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Introduction

Digital images today play a vital role in science and technology, and also

in many aspects of our daily life. This book seeks to advance the analy-

sis of images, especially digitized ones, through the statistical analysis of

shapes. Its focus is on the analysis of landmark-based shapes in which a

k-ad, that is, a set of k labeled points or landmarks on an object or a scene,

is observed in two or three dimensions, usually with expert help, for pur-

poses of identification, discrimination, and diagnostics.

In general, consider the k-ad to lie in Rm (usually, m = 2 or 3) and

assume that not all the k points are the same. Then the appropriate shape of

the object is taken to be the k-ad modulo a group of transformations.

For example, one may first center the k-ad, by subtracting the mean

of the k-ad from each of the k landmarks, to remove the effect of

location. The centered k-ad then lies in a hyperplane of dimension mk −m,

because the sum of each of the m coordinates of the centered k points

is zero. Next one may scale the centered k-ad to unit size to remove the

effect of scale or size. The scaled, centered k-ad now lies on the unit sphere

S m(k−1)−1 in a Euclidean space (the hyperplane) of dimension m(k − 1) and

is now called the preshape of the k-ad. Further, to remove the effect of

orientation, the scaled, centered k-ad is rotated by means of elements of

the (special orthogonal) group SO(m) of rotations in Rm. The orbit of the

preshape under all rotations may then be taken to be the shape of the k-ad.

This shape is called a similarity shape, and the space of these shapes com-

prises Kendall’s similarity shape space Σk
m. While this is a proper choice

for many problems in biology and in medical imaging, other notions of

shape, such as affine shape and projective shape, are important in machine

vision and bioinformatics. The affine shape of a k-ad is invariant under

all affine transformations; that is, it may be identified as the orbit of the

k-ad under (the group of) all affine transformations. This is an appropri-

ate notion of shape of a k-ad based on images taken from far away, for

example, from an airplane or a satellite. Here a rectangle may be trans-

formed to a parallelogram. Similarly, projective shapes are invariant under
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2 Introduction

all projective transformations, and these are the appropriate shapes of k-ads

recorded, for example, by central projection by a camera, where a line

in three dimensions is projected to a point on the image plane, and a

three-dimensional object appears as a two-dimensional image. These shape

spaces are differentiable manifolds (sometimes after the removal of a small

singular set), often with a Riemannian structure allowing one to measure

(geodesic) lengths, angles, curvature, and so on. These notions are impor-

tant in intrinsic analysis as mentioned briefly below and explained in detail

in Chapter 5.

For nonparametric analysis of shape distributions Q on a manifold M

with a distance d, we focus on the Fréchet mean of Q, which is the mini-

mizer (if unique) of the Fréchet function, namely, the average squared dis-

tance from a point. Sometimes the corresponding minimum average is also

considered, called the variation of Q. If the distance is the geodesic dis-

tance, these parameters, and the corresponding statistical analysis, are said

to be intrinsic. Often it is more convenient, mathematically as well as from

a computational point of view, to embed the manifold in a Euclidean space

E (generally of higher dimension than that of M ) and use the induced

(Euclidean) distance on the image under the embedding j, say. The Fréchet

mean and variation, and the statistical analysis based on them, are then

said to be extrinsic. For M = S d, a d-dimensional unit sphere, the intrin-

sic, or geodesic, distance between two points is the arc length between

them measured on the great circle joining the points. This distance is

sometimes referred to as the arc distance. Also, the sphere has a natural

embedding into Rd+1 by the inclusion map j. That is, if we represent S d as

{|x| = 1 : x = (x1, . . . , xd+1) ∈ Rd+1}, then j(x) = x for x ∈ S d. The extrinsic

distance between two points is the length of the line segment joining the

two points, the so-called chord distance.

Suppose one has a sample of k-ads of size n. This yields a sample

of n shapes in the appropriate shape space (manifold) M. The common

distribution of these n shapes is denoted by Q. The statistical analysis

begins by first (1) finding broad conditions for uniqueness of the Fréchet

minimizer, and then (2) finding the asymptotic distribution of the corre-

sponding sample Fréchet mean as its estimate. Similarly one estimates the

variation. There is no general simplifying procedure for the construction of

the intrinsic mean. However, for the extrinsic mean of Q under an embed-

ding j, one first computes the mean, say μ, of Q as a distribution on the

ambient Euclidean space E = RD. The extrinsic mean of Q on the image

j(M) of M is given by the point in j(M), if unique, which is at the min-

imum Euclidean distance from μ, denoted by P(μ), with P denoting the

projection operation.
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Introduction 3

