Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems

Recognizing that the economy is a complex system with boundedly rational interacting agents, the book presents a theory of behavioral rationality and heterogeneous expectations in complex economic systems and confronts the nonlinear dynamic models with empirical stylized facts and laboratory experiments. The complexity modeling paradigm has been strongly advocated since the late 1980s by some economists and by multidisciplinary scientists from various fields, such as physics, computer science and biology. More recently the complexity view has also drawn the attention of policy makers, who are faced with complex phenomena, irregular fluctuations and sudden, unpredictable market transitions. The complexity tools bifurcations, chaos, multiple equilibria - discussed in this book will help students, researchers and policy makers to build more realistic behavioral models with heterogeneous expectations to describe financial market movements and macroeconomic fluctuations, in order to better manage crises in a complex global economy.

CARS HOMMES is Professor of Economic Dynamics at the University of Amsterdam (UvA). After his PhD in Mathematical Economics at the University of Groningen, he founded the Center for Nonlinear Dynamics in Economics and Finance (CeNDEF), an interdisciplinary research group at UvA, pursuing theoretical, experimental and empirical research on complex systems, bounded rationality and behavioral agent-based models in economics and finance.

"Professor Hommes' work is a major contribution to the understanding of intertemporal economic fluctuations. In a world in which production and investment behavior is motivated by expectations of the future, the way those expectations are formed becomes of the utmost importance. These expectations lead to dynamic systems, and the author draws on the rich literature developed for the study of mechanical and gravitational phenomena. These lead to the emergence of very complex behavior in markets driven by expectations, especially when different economic agents have different modes of forming expectations from data. The study of this book will have a profound impact on the theoretical and empirical analysis of securities markets and other forms of investment."

Kenneth J. Arrow, Joan Kenney Professor of Economics and Professor of Operations Research, Emeritus, Stanford University. Winner of the Nobel Prize in Economics 1972

"Cars Hommes has written an excellent book that is a combination of theory, economic modeling and economic experiments. The book is an outgrowth of a course on Nonlinear Economic Dynamics that he has given mostly at the University of Amsterdam for the last 20 years."

Professor Carl Chiarella, Head of Finance Discipline Group, University of Technology, Sydney

"Henri Poincaré, the great French mathematician and father of non linear dynamic analysis, at the turn of the 20th century chided Walras for his unrealistic assumptions about how individuals make their decisions. He also declared that Bachelier's random walk hypothesis for financial markets overlooked the tendency of people to act like sheep. Yet Walras and Bachelier are, with reason, regarded as the founders of modern economic and financial theory.

Cars Hommes' excellent book puts us firmly back on the path that we should have followed had we heeded Poincaré's warnings and built our economic theory on the foundations that he laid. The book's careful formal analysis, empirical and experimental evidence provides a solid basis for understanding the volatile evolution of economies. It provides the framework for a better understanding of how economies do actually behave rather than how current economic theory says they should behave. This book could not have come at a more opportune moment."

Alan Kirman, Professor Emeritus of Economics at Université d'Aix-Marseille III, France and Director of Studies at Ecole des Hautes Etudes en Sciences Sociales

"Assumptions about the homogeneity of individuals' expectations have limited economic modeling for some time. In this very complete book, Cars Hommes shows the reader how the world of heterogeneous expectations works in several different contexts. It distinguishes itself by covering theory along with empirical and experimental validation. Researchers interested in getting up to speed in this relatively new area of economics will find this book an excellent overview and tutorial."

Professor Blake LeBaron, International Business School, Brandeis University

"Without doubt, rational expectations has been a powerful and useful assumption in pushing applied work forward in the last 40 years. But positing that agents have heterogeneous beliefs that deviate from the measure implied by a model opens up new possibilities that promise to allow us to resolve some of our many remaining puzzles about asset prices and quantities. Cars Hommes' book is a leading example of how productive this approach can be."

