8 – N rule 10, 20, 86, 96

ab initio 27, 43, 48, 51, 76, 98, 122

a-C (amorphous carbon) 17, 25, 36, 37, 38, 51, 56, 60, 65, 72, 89, 98, 100, 101

a-C:H (hydrogenated amorphous carbon) 16, 17, 72

a-Ch (amorphous chalcogenide) 3, 140

ac transport 5

a-Ge (amorphous germanium) 4, 9, 38, 40, 44, 50, 51, 60

amorphization 19, 20, 64, 77, 139, 140

a-Se (amorphous selenium) 1, 40

a-Si (amorphous silicon) 4, 99

a-Si:H (hydrogenated amorphous silicon) 2, 135

avalanche 2, 15

average coordination 4, 20, 21, 22, 28, 31, 67

band tail 4, 92, 111

bond angle 4, 90

bond breaking 121, 126, 131, 132, 137, 138

bond energy 31, 32

bond length 38, 121

bond strength 43

Boson peak 30

Cambridge Structural Database (CSD) 53, 57, 60

capacitance 102, 103

carrier generation 140

carrier–phonon interaction 132

chain structure 86

charge distribution 24, 96

chemical vapor deposition (CVD) 14, 18

conduction band (CB) 91, 93, 103, 104, 105, 106, 107

constant photocurrent method (CPM) 103

constraint 4, 60

continuous random network 50, 94

coulomb interaction 43, 121, 137

dangling bond 4, 10, 40, 88, 94, 131

dc conductivity 110

debye-type relaxation 126

deep levels 102

defect spectroscopy 101

density-functional 4, 43, 44, 48, 49, 68, 96

density-of-states (DOS) 4, 106

dielectric relaxation time 110

digital versatile disk (DVD) 2, 16, 73

dihedral angle 39

dispersive transport 5

distant pair recombination 111

doping 94, 97, 98, 99

drift mobility 5

effective mass 91, 98

electron nuclear double resonance (ENDOR) 104

electron–phonon interaction 95

electron spin resonance (ESR) 88, 94, 95, 103, 104, 131, 132

electrophotography (xerography) 1, 103

evaporation 14, 15, 16, 18, 68

excited electron 121, 124

extended states 101, 102

extended x-ray absorption fine structure (EXAFS) spectroscopy 41

Fermi level 101, 102, 103, 112

field-effect measurements 102

field-effect transistors 3

fractal structure 76
Index

146

generation rate 124, 126
giant photoexpansion 5
glass transition 8, 18, 19, 20, 30, 32, 71
glass transition temperature 9, 18, 19, 20, 30, 33, 117, 140
glow discharge 14, 16, 40, 97
heat capacity 9, 27, 28, 29, 33
highest occupied molecular orbital (HOMO) 120, 121, 123
hopping 5, 48, 99, 103, 108, 110
impurity 6, 93, 96, 97, 98
intimate pair 132
ionic transport 76, 112, 113
irreversible change 117, 126, 139
isothermal annealing 74
Keating potential 42, 43, 45, 50, 60
lattice vibration 27, 28, 91
light-induced electron spin resonance (LESR) 104, 133
linear combination of atomic orbitals (LCAO) 86, 87
liquid crystal display 3
long-range order 4, 7, 90, 91, 94
long-range translational order 8, 33
lone-pair (LP) 4, 90, 93, 106, 138
lowest unoccupied molecular orbital (LUMO) 120, 121
magnetron sputtering 16
mammography 2
medium-range order 8, 37
melting temperature 18, 19, 30, 73
melt-quenching 14
metastable 118, 126, 130, 132
Meyer–Neldel (MN) 5, 76, 112, 113
mobility 3, 5
mobility edge 4, 92
nearest-neighbor 37, 40, 48, 51, 72, 87
negative-U 95, 96, 132
neutron diffraction 35, 37, 38, 39, 40, 53, 56, 60, 68, 100
non-radiative recombination 131, 132
nuclear magnetic resonance (NMR) 24, 41, 104
optical absorption 4, 138
optical memory 16
pair correlation 33, 60
penetration depth 136
percolation path 108
phase-change material 16, 19, 29, 73, 78
phase-change random-access memory (PRAM) 2, 73
photobleaching (PB) 129
photoconductivity 1, 6, 107, 132
photodarkening (PD) 5, 117, 118, 129, 130, 135, 136, 137, 138, 139
photodegradation 6
photoinduced absorption (PA) 101
photoinduced defect creation (PDC) 128, 139
photoinduced volume contraction (PVC) 118, 136
photoinduced volume expansion (PVE) 117, 118, 128, 135, 136, 137, 138
photoluminescence (PL) 4, 110, 111
photon absorption 110, 121, 124
photothermal deflection spectroscopy (PDS) 101, 102
photovoltaic (PV) 2, 3, 17
plasma-enhanced chemical vapor deposition (PECVD) 14, 16, 17, 18
polarons 5
primary photoconductivity 107
quadradure-frequency-resolved spectroscopy (QFRS) 110, 111
quantum efficiency 133, 134
radial distribution function (RDF) 19, 72
radiative recombination 132
Raman spectrum 122, 123, 140
reactive sputtering 16
refractive index 100, 101, 129
ring statistic 67, 68
second nearest-neighbor 20, 72
self-trapped exciton (STE) 132
short-range order 8, 40
solar cells 3, 140
space-charge-limited current (SCLC) 103
specific heat 29
Staebler–Wronski effect 6, 130
stretched exponential function 126, 128, 136, 138, 139
tail states 4, 92, 106, 110
Tate relation 106
tin-film transistors (TFTs) 3, 17
time-of-flight (TOF) 5, 107
Urbach tail 106
valence-alternation pairs (VAPs) 95, 96
variable-range hopping (VRH) 5
Verlet algorithm 62, 63, 64
vidicon 2, 15
viscosity 32, 33
Vogel–Tamman–Fulcher equation 33
<table>
<thead>
<tr>
<th>Index</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>wrong bond</td>
<td>100</td>
</tr>
<tr>
<td>xerography 1, 2, 103</td>
<td></td>
</tr>
<tr>
<td>x-ray absorption near-edge structure 77</td>
<td></td>
</tr>
<tr>
<td>x-ray diffraction 35, 36, 39, 140</td>
<td></td>
</tr>
<tr>
<td>x-ray image detector 15</td>
<td></td>
</tr>
<tr>
<td>x-ray image sensor 2</td>
<td></td>
</tr>
<tr>
<td>Zeeman splitting 77</td>
<td></td>
</tr>
</tbody>
</table>