For the statistical problems at hand, consider the particular case of

distinguishing between two shape distributions on a manifold. To under-

stand the general nature of a two-sample test for equality of the extrinsic

means of two distributions Q1, Q2 on M, based on independent samples

{X ji : j = 1, . . . , ni} of sizes ni (i = 1, 2), observe that

√
ni [P(μ̂i) − P(μi)] =

√
ni [dμi

P(μ̂i − μi)] + op(1) (i = 1, 2), (1.1)

where P is the projection on j(M) and μi, μ̂i are the Euclidean population

and sample means of the ith group (i = 1, 2), under the embedding j (i.e.,

in the ambient Euclidean space RD). Here dμi
P is the differential of the

projection map P at μi, which is a linear map from the tangent space of

R
D at μi, namely, Tμi

R
D
= R

D, to the tangent space of M̃ at P(μi), that is,

TP(μi)M̃ ⊂ TμR
D (here M̃ := j(M) is the image of M under the embed-

ding j). Note that the Jacobian of dμi
P is a singular D × D matrix whose

rank is the same as the dimension d of M̃ (or M). Now, for each i, viewed

as a random element of RD, equation (1.1) converges to a (singular) Nor-

mal distribution N(0,Σi) in RD, where Σi is a D × D covariance matrix.

Under the null hypothesis H0 of equality of the two extrinsic means,

P(μ1) = P(μ2) = j(μE) = μ̃E , say, the tangent spaces TP(μi)M̃, i = 1, 2,

are the same. Let n = n1 + n2 and assume n1

n
→ p, 0 < p < 1. Taking the

difference between the two quantities in equation (1.1), one has the conver-

gence in distribution
√

n[P(μ̂1) − P(μ̂2)]→ N(0, p−1
Σ1 + (1 − p)−1

Σ2). But

the right side of equation (1.1), excluding the term op(1), lies in the tan-

gent space Tμ̃E
M̃ of dimension d and converges to a d-dimensional Normal

N(0, Γ),where Γ = p−1
Σ1+(1− p)−1

Σ2, with Σi being the covariance matrix

of the coordinates of dμi
(X̃ ji − μi) (i = 1, 2) with respect to the basis of the

tangent space Tμ̃E
M̃ of the embedded manifold M̃ at the common extrinsic

mean μ̃E (under H0). Here X̃ = j(X). This leads to a chi-squared test. As

usual, one replaces Σi by the sample estimate Σ̂i, obtained as the sample

covariance of the coordinates of dμ̂i
(X̃ ji − μ̂i) ( j = 1, . . . , ni). For intrin-

sic analysis, the computation of the intrinsic sample mean begins with a

theoretical derivation of the geodesics as well as the Fréchet minimization

involving the geodesic distance. Analogous to the extrinsic embedding, one

then transfers the population (and sample) distributions to the tangent space

at the intrinsic mean by the so-called inverse exponential map described in

Chapter 5. The rest of the procedure is similar to that for the extrinsic mean.

It is useful to remember that the larger the group of transformations

applied to the k-ads, the larger the orbit under it defining the shape of a

k-ad, and the fewer are the details of the numerics of the k-ads preserved

in their shapes. In particular, statistical significance (at a given level of sig-

nificance) in a two-sample test based on a notion of shape invariant under
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4 Introduction

a larger group is in general a stronger statement than that based on shape

invariant under smaller groups. In this context one should note the increas-

ing order of groups of transformations defining Kendall’s similarity shapes,

reflection similarity shapes, affine shapes, and projective shapes.

Here is a brief outline of the book.

To motivate the reader, Chapter 2 provides an exposition of several data

examples, which are analyzed in detail in later chapters.

In Chapter 3, the concepts of Fréchet mean and variation are introduced.

The idea is to define the Fréchet function of a probability distribution Q on

a metric space M as the integral (with respect to Q) of the squared distance

on M, and define the Fréchet mean as the minimizer (if unique) of this

Fréchet function and the Fréchet variation as the minimum value (if finite).

Conditions are derived for the consistency and asymptotic Normality of the

sample estimates of the Fréchet mean. Confidence regions for the popula-

tion parameters are constructed both by using the asymptotic distribution

of the sample estimates and by pivotal bootstrap methods.