Thomas J. Sargent, W. R. Berkley Professor of Economics and Business, New York University and Senior Fellow, Hoover Institution, Stanford University. Winner of the Nobel Prize in Economics 2011

Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems

Cars Hommes University of Amsterdam Center for Nonlinear Dynamics in Economics and Finance (CeNDEF) Amsterdam School of Economics and Tinbergen Institute

Cambridge University Press
978-1-107-01929-4 - Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems
Cars Hommes
Frontmatter
More information

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107019294

© Cars Hommes 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Hommes, Carsien Harm, author. Behavioral rationality and heterogeneous expectations in complex economic systems / Cars Hommes. pages cm Includes bibliographical references and index. ISBN 978-1-107-01929-4 1. Rational expectations (Economic theory). 2. Economics–Psychological aspects. I. Title. HB3731.H66 2012 330.01'9–dc23 2012033806

ISBN 978-1-107-01929-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Voor Annelies, Thomas & Saar

Contents

	List	of figures pag	e xi
	Pref	ace	XV
1	Intr	aduction	1
-	1 1	Economic dynamics nonlinearity and complexity	2
	1.1	1.1.1 The discovery of chaos	3
		1.1.2 Economic applications of chaos	4
		113 Expectations	5
		1.1.4 Bounded rationality and adaptive learning	7
		1.1.5 Heterogeneity in complex adaptive systems	8
		1.1.6 Behavioral rationality and heterogeneous expectations	8
	1.2	Adaptive expectations in a nonlinear economy	10
	1.3	Rational versus naive expectations	14
	1.4	Adaptive learning	18
		1.4.1 Cobweb learning-to-forecast experiments	19
	1.5	Behavioral rationality and heterogeneous expectations	22
	1.6	Financial markets as complex adaptive systems	25
		1.6.1 Estimation of a model with fundamentalists versus chartists	28
	1.7	Learning-to-forecast experiments	30
	1.8	Simple complex systems	35
	1.9	Purpose and summary of the book	36
2	Bifu	rcations and chaos in 1-D systems	39
-	2.1	Monotonic maps	40
	2.2	The quadratic difference equation	43
		2.2.1 Steady states and stability	43
		2.2.2 Periodic and aperiodic time series	44
	2.3	Bifurcations	46
		2.3.1 Period-doubling bifurcation	47
		2.3.2 Tangent bifurcation	49

vii

viii

Contents

ambridge University Press 78-1-107-01929-4 - Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systen	ns
ars Hommes	
rontmatter	
Iore information	

		2.3.3 Transcritical bifurcation	52
		2.3.4 Pitchfork bifurcation	52
	2.4	Chaos	54
		2.4.1 An example	55
		2.4.2 Period 3 implies chaos	56
		2.4.3 A chaotic invariant Cantor set	59
	2.5	Lyapunov exponent	63
	2.6	Chaos and autocorrelations	66
3	Bifu	ircations and strange attractors in 2-D systems	69
	3.1	The Hénon map	70
	3.2	Bifurcations	73
		3.2.1 Saddle-node and period-doubling bifurcation	74
		3.2.2 Hopf bifurcation	76
		3.2.3 Breaking of an invariant circle bifurcation route to chaos	78
		3.2.4 A codimension two bifurcation: degenerate Hopf	
		bifurcation	82
	3.3	The horseshoe map	85
	3.4	Homoclinic orbits	88
	3.5	Lyapunov characteristic exponents	93
4	The	nonlinear cobweb model	95
	4.1	The cobweb model	95
	4.2	Naive expectations	97
	4.3	Rational expectations	98
	4.4	Naive expectations in a complex market	99
	4.5	Adaptive expectations	101
	4.6	Linear backward-looking expectations	105
		4.6.1 LBE with two lags	105
		4.6.2 LBE with many lags	109
	4.7	A behaviorally rational linear forecasting rule	113
		4.7.1 Consistent expectations equilibrium	114
		4.7.2 Sample autocorrelation (SAC) learning	115
		4.7.3 Chaotic consistent expectations equilibrium	116
	4.8	Learning to believe in chaos	120
5	The	cobweb model with heterogeneous expectations	130
	5.1	Heterogeneous expectations	131
		5.1.1 Evolutionary selection and reinforcement learning	132
	5.2	Rational versus naive expectations	134
		5.2.1 Local (in)stability of the steady state	138
		5.2.2 A rational route to randomness	139
		5.2.3 Saddle point instability and homoclinic orbits	143
		5.2.4 Coexistence of attractors	146

Cambridge University Press
978-1-107-01929-4 - Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems
Cars Hommes
Frontmatter
More information

