen (1976). We also follow Rolfsen’s conventions in the choice of the

version of non-amphicheiral knots: for example, our 31 is the left, not the right,

trefoil.

Rolfsen’s table of knots, authoritative as it is, contained an error. It is the famous

Perko pair (knots 10161 and 10162 in Rolfsen) – two equivalent knots that were

thought to be different for 75 years since 1899:

The equivalence of these two knots was established in 1973 by K. A. Perko

(Perko 1973), a lawyer from New York who studied mathematics at Princeton in

1960–1964 (Perko 2002) but later chose jurisprudence to be his profession.2

Complete tables of knots are currently known up to crossing number 16 (Hoste,

Thistlethwaite and Weeks 1998). For knots with 11 through 16 crossings it is nowa-

days customary to use the numbering of Knotscape (Hoste and Thistlethwaite

1999) where the tables are built into the software. For each crossing number,

Knotscape has a separate list of alternating and non-alternating knots. For exam-

ple, the notation 12a
427 used in Section 1.3, refers to item number 427 in the list of

alternating knots with 12 crossings.

1.5 Algebra of knots

Denote by K the set of the equivalence classes of knots. It forms a commutative

monoid (semigroup with a unit) under the connected sum of knots, and there-

fore we can construct the monoid algebra ZK of K . By definition, elements of

ZK are formal finite linear combinations
∑

λi Ki , λi ∈ Z, Ki ∈K , the product

2The combination of a professional lawyer and an amateur mathematician in one person is not new in the
history of mathematics (think of Pierre Fermat!).
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