
1

Getting started

In this chapter we will introduce some of the main concepts of functional programming
languages. In particular we will introduce the concepts of value, expression, declaration,
recursive function and type. Furthermore, to explain the meaning of programs we will intro-
duce the notions: binding, environment and evaluation of expressions.

The purpose of the chapter is to acquaint the reader with these concepts, in order to
address interesting problems from the very beginning. The reader will obtain a thorough
knowledge of these concepts and skills in applying them as we elaborate on them through-
out this book.

There is support of both compilation of F# programs to executable code and the execution
of programs in an interactive mode. The programs in this book are usually illustrated by the
use of the interactive mode.

The interface of the interactive F# compiler is very advanced as, for example, structured
values like tuples, lists, trees and functions can be communicated directly between the user
and the system without any conversions. Thus, it is very easy to experiment with programs
and program designs and this allows us to focus on the main structures of programs and
program designs, that is, the core of programming, as input and output of structured values
can be handled by the F# system.

1.1 Values, types, identifiers and declarations

In this section we illustrate how to use an F# system in interactive mode.
The interactive interface allows the user to enter, for example, an arithmetic expression in

a line, followed by two semicolons and terminated by pressing the return key:

2*3 + 4;;

The answer from the system contains the value and the type of the expression:

val it : int = 10

The system will add some leading characters in the input line to make a distinction between
input from the user and output from the system. The dialogue may look as follows:

> 2*3 + 4;;
val it : int = 10
>

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


2 Getting started

The leading string “> ” is output whenever this particular system is awaiting input from
the user. It is called the prompt, as it “prompts” for input from the user. The input from the
user is ended by a double semicolon “;;” while the next line contains the answer from the
system.

In the following we will distinguish between user input and answer from the system by
the use of different type fonts:

2*3 + 4;;
val it : int = 10

The input from the user is written in typewriter font while the answer from the system
is written in italic typewriter font.

The above answer starts with the reserved word val, which indicates that a value has
been computed, while the special identifier it is a name for the computed value, that is, 10.
The type of the result is int, denoting the subset of the integers {. . . ,−2,−1, 0, 1, 2, . . .}
that can be represented using the system.

The user can give a name to a value by entering a declaration, for instance:

let price = 125;;

where the reserved word let starts the declarations. In this case the system answers:

val price : int = 125

The identifier price is now a name for the integer value 125. We also say that the identifier
price is bound to 125.

Identifiers which are bound to values can be used in expressions:

price * 20;;
val it : int = 2500

The identifier it is now bound to the integer value 2500, and this identifier can also be
used in expressions:

it / price = 20;;
val it : bool = true

The operator / is the quotient operator on integers. The expression it/price = 20 is a
question to the system and the identifier it is now bound to the answer true of type bool,
where bool is a type denoting the two-element set {true, false} of truth values. Note that
the equality sign in the input is part of an expression of type bool, whereas the equality
sign in the answer expresses a binding of the identifier it to a value.

1.2 Simple function declarations

We now consider the declaration of functions. One can name a function, just as one can
name an integer constant. As an example, we want to compute the area of a circle with given
radius r, using the well known area function: circleArea(r) = πr2.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


1.2 Simple function declarations 3

�r

Circle with radius r and area πr2.

The constant π is found in the Library under the name System.Math.PI:

System.Math.PI;;
val it : float = 3.141592654

The type float denotes the subset of the real numbers that can be represented in the
system, and System.Math.PI is bound to a value of this type.

We choose the name circleArea for the circle area function, and the function is then
declared using a let-declaration:

let circleArea r = System.Math.PI * r * r;;
val circleArea : float -> float

The answer says that the identifier circleArea now denotes a value, as indicated by
the reserved word val occurring in the answer. This value is a function with the type
float -> float, where the symbol -> indicates a function type and the argument as
well as the value of the function has type float. Thus, the answer says that circleArea
is bound to a value that is some function of type float -> float.