Chapter 4 is devoted to extrinsic inference on a differentiable mani-

fold M. Here one embeds M into some higher dimensional Euclidean space

and uses the distance induced by this embedding. Because many embed-

dings are available, one chooses an embedding that is equivariant with

respect to a group of transformations large enough to preserve a great deal

of the geometry of M. As the results in later chapters show, the corre-

sponding analysis becomes simpler both mathematically and computation-

ally than its intrinsic counterpart. For example, the extrinsic mean is known

to exist under fairly broad conditions and in most cases has a closed-form

analytic expression (see Chapters 8–12). In particular, the extrinsic mean

is the projection of the Euclidean mean of the image of Q on the image

manifold under the embedding. Hence there is a unique mean if and only if

there is a unique projection. For asymptotic Normality of the sample mean

and variation, one requires that this projection map is smooth in a neigh-

borhood of the population mean (which is assumed to exist). The chap-

ter concludes with two-sample nonparametric tests to distinguish between

two probability distributions by comparing the sample extrinsic means and

variations. Appropriate tests are constructed for both mutually indepen-

dent and matched pair samples. The numerical examples in Chapter 8 show

that in these examples the extrinsic and intrinsic means are very close to

each other and the two-sample extrinsic and intrinsic tests yield similar

results.

Chapter 5 performs Fréchet analysis on a Riemannian manifold M by

using the geodesic distance as the distance metric in the definition of

the Fréchet function. The resulting Fréchet parameters are called intrinsic
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Introduction 5

and the corresponding statistical analysis is called intrinsic analysis on a

manifold M. In this chapter, sufficient conditions for existence of a unique

intrinsic mean are used to derive the asymptotic Normality of the sam-

ple intrinsic mean. Two-sample nonparametric tests are constructed to

compare the sample intrinsic means and variations, which can be used to

distinguish between two underlying distributions.

Chapter 6 introduces the different notions of shapes treated in this book.

They include (direct) similarity shapes, reflection similarity shapes, affine

shapes, and projective shapes. For problems in biology such as classifica-

tions of species, disease detection, and so on, similarity shape analysis has

many uses, while for problems in machine vision and image analysis, affine

and projective shape analyses are more appropriate.

In Chapters 7–12, the geometry of each of the shape spaces introduced

in Chapter 6 is discussed in detail, and explicit forms of estimates and tests

are derived in each case using the methods of Chapters 4 and 5.

In particular, Chapter 7 provides an exposition of the geometry of the

(direct) similarity shape space of k-ads in m dimensions, or Σk
m. The cases

of interest include m = 2 and 3. This space can be represented as the quo-

tient of the unit sphere with respect to all rotations (in m dimensions), that

is, the space of orbits of k-ads under rotations of the preshape sphere, as

described at the outset. It is shown that, after removing some singularities,

Σ
k
m is a Riemannian manifold. There are no such singularities when m = 2.

This chapter identifies the tangent space of Σk
m, the exponential map, and

the geodesic distance on Σk
m.

Chapter 8 considers in detail the similarity shape space Σk
2

obtained when

m = 2, which is also called the planar shape space. This is a compact,

connected manifold. This chapter presents the geometry of this space and

applies the methods of Chapters 4 and 5 for intrinsic and extrinsic analy-

ses. Analytic expressions for the parameters in the asymptotic distribution

of the sample extrinsic mean are derived. This enables one to perform two-

sample tests to compare the extrinsic means and variations of two underly-

ing probability distributions. The results of extrinsic and intrinsic analyses

on Σk
2

are applied to two examples.

When m > 2, the similarity shape space Σk
m fails to be a manifold.

After singularities are excluded, the remaining set is a manifold that is not

complete. As a consequence, the results from Chapters 4 and 5 cannot be

applied to carry out intrinsic and extrinsic analyses. If, instead, one con-

siders the reflection similarity shape, which is invariant under all orthog-

onal transformations, not just rotations, then one can embed the resulting

shape space into the vector (or Euclidean) space of symmetric matrices

S (k,R) and carry out extrinsic analysis. This is discussed in Chapter 9.
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6 Introduction

The methods here allow one to extend nonparametric inference on Kendall-

type shape spaces from two to higher dimensions. This chapter concludes

with an application to a matched pair example.

Chapter 11 focuses on methodologies for nonparametric inference on

the affine shape spaces AΣk
m. The affine shape of a k-ad x with landmarks in

R
m is defined as the orbit of x under all affine transformations, x �→ Ax + b

(A ∈ GL(m,R), b ∈ Rm). The space of affine shapes of all centered k-ads

whose columns span Rm is AΣk
m. Here GL(m,R) is the so-called general lin-

ear space of all m × m nonsingular real matrices. For extrinsic analysis on

AΣk
m, one embeds it into the vector space S (k,R) of all k×k real symmetric

matrices via an equivariant embedding. Using this embedding, an expres-

sion for the extrinsic mean and a condition for its uniqueness are derived.