		Contents	ix
	53	Competing linear forecasting rules	148
		5.3.1 Fundamentalists versus naive expectations	150
		5.3.2 Contrarians versus naive expectations	152
	5.4	Evolutionary selection and adaptive learning	155
6	An a	asset pricing model with heterogeneous beliefs	159
	6.1	The homogeneous benchmark with rational agents	161
	6.2	Heterogeneous beliefs	163
	6.3	Evolutionary dynamics	164
	6.4	Forecasting rules	167
	6.5	Simple examples	168
		6.5.1 Costly fundamentalists versus trend followers	169
		6.5.2 Fundamentalists versus optimists and pessimists	173
		6.5.3 Fundamentalists versus trend and bias	176
	6.6	An example with co-existing attractors	179
		6.6.1 Fundamentalists versus conditional trend followers	180
		6.6.2 A locally stable steady state and coexisting cycles and chaos	183
		6.6.3 An endogenous mechanism for volatility clustering	188
	6.7	Many trader types	190
7	Emp	pirical validation	196
	7.1	The model in price-to-cash flows	197
		7.1.1 Heterogeneous beliefs	199
	7.2	Estimation of a simple 2-type example	201
	7.3	Empirical implications	206
		7.3.1 Bubble and crash dynamics	206
		7.3.2 Response to a fundamental shock	208
		7.3.3 Will the bubble resume?	209
8	Lab	oratory experiments	211
	8.1	Learning-to-forecast experiments (LtFEs)	213
	8.2	Cobweb experiments	215
	8.3	Asset pricing experiments	220
		8.3.1 Benchmark simulations	221
		8.3.2 Experimental results	223
	8.4	Fitting a heterogeneous expectations model	224
	8.5	Positive versus negative feedback experiments	228
		8.5.1 Experiments with small shocks	228
		8.5.2 Experiments with large shocks	231
	8.6	Final remarks and future outlook	234
	Bibliography		237
	Inde	x	251

Figures

1.1	Price dynamics and forecasting errors in nonlinear cobweb model with	
	adaptive expectations	page 12
1.2	Bifurcation diagrams in cobweb model with adaptive expectations	14
1.3	Chaotic dynamics in cobweb model with rational versus naive expectation	s 17
1.4	Price dynamics in cobweb model under adaptive learning	20
1.5	Realized prices in cobweb learning-to-forecast laboratory experiments	21
1.6	Sample autocorrelation (SAC) learning versus naive expectations	24
1.7	Chaos and strange attractors in 4-type asset pricing model	28
1.8	Estimation of 2-type asset pricing model with fundamentalists versus	
	trend followers on S&P 500 data	29
1.9	Fitting heuristics switching model to laboratory experimental data	32
2.1	Local stability of steady states for 1-D maps	41
2.2	Global dynamics of monotonic maps	42
2.3	Time series for the quadratic map	45
2.4	Period-doubling bifurcation of the quadratic map	47
2.5	Bifurcation diagram of the quadratic map	48
2.6	Tangent bifurcation	50
2.7	Tangent bifurcation of 3-cycle	51
2.8	Transcritical bifurcation	53
2.9	Pitchfork bifurcation	53
2.10	Iterates of the quadratic map for $\lambda = 4$	55
2.11	Period 3 implies chaos	57
2.12	Topological chaos with small noise	59
2.13	Middle third Cantor set	60
2.14	Invariant Cantor set of quadratic map for $\lambda > 4$	62
2.15	Lyapunov exponent and bifurcation diagram for quadratic map	65
2.16	Asymmetric tent maps	67
3.1	Strange attractor for 2-D quadratic Hénon map	71
3.2	Chaotic time series and sensitive dependence for Hénon map	72
3.3	Saddle-node and period-doubling bifurcation	75
3.4	Breaking of invariant circle bifurcation route to chaos for delayed	
	logistic equation	79
3.5	Time series for delayed logistic equation	80

xi

Cambridge University Press
978-1-107-01929-4 - Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems
Cars Hommes
Frontmatter
More information