The function circleArea can be applied to different arguments. These arguments must
have the type float, and the result has type float too:

circleArea 1.0;;
val it : float = 3.141592654

circleArea (2.0);;
val it : float = 12.56637061

Brackets around the argument 1.0 or (2.0) are optional, as indicated here.
The identifier System.Math.PI is a composite identifier. The identifier System de-

notes a namespace where the identifier Math is defined, and System.Math denotes a
namespace where the identifier PI is defined. Furthermore, System and System.Math
denote parts of the .NET Library. We encourage the reader to use program libraries whenever
appropriate. In Chapter 7 we describe how to make your own program libraries.

Comments

A string enclosed within a matching pair (* and *) is a comment which is ignored by the
F# system. Comments can be used to make programs more readable for a human reader by
explaining the intention of the program, for example:

(* Area of circle with radius r *)
let circleArea r = System.Math.PI * r * r;;
val circleArea : float -> float

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


4 Getting started

Two slash characters // can be used for one-line comments:

// Area of circle with radius r
let circleArea r = System.Math.PI * r * r;;
val circleArea : float -> float

A comment line can also begin with three slash characters ///. The tool XMLDocs can
produce program documentation from such comment, but we will not pursue this any further
in this book.

Comments can be very useful, especially in large programs, but long comments should
be avoided as they tend to make it more difficult for the reader to get an overview of the
program.

1.3 Anonymous functions. Function expressions

A function can be created in F# without getting any name. This is done by evaluating a func-
tion expression, that is an expression where the value is a function. This section introduces
simple function expressions and function expressions with patterns.

A nameless, anonymous function can be defined by a simple function expression, also called
a lambda expression,1 for example:

fun r -> System.Math.PI * r * r;;
val it : float -> float = <fun:clo@10-1>
it 2.0;;
val it : float = 12.56637061

The expression fun r -> System.Math.PI * r * r denotes the circle-area function
and it reads: “the function of r given by π ·r2”. The reserved word fun indicates that a func-
tion is defined, the identifier r occurring to the left of -> is a pattern for the argument of the
function, and System.Math.PI * r * r is the expression for the value of the function.

The declaration of the circle-area function could be made as follows:

let circleArea = fun r -> System.Math.PI * r * r;;
val circleArea : float -> float

but it is more natural in this case to use a let-declaration let circleArea r = . . . with
an argument pattern. We shall later see many uses of anonymous functions.

Function expressions with patterns

It is often convenient to define a function in terms of a number of cases. Consider, for
example, a function giving the number of days in a month, where a month is given by its
number, that is, an integer between 1 and 12. Suppose that the year of consideration is not a
leap year. This function can thus be expressed as:

1 Lambda calculus was introduced by Alonzo Church in the 1930s. In this calculus an expression of the form
λx.e was used to denote the function of x given by the expression e. The fun-notation in F# is a direct
translation from λ-expressions.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


1.3 Anonymous functions. Function expressions 5

function
| 1 -> 31 // January
| 2 -> 28 // February
| 3 -> 31 // March
| 4 -> 30 // April
| 5 -> 31 // May
| 6 -> 30 // June
| 7 -> 31 // July
| 8 -> 31 // August
| 9 -> 30 // September
| 10 -> 31 // October
| 11 -> 30 // November
| 12 -> 31;;// December

function
ˆ

stdin(17,1): warning FS0025: Incomplete pattern matches on
this expression. For example, the value ’0’ may indicate a
case not covered by the pattern(s).
val it : int -> int = <fun:clo@17-2>

The last part of the answer shows that the computed value, named by it, is a function with
the type int -> int, that is, a function from integers to integers. The answer also shows
the internal name for that function. The first part of the answer is a warning that the set
of patterns used in the function-expression is incomplete. The expression enumerates a
value for every legal number for a month (1, 2, . . . , 12). At this moment we do not care
about other numbers.

The function can be applied to 2 to find the number of days in February:

it 2;;
val it : int = 28

This function can be expressed more compactly using a wildcard pattern “ ”:

function
| 2 -> 28 // February
| 4 -> 30 // April
| 6 -> 30 // June
| 9 -> 30 // September
| 11 -> 30 // November
| _ -> 31;;// All other months

In this case, the function is defined using six clauses. The first clause 2 -> 28 consists
of a pattern 2 and a corresponding expression 28. The next four clauses have a similar
explanation, and the last clause contains a wildcard pattern. Applying the function to a value
v, the system finds the clause containing the first pattern that matches v, and returns the
value of the corresponding expression. In this example there are just two kinds of matches
we should know:

• A constant, like 2, matches itself only, and
• the wildcard pattern matches any value.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


6 Getting started

For example, applying the function to 4 gives 30, and applying it to 7 gives 31.
An even more succinct definition can be given using an or-pattern:

function
| 2 -> 28 // February
| 4|6|9|11 -> 30 // April, June, September, November
| _ -> 31 // All other months
;;

The or-pattern 4|6|9|11 matches any of the values 4, 6, 9, 11, and no other values.
We shall make extensive use of such a case splitting in the definition of functions, also

when declaring named functions:

let daysOfMonth = function
| 2 -> 28 // February
| 4|6|9|11 -> 30 // April, June, September, November
| _ -> 31 // All other months

;;
val daysOfMonth : int -> int

daysOfMonth 3;;
val it : int = 31

daysOfMonth 9;;
val it : int = 30

1.4 Recursion

This section introduces the concept of recursion formula and recursive declaration of func-
tions by an example: the factorial function n!. It is defined by:

0! = 1
n! = 1 · 2 · . . . · n for n > 0

where n is a non-negative integer. The dots · · · indicate that all integers from 1 to n should
be multiplied. For example:

4! = 1 · 2 · 3 · 4 = 24

Recursion formula

The underbraced part of the below expression for n! is the expression for (n− 1)!:

n! = 1 · 2 · . . . · (n− 1)︸ ︷︷ ︸
(n−1)!

·n for n > 1

so we get the formula:

n! = n · (n− 1)! for n > 1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


1.4 Recursion 7

This formula is actually correct also for n = 1 as:

0! = 1 and 1 · (1− 1)! = 1 · 0! = 1 · 1 = 1

so we get:

0! = 1 (Clause 1)
n! = n · (n− 1)! for n > 0 (Clause 2)

This formula is called a recursion formula for the factorial function ( !) as it expresses the
value of the function for some argument n in terms of the value of the function for some
other argument (here: n− 1).

Computations

This definition has a form that can be used in the computation of values of the function. For
example:

4!
= 4 · (4− 1)!
= 4 · 3!
= 4 · (3 · (3− 1)!)
= 4 · (3 · 2!)
= 4 · (3 · (2 · (2− 1)!))
= 4 · (3 · (2 · 1!))
= 4 · (3 · (2 · (1 · (1− 1)!)))
= 4 · (3 · (2 · (1 · 0!)))
= 4 · (3 · (2 · (1 · 1)))
= 24

The clauses of the definition of the factorial function are applied in a purely “mechanical”
way in the above computation of 4!. We will now take a closer look at this mechanical
process as the system will compute function values in a similar manner:

Substitution in clauses

The first step is obtained from Clause 2, by substituting 4 for n. The condition for using the
second clause is satisfied as 4 > 0. This step can be written in more detail as:

4!
= 4 · (4− 1)! (Clause 2, n = 4)

Computation of arguments

The new argument (4 − 1) of the factorial function in the expression (4 − 1)! is computed
in the next step:

4 · (4− 1)!
= 4 · 3! (Compute argument of !)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


8 Getting started

Thus, the principles used in the first two steps of the computation of 4! are:

• Substitute a value for n in Clause 2.
• Compute argument.

These are the only principles used in the above computation until we arrive at the expression:

4 · (3 · (2 · (1 · 0!)))

The next computation step is obtained by using Clause 1 to obtain a value of 0!:

4 · (3 · (2 · (1 · 0!)))
= 4 · (3 · (2 · (1 · 1))) (Clause 1)

and the multiplications are then performed in the last step:

4 · (3 · (2 · (1 · 1)))
= 24

This recursion formula for the factorial function is an example of a general pattern that
will appear over and over again throughout the book. It contains a clause for a base case
“0!”, and it contains a clause where a more general case “n!” is reduced to an expression
“n · (n− 1)!” involving a “smaller” instance “(n− 1)!” of the function being characterized.
For such recursion formulas, the computation process will terminate, that is, the computation
of n! will terminate for all n ≥ 0.

Recursive declaration

We name the factorial function fact, and this function is then declared as follows:

let rec fact = function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

This declaration corresponds to the recursion formula for n!. The reserved word rec occur-
ring in the let-declaration allows the identifier being declared (fact in this case) to occur
in the defining expression.