The results from Chapter 4 are used to derive the asymptotic distribution

for the sample extrinsic mean and variation, and are applied to construct

two-sample nonparametric tests to compare two probability distributions.

Chapter 12 presents methodologies for statistical analyses of projective

shapes, which are useful in axial analysis and machine vision. For m= 2,

for example, the projective space RP2 is the space of all lines in R3 passing

through the origin. The image of a line, or axis, passing through the center

of a pin-hole–type camera is recorded as a point on the plane of the cam-

era film. Thus a scene in three dimensions is pictured on the plane of the

camera film. A set of k distinct lines originating from the three-dimensional

scene then yields a k-ad in RP2, that is, a point in (RP2)k. To define the pro-

jective shape of the k-ad, one applies affine transformations A ∈ GL(3,R)

to the k points in three dimensions. The equivalence class of lines gener-

ated from these (or the corresponding equivalence class of points on the

camera film) is the projective shape of the k-ad.

The last two chapters, Chapters 13 and 14, represent a different

theme than the rest of the book. Here we consider functional inference –

(a) density estimation, (b) classification and (c) regression – by applying

the nonparametric Bayes methodology.

It may be noted that there now exists a substantial literature, mostly in

computer science, but also in statistics, on what may be termed contin-

uous shapes. The greater part of this work is in two dimensions, where

such shapes may be analyzed by a deformable template of gray levels on a

grid of points representing a digitized approximation of the image. Here

one uses high-dimensional (parametric) Bayes methodology (see Amit,

2002). The other alternative that has gained popularity in recent years

is to consider a two-dimensional shape as given by the actual bound-

ary contour of the object of interest. There is also some work on the

three-dimensional shape provided by the boundary surface. Apart from
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geometric considerations, much of this work focuses on analytical and

computational problems involving matching (or discriminating among)

given shapes, or changes in shapes, and not on statistical inference for dis-

crimination among distributions of shapes (see Krim and Yezzi, 2006). For

a nonparametric analysis of the latter, one views these spaces of shapes

as infinite-dimensional (Hilbert) manifolds. Intrinsic inference here is lim-

ited by the fact that establishing the uniqueness of such basic quantities

as the intrinsic mean even under restrictive conditions is difficult. In con-

trast, extrinsic analysis based on equivariant embeddings in vector (Hilbert)

spaces holds some promise (see, e.g., the recent work of Ellingson et al.,

2011).

Finally, a note on the use of bootstrapping in the text. Efron’s bootstrap

(Efron, 1979) has had a profound impact on modern statistical method-

ology. Apart from the fulfillment of its original intended goals such as

estimating standard errors of rather complicated statistics and avoiding

such computations altogether in providing confidence regions, for continu-

ous data a great benefit of the method lies in its substantial edge over central

limit theorem (CLT)–based confidence regions in reducing coverage

errors. This aspect of the bootstrap’s efficacy is established by the

method of asymptotic expansions of distributions of smooth statistics

(Bhattacharya, 1977; Bhattacharya and Ghosh, 1978) and their applica-

tion to bootstrapped versions of such statistics. For this theory, see

Singh (1981), Babu and Singh (1984), Bhattacharya (1987), Beran (1987),

Bhattacharya and Qumsiyeh (1989), Bhattacharya and Denker (1990), and

Lahiri (1994). It follows from this, in particular, that a confidence region

based on pivotal bootstrapping of an asymptotic chi-squared statistic yields

a coverage error of order O(n−2), as opposed to the order O(n−1) error

resulting from the classical chi-squared approximation. For a readable

account of the bootstrap’s coverage error for symmetric confidence regions

and various other matters we refer to Hall (1992). Unfortunately, for the

generally high-dimensional shape spaces considered in this monograph,

the bootstrapped covariance tends to be singular if the sample size is not

very large, thus limiting the usefulness of the bootstrap somewhat.
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Examples

This chapter collects together, and describes in a simple manner, a number

of applications of the theory presented in this book. The examples are based

on real data, and, where possible, results of parametric inference in the

literature are cited for comparison with the new nonparametric inference

theory.

2.1 Data example on S 1: wind and ozone

The wind direction and ozone concentration were observed at a weather

station for 19 days. Table 2.1 shows the wind directions in degrees. The

data are taken from Johnson and Wehrly (1977) . The data viewed on the

unit circle S 1 are plotted in Figure 3.1. We compute the sample extrin-

sic and intrinsic mean directions, which come out to be 16.71 and 5.68

degrees, respectively. They are displayed in the figure. We use angular

coordinates for the data in degrees lying between [0◦, 360◦) as in Table 2.1.