xii Figures

3.6	Bifurcation diagram for delayed logistic equation	81
3.7	Bifurcation diagram degenerate Hopf or Chenciner bifurcation	83
3.8	Smale's horseshoe map	86
3.9	Homoclinic points and homoclinic tangles	90
3.10	Homoclinic bifurcation	92
3.11	Lyapunov characteristic exponent, contraction and expansion in 2-D system	94
4.1	Linear demand and nonlinear, S-shaped supply in cobweb model	97
4.2	Chaos in cobweb model with backward-bending supply curve	100
4.3	Bifurcation diagrams in cobweb model with adaptive expectations	103
4.4	Sample autocorrelations of chaotic expectational errors	104
4.5	Stability regions of steady state in cobweb model with linear	
	backward-looking expectations (LBE) with two lags	106
4.6	Strange attractors in cobweb model with LBE with two lags	107
4.7	Breaking of invariant circle bifurcation route to chaos in cobweb	
	model with LBE with two lags.	108
4.8	Sample autocorrelations of chaotic expectational errors in cobweb	
	model with LBE	109
4.9	Strange attractors in cobweb model with adaptive and linear	
	backward-looking expectations	111
4.10	Sample autocorrelations of chaotic expectational errors	112
4.11	SAC learning in cobweb model: convergence to steady state CEE	118
4.12	SAC learning in cobweb model: unstable steady state and	
	two-cycle CEE	119
4.13	Learning to believe in chaotic consistent expectations	
	equilibrium (CEE)	120
4.14	Demand and discounted equilibrium supply curves in fishery model	122
4.15	Chaotic price fluctuations in fishery model	125
4.16	Learning to believe in chaos under SAC learning	127
4.17	Learning to believe in noisy chaos under SAC learning	128
5.1	Chaotic price dynamics on a strange attractor in cobweb model with	
	rational versus naive expectations	141
5.2	Bifurcation diagram and Lyapunov exponent plot of cobweb model	
	with rational versus naive expectations	142
5.3	Unstable manifolds and homoclinic tangency in cobweb model with	
	rational versus naive expectations	145
5.4	Basins of attraction of two coexisting stable 4-cycles	147
5.5	Time series with noise with coexisting stable 4-cycles	148
5.6	Chaos and strange attractors in cobweb model with fundamentalists	
	versus naive expectations	151
5.7	Bifurcation diagram and Lyapunov exponent plot in cobweb model	
	with fundamentalists versus naive expectations	152
5.8	Strange attractors in cobweb model with contrarians versus naive expectations	153
5.9	Homoclinic bifurcation in cobweb model with contrarians versus	
	naive expectations	154
5.10	Agents learn to be contrarians in the cobweb model with SAC learning	
	versus naive expectations	156

	Figures	xiii
5.11	SAC learning versus naive expectations with memory in the fitness measure	157
6.1	Bifurcation diagram and Lyapunov exponent plot for the asset pricing	
011	model with costly fundamentalists versus trend followers	170
6.2	Dynamics of prices and fractions in asset pricing model with	
	fundamentalists versus trend followers	171
6.3	Bifurcation diagram and Lyapunov exponent plot for the 3-type asset	
	pricing model with fundamentalists versus optimists and pessimists	174
6.4	Dynamics in the 3-type asset pricing model with fundamentalists	
	versus optimists and pessimists	175
6.5	Chaotic time series and strange attractors in 4-type asset pricing model	176
6.6	Bifurcation diagram and Lyapunov exponent plot for 4-type asset	
0.0	pricing model	177
6.7	Forecasting errors for the nearest neighbor method in noisy chaotic	1,,
0.7	4-type asset pricing model	179
6.8	Chenciner bifurcation diagram in asset pricing model with conditional	117
0.0	trend followers versus fundamentalists	184
69	Attractors in asset pricing model with conditional trend followers	101
0.7	versus fundamentalists	186
6 10	Quasi-periodic and chaotic dynamics after a Hopf bifurcation in asset	100
0.10	pricing model with conditional trend followers versus fundamentalists	187
6 11	Stochastic price simulations in asset pricing model with	107
0.11	fundamentalists and conditional chartists	189
6.12	Bifurcation diagram for the large type limit (LTL)	103
6.12	Bifurcation route to strange attractors in 5-D I TI	193
7.1	S&P 500 stock market index and fundamental benchmark	203
7.1	Estimated fraction of fundamentalists and average market sentiment	203
1.2	for 2 type switching model with fundamentalists versus trend followers	205
73	Simulation results for estimated 2 type asset pricing model with	205
7.5	fundamentalists versus trend followers	207
74	Pasponse to a fundamental shock for linear representative agent	207
7.4	model and nonlinear 2 type switching model	208
75	Prediction of PE ratios for linear representative agent model and	208
7.5	nonlinear 2 type switching model	210
01	Computer corpor in a loarning to forecast laboratory experiment	210
0.1 0.1	Simulated price dynamics for unstable solwab laboratory experiment	214
0.2 0.2	Drive functions and individual forecasts in achieved	217
8.3	Price includions and individual forecasts in codweb	210
0.4	Simulated mission and learning a neuronators up day CA learning in	218
8.4	Simulated prices and learning parameters under GA learning in	220
0.5	cobwed experiments	220
8.5	Benchmark simulations of asset pricing experiments	222
8.6	Price nuctuations and individual forecasts in asset pricing experiments	223
8.7	Fitting neuristics switching model to asset pricing experiments	227
8.8	Prices and individual forecasts in negative and positive feedback	220
0.0	experiments with small shocks	229
8.9	Heuristics switching model fitted to negative and positive feedback	001
	experiments with small shocks	231

nbridge University Press	
3-1-107-01929-4 - Behavioral Rationality and Heterogeneous Expectations in Complex Economic System	ns
rs Hommes	
ontmatter	
reinformation	

xiv Figures

8.10	Heuristics switching model fitted to negative and positive feedback	
	experiments with large permanent shocks	232
8.11	Price discovery and coordination of individual expectations in	
	positive/negative feedback experiments with large shocks	233

Preface

This book has a long history. It grew out of courses on Nonlinear Economic Dynamics (NED), which I have been teaching in the past 20 years at the University of Amsterdam (UvA) and various other places. The NED course has been part of the MSc Econometrics program of the Amsterdam School of Economics, University of Amsterdam since I started at UvA in 1992. I have also taught a condensed version of NED bi-annually between 1996 and 2004 in the Network Algemene en Kwantitatieve Economie (NAKE), a quantitative network of economics PhD courses in the Netherlands. Since 2004 the NED course has been part of the Graduate Program of the Tinbergen Institute, the Graduate school in Economics, Econometrics and Finance in Amsterdam and Rotterdam. More recently, much of the material in this book has been taught at various summerschools and lecture series, in particular the Advanced School on Nonlinear Dynamical Systems in Economics, Udine, Italy, June 2004, the Lecture Series on Heterogeneous Agent Models, Pisa, Italy, June 2006, the Trento Summerschool on Agent-based Finance, Trento, Italy, July 2007 and the International School on Multidisciplinary approaches to Economic and Social Complex Systems, Siena, Italy, June 2010.

I am grateful to many colleagues and friends for inspiration and help over more than two decades. My main PhD thesis advisor at the University of Groningen, Helena Nusse, raised my enthusiasm for chaos and complexity. In Groningen, Floris Takens further deepened my knowledge of nonlinear dynamics and strange attractors, and Ad Pikkemaat taught me the first lessons in mathematical economics. At the University of Amsterdam, this role was taken over by Claus Weddepohl, who was one of the first mathematical economists in the Netherlands and Europe recognizing the importance of nonlinear dynamics and complexity for economics.

I am most grateful to William "Buz" Brock for his inspiration and support over so many years. My visits to the University of Wisconsin, Madison, in the summers of 1994, 1995 and 1997 and our regular discussions thereafter over a coffee or a "spotted cow" either in Amsterdam or Madison, have been extremely stimulating and productive. Our joint work on bounded rationality and heterogeneous expectations in complex economic systems forms the theoretical basis of this book. Buz's contributions go far

xvi **Preface**

beyond science and his warm friendship has been another reason to keep coming back to Madison.