This declaration consists of two clauses

0 -> 1 and n -> n * fact(n-1)

each initiated by a vertical bar. The pattern of the first clause is the constant 0, while the
pattern of the second clause is the identifier n.

The patterns are matched with integer arguments during the evaluation of function values
as we shall see below. The only value matching the pattern 0 is 0. On the other hand, every
value matches the pattern n, as an identifier can name any value.

Evaluation

The system uses the declaration of fact to evaluate function values in a way that resembles
the above computation of 4!.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


1.4 Recursion 9

Substitution in clauses
To evaluate fact4, the system searches for a clause in the declaration of fact, where 4
matches the pattern of the clause.

The system starts with the first clause of the declaration: 0->1. This clause is skipped
as the value 4 does not match the pattern 0 of this clause.

Then, the second clause: n->n*fact(n-1) is investigated. The value 4 matches the
pattern of this clause, that is, the identifier n. The value 4 is bound to n and then substituted
for n in the right-hand side of this clause thereby obtaining the expression: 4*fact(4-1).

We say that the expression fact4 evaluates to 4*fact(4-1) and this evaluation is
written as:

fact 4
� 4 * fact(4-1)

where we use the symbol � for a step in the evaluation of an expression. Note that the
symbol � is not part of any program, but a symbol used in explaining the evaluation of
expressions.

Evaluation of arguments
The next step in the evaluation is to evaluate the argument 4-1 of fact:

4 * fact(4-1)
� 4 * fact 3

The evaluation of the expression fact 4 proceeds until a value is reached:

fact 4
� 4 * fact(4-1) (1)
� 4 * fact 3 (2)
� 4 * (3 * fact(3-1)) (3)
� 4 * (3 * fact 2) (4)
� 4 * (3 * (2 * fact(2-1))) (5)
� 4 * (3 * (2 * fact 1)) (6)
� 4 * (3 * (2 * (1 * fact(1-1)))) (7)
� 4 * (3 * (2 * (1 * fact 0))) (8)
� 4 * (3 * (2 * (1 * 1))) (9)
� 4 * (3 * (2 * 1)) (10)
� 4 * (3 * 2) (11)
� 4 * 6 (12)
� 24 (13)

The argument values 4, 3, 2 and 1 do not match the pattern 0 in the first clause of the
declaration of fact, but they match the second pattern n. Thus, the second clause is chosen
for further evaluation in the evaluation steps (1), (3), (5) and (7).

The argument value 0 does, however, match the pattern 0, so the first clause is chosen
for further evaluation in step (9). The steps (2), (4), (6) and (8) evaluate argument values to
fact, while the last steps (10) - (13) reduce the expression built in the previous steps.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org


10 Getting started

Unsuccessful evaluations

The evaluation of factn may not evaluate to a value, because

• the system will run out of memory due to long expressions,
• the evaluation may involve bigger integers than the system can handle, or
• the evaluation of an expression may not terminate.2

For example, applying fact to a negative integer leads to an infinite evaluation:

fact -1
� -1 * fact(-1 - 1)
� -1 * fact -2
� -1 * (-2 * fact(-2 - 1))
� -1 * (-2 * fact -3)
� . . .

A remark on recursion formulas

The above recursive function declaration was motivated by the recursion formula:

0! = 1
n! = n · (n− 1)! for n > 0

which gives a unique characterization of the factorial function.
The factorial function may, however, be characterized by other recursion formulas, for

example:

0! = 1

n! =
(n + 1)!
n + 1

for n ≥ 0

This formula is not well-suited for computations of values, because the corresponding func-
tion declaration based on this formula (where / denotes integer division):

let rec f = function
| 0 -> 1
| n -> f(n+1)/(n+1);;

val f : int -> int

gives an infinite evaluation of f k when k > 0. For example:

f 2
� f(2+1)/(2+1)
� f(3)/3
� f(3+1)/(3+1)
� . . .

2 Note that a text like factn is not part of F#. It is a schema where one can obtain a program piece by
replacing the meta symbol n with a suitable F# entity. In the following we will often use such schemas
containing meta symbols in italic font.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Excerpt
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107019027: 