An asymptotic 95% confidence region for the intrinsic mean as obtained in

Section 3.7, Chapter 3, turns out to be

{(cos θ, sin θ) : − 0.434 ≤ θ ≤ 0.6324}.

The corresponding end points of this arc are also displayed in Figure 3.1.

Johnson and Wehrly (1977) computed the so-called angular–linear cor-

relation ρAL = maxα{ρ(cos(θ − α), X)}, where X is the ozone concentration

when the direction of wind is θ. Here ρ denotes the true coefficient of cor-

relation. Based on the sample counterpart rAL, the 95% confidence interval

for ρAL was found to be (0.32, 1.00).

2.2 Data examples on S 2: paleomagnetism

We consider here an application of directional statistics, that is, statistics

on the unit sphere S d, with d = 2 in the present case, which has an impor-

tant bearing on a fundamental issue in paleomagnetism. Paleomagnetism
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2.2 Data examples on S 2: paleomagnetism 9

Table 2.1 Wind directions in degrees

327 91 88 305 344 270 67

21 281 8 204 86 333 18

57 6 11 27 84

Table 2.2 Data from Fisher (1953) on remanent magnetism

D 343.2 62.0 36.9 27.0 359.0 5.7 50.4 357.6 44.0

I 66.1 68.7 70.1 82.1 79.5 73.0 69.3 58.8 51.4

D: Declination; I : Inclination

is the field of earth science that is devoted to the study of fossil magnetism

as contained in fossilized rock samples, known as remanent magnetism.

It has been theorized for many years that the Earth’s magnetic poles have

shifted over geological time. This idea is related to the older theory of

continental drift, namely, that the continents have changed their relative

positions over a period of several hundred million years. If rock samples in

different continents dating back to the same period exhibit different mag-

netic polarities, that would be a confirmation of the theory of continental

drift. As pointed out by the geophysicist Irving (1964) in the preface of his

book, over the years such confirmations have been achieved with the help

of rigorous statistical procedures. In Chapter 4, Section 4.7, a multi-sample

nonparametric test for the hypothesis of equality is provided for such pur-

poses. In a seminal paper, Fisher (1953) used a parametric model known as

the Fisher or von Mises–Fisher distribution on the sphere S 2 with a density

f (x; μ, τ) = c(τ) exp{τx′μ} with respect to the uniform distribution on the

sphere (see Appendix D), where μ is the true direction (given by a point on

the unit sphere S 2) and τ > 0 is the concentration parameter. The maximum

likelihood estimate (MLE) of the true position μ, based on i.i.d. observa-

tions X1, . . . , Xn on S 2, is given by X/|X|, assuming X � 0. Thus the MLE

is the same as the extrinsic mean of the sample (empirical) distribution on

S 2, where μ is the extrinsic mean, as well as the intrinsic mean, of Fisher’s

distribution.

From the Icelandic lava flow of 1947–1948, nine specimens of remanent

magnetism were collected. The data can be viewed as an i.i.d. sample on

the manifold S 2 and can be found in Fisher (1953; the data were supplied

by J. Hospers). They are displayed in Table 2.2.

The sample extrinsic mean is μ̂E = (.1346, .2984, .9449). The sample

extrinsic and intrinsic means are very close, namely, at a geodesic distance
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10 Examples

of 0.0007 from each other. This estimate of magnetic north is close to the

Earth’s geographic north pole (0, 0, 1).

Based on his distribution, Fisher obtained a 95% confidence region for

the mean direction μ. This region may be expressed as

{p ∈ S 2 : dg(μ̂E , p) ≤ 0.1536},

where dg denotes the geodesic distance. Fisher’s confidence region, and our

asymptotic confidence region for the population extrinsic mean derived in

Chapter 4, are plotted in Figure 2.1. The former confidence region nearly

contains the latter and is considerably larger than it.

To study possible shifts in the positions of Earth’s magnetic poles, Fisher

also analyzed a second set of data, supplied by Hospers, of remanent

magnetism from the early Quaternary period (between 10,000 and one

million years ago). The sample estimate (MLE) from this sample of 45

observations turns out to be μ̂E = (.0172,−.2978,−.9545), which shows

a near reversal of the magnetic poles between the two geological periods.

The 95% confidence region for the true direction by Fisher’s method is

a geodesic ball of radius .1475 around the MLE. Since we were unable

to access the original data from the second example in Fisher’s paper,
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Figure 2.1 Boundaries of the confidence regions for the direction
of Earth’s magnetic pole, using Fisher’s method (solid) and the
nonparametric extrinsic method (dashed), based on data from
Fisher (1953).
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