Since 1998 the Center for Nonlinear Dynamics in Economics and Finance (CeN-DEF) provided a most stimulating research environment within the Amsterdam School of Economics at UvA. The CeNDEF group has not only further explored the theory and applications of nonlinear dynamics and complexity in economics, but has also brought these models to the data by testing them with empirical time series data and laboratory experiments with human subjects. At the start of CeNDEF, experimental and empirical work for me were a "jump in the dark" and this book has benefitted enormously from my almost daily discussions and joint work in the past 15 years with CeNDEF researchers, coauthors and friends, particularly with Mikhail Anufriev, Peter Boswijk, Cees Diks, Maurice Koster, Roald Ramer, Joep Sonnemans, Jan Tuinstra and Florian Wagener. I have been fortunate with continuous intellectual challenges from excellent PhD students and postdocs at CeNDEF and would like to thank Tiziana Assenza, Te Bao, Adriana Cornea, Pietro Dindo, Gerwin Griffioen, Peter Heemeijer, Sander van der Hoog, Tatiana Kiseleva, David Kopanyi, Marco van der Leij, Michiel van der Leur, Tomasz Makarewicz, Sebastiano Manzan, Domenico Massaro, Saeed Mohammadian Moghayer, Marius Ochea, Valentyn Panchenko, Raoul Philipse, Daan in't Veld, Henk van de Velden, Robin de Vilder, Juanxi Wang, Roy van der Weide, Marcin Wolski, Paolo Zeppini, Mei Zhu and Ilija Zovko.

Complexity, bounded rationality and heterogeneity are new and still somewhat controversial topics in economics and my work benefitted greatly from many stimulating discussions, encouragement and joint work with many colleagues and friends: Jasmina Arifovic, Volker Böhm, Giulio Bottazzi, Jean Philip Bouchaud, Bill Branch, Jim Bullard, Serena Brianzoni, Carl Chiarella, Silvano Cincotti, David Colander, Herbert Dawid, Dee Dechert, Paul DeGrauwe, Domenico Delli-Gatti, Roberto Dieci, Giovanni Dosi, Edward Droste, John Duffy, George Evans, Doyne Farmer, Gustav Feichtinger, Mauro Gallegati, Laura Gardini, Andrea Gaunersdorfer, Jacob Goeree, David Goldbaum, Jean-Michel Grandmont, Roger Guesnerie, Tony He, Dirk Helbing, Thorsten Hens, Seppo Honkapohja, Hai Huang, Ken Judd, Alan Kirman, Mordecai Kurz, Yuri Kuznetsov, Laurence Laselle, Blake LeBaron, Axel Leijonhufvud, Marji Lines, Thomas Lux, Rosario Mantegna, Bruce McGough, Alfredo Medio, Paul Ormerod, Damjan Pfajfar, J. Barkley Rosser, Klaus-Reiner Schenk-Hoppé, Andras Simonovits, Gerhard Sorger, Didier Sornette, Shyam Sunder, Leigh Tesfatsion, Fabio Tramontana, Miroslav Verbic, Duo Wang, Frank Westerhoff, Remco Zwinkels and many others.

I hope this book will provide the readers with some of the excitement about nonlinear dynamics and complex systems in economics and finance that I have experienced over the years. The book should not be seen as an in-depth mathematical treatment of nonlinear dynamics, but rather as a collection of the most important and relevant tools to be applied by researchers and policy makers in economics and finance. In the courses I have been teaching about the subject, computer simulations have always played an important role for students as an illustration of the concepts and CAMBRIDGE

Cambridge University Press 978-1-107-01929-4 - Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems Cars Hommes Frontmatter More information

Preface xvii

richness of nonlinear dynamics. Most of the figures in this book have been generated by the *E&F Chaos* software package, jointly developed at CeNDEF with Cees Diks, Valentyn Panchenko and Roy van der Weide, and freely downloadable at http://www1.fee.uva.nl/cendef/http://www1.fee.uva.nl/cendef/.

A special word of thanks goes to Dávid Kopányi, for his assistance in the last year with carefully editing the text and especially producing many illuminating figures and illustrations in the book. Without his help the book would still be unfinished. In addition, I would like to thank Chris Harrison and Phil Good at CUP for their technical support and patience. I gratefully acknowledge financial support for many years of complexity research by the Netherlands Organization for Scientific Research (NWO) and the EU through several FP6 and FP7 EU grants.

Finally and most of all, I thank Annelies, Thomas and Saar for their love and patience over so many years. They are my stable attractors in a complex